The Contingency of Reported sST2 Serum Concentrations with a Protein Detection System (ELISA) from the Same Manufacturer (R&D Biotechne, 2002–2025): An Explanatory Effort by Applied Medical Researchers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. sST2 Measurement Using the DuoSet ELISA (Research Use Only, RUO)
2.3. sST2 Measurement by Using the Quantikine ELISA (Research Use Only, RUO)
2.4. Evaluation (1a)
2.5. Evaluation (1b)
2.6. Evaluation (2a)
2.7. Evaluation (2b)
3. Results
3.1. Evaluation (1a): Comparison of Results Using DuoSet ELISA Versus Using Quantikine ELISA
3.2. Evaluation (1b): Comparison of DuoSet Standard Versus Quantikine Standard on the Pre-Coated Quantikine Plate
3.3. Evaluation (1b): Comparison of DuoSet Standard Versus Quantikine Standard on DuoSet Plate
3.4. Evaluation (2a): Comparison of sST2 Serum Concentrations Using DuoSet ELISA 2016 vs. Duoset ELISA 2023
3.5. Evaluation (2b): Comparison of Previously Published Studies Using DuoSet ELISA and Quantikine ELISA
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, T.; Jaffe, A.S. Soluble ST2—Analytical considerations. Am. J. Cardiol. 2015, 115, 8B–21B. [Google Scholar] [CrossRef] [PubMed]
- Pusceddu, I.; Dieplinger, B.; Mueller, T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans. Clin. Chim. Acta 2019, 495, 493–500. [Google Scholar] [CrossRef]
- Mildner, M.; Storka, A.; Lichtenauer, M.; Mlitz, V.; Ghannadan, M.; Hoetzenecker, K.; Nickl, S.; Dome, B.; Tschachler, E.; Ankersmit, H.J. Primary sources and immunological prerequisites for sST2 secretion in humans. Cardiovasc. Res. 2010, 87, 769–777. [Google Scholar] [CrossRef]
- Meijers, W.C.; Bayes-Genis, A.; Mebazaa, A.; Bauersachs, J.; Cleland, J.G.F.; Coats, A.J.S.; Januzzi, J.L.; Maisel, A.S.; McDonald, K.; Mueller, T.; et al. Circulating heart failure biomarkers beyond natriuretic peptides: Review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur. J. Heart Fail. 2021, 23, 1610–1632. [Google Scholar] [CrossRef]
- Kuroiwa, K.; Li, H.; Tago, K.; Iwahana, H.; Yanagisawa, K.; Komatsu, N.; Oshikawa, K.; Sugiyama, Y.; Arai, T.; Tominaga, S.I. Construction of ELISA system to quantify human ST2 protein in sera of patients. Hybridoma 2000, 19, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.; Krenn, C.; Roth, G.; Moser, B.; Dworschak, M.; Jensen-Jarolim, E.; Spittler, A.; Sautner, T.; Bonaros, N.; Wolner, E.; et al. Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med. 2004, 30, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- Bekos, C.; Zimmermann, M.; Unger, L.; Janik, S.; Hacker, P.; Mitterbauer, A.; Koller, M.; Fritz, R.; Gäbler, C.; Kessler, M.; et al. Non-professional marathon running: RAGE axis and ST2 family changes in relation to open-window effect, inflammation and renal function. Sci. Rep. 2016, 6, 32315. [Google Scholar] [CrossRef]
- Roth, G.A.; Zimmermann, M.; Lubsczyk, B.A.; Pilz, J.; Faybik, P.; Hetz, H.; Hacker, S.; Mangold, A.; Bacher, A.; Krenn, C.G.; et al. Up-regulation of interleukin 33 and soluble ST2 serum levels in liver failure. J. Surg. Res. 2010, 163, e79–e83. [Google Scholar] [CrossRef]
- Mueller, T.; Zimmermann, M.; Dieplinger, B.; Ankersmit, H.J.; Haltmayer, M. Comparison of plasma concentrations of soluble ST2 measured by three different commercially available assays: The MBL ST2 assay, the Presage ST2 assay, and the R&D ST2 assay. Clin. Chim. Acta 2012, 413, 1493–1494. [Google Scholar] [CrossRef]
- Hacker, S.; Lambers, C.; Pollreisz, A.; Hoetzenecker, K.; Lichtenauer, M.; Mangold, A.; Niederpold, T.; Hacker, A.; Lang, G.; Dworschak, M.; et al. Increased soluble serum markers caspase-cleaved cytokeratin-18, histones, and ST2 indicate apoptotic turnover and chronic immune response in COPD. J. Clin. Lab. Anal. 2009, 23, 372–379. [Google Scholar] [CrossRef]
- Urban, M.H.; Stojkovic, S.; Demyanets, S.; Hengstenberg, C.; Valipour, A.; Wojta, J.; Burghuber, O.C. Soluble ST2 and All-Cause Mortality in Patients with Chronic Obstructive Pulmonary Disease-A 10-Year Cohort Study. J. Clin. Med. 2021, 11, 56. [Google Scholar] [CrossRef]
- Han, J.H.; Suh, C.-H.; Jung, J.-Y.; Ahn, M.-H.; Kwon, J.E.; Yim, H.; Kim, H.-A. Serum Levels of Interleukin 33 and Soluble ST2 Are Associated with the Extent of Disease Activity and Cutaneous Manifestations in Patients with Active Adult-onset Still’s Disease. J. Rheumatol. 2017, 44, 740–747. [Google Scholar] [CrossRef]
- Yin, X.; Cao, H.; Wei, Y.; Li, H.-H. Alteration of the IL-33-sST2 pathway in hypertensive patients and a mouse model. Hypertens. Res. 2019, 42, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Hannappe, M.-A.; Arnould, L.; Méloux, A.; Mouhat, B.; Bichat, F.; Zeller, M.; Cottin, Y.; Binquet, C.; Vergely, C.; Creuzot-Garcher, C.; et al. Vascular density with optical coherence tomography angiography and systemic biomarkers in low and high cardiovascular risk patients. Sci. Rep. 2020, 10, 16718. [Google Scholar] [CrossRef]
- Singh, H.; Khurana, A.; Kumar, A.; Saluja, R. Serum levels of interleukin-33, soluble ST2 and IgE in patients with asthma: A case-control study. J. Asthma 2024, 61, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Dieplinger, B.; Egger, M.; Gegenhuber, A.; Haltmayer, M.; Mueller, T. Analytical and clinical evaluation of a rapid quantitative lateral flow immunoassay for measurement of soluble ST2 in human plasma. Clin. Chim. Acta 2015, 451, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Januzzi, J.L.; Bayes-Genis, A.; Vergaro, G.; Sciarrone, P.; Passino, C.; Emdin, M. Clinical and Prognostic Significance of sST2 in Heart Failure: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 2193–2203. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, C.; Wang, J.; Zeng, J.; Zhang, J.; Zhang, T.; Zhao, H.; Zhou, W.; Zhang, C. An Accurate Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry Method for Serum C-Peptide and Its Use in Harmonization in China. Ann. Lab. Med. 2023, 43, 345–354. [Google Scholar] [CrossRef]
- Cho, S.-E.; Han, J.; You, J.; Lee, J.H.; Yi, A.; Lee, S.G.; Lee, E.H. Development and Validation of a Novel Isotope Dilution-Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry Method for Serum C-Peptide. Ann. Lab. Med. 2025, 45, 62–69. [Google Scholar] [CrossRef]
- Gradl, K.; Taibon, J.; Singh, N.; Albrecht, E.; Geistanger, A.; Pongratz, S.; Hutzler, S.; Mayer, M.; Kleinschmidt, C.; Geletneky, C.; et al. An isotope dilution LC-MS/MS-based candidate reference method for the quantification of androstenedione in human serum and plasma. Clin. Mass. Spectrom. 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Villanueva, J.; Carrascal, M.; Abian, J. Isotope dilution mass spectrometry for absolute quantification in proteomics: Concepts and strategies. J. Proteom. 2014, 96, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, J.; Xia, W.; Wang, Y.; Zhang, Y.; Tang, J.; Cui, H.; Yang, X.; Bao, C.; Ye, Z. The Development of an Isotope Dilution Mass Spectrometry Method for Interleukin-6 Quantification. Int. J. Mol. Sci. 2024, 25, 6777. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, N.; Wan, D.; Cui, M.; Liu, Z.; Liu, S. Mass spectrometry-based analysis of glycoproteins and its clinical applications in cancer biomarker discovery. Clin. Proteom. 2014, 11, 14. [Google Scholar] [CrossRef]
- Tang, C.; Verwilligen, A.; Sadoff, J.; Brandenburg, B.; Sneekes-Vriese, E.; van den Kerkhof, T.; Dillen, L.; Rutten, L.; Juraszek, J.; Callewaert, K.; et al. Absolute quantitation of binding antibodies from clinical samples. npj Vaccines 2024, 9, 8. [Google Scholar] [CrossRef]
- Illiano, A.; Pinto, G.; Melchiorre, C.; Carpentieri, A.; Faraco, V.; Amoresano, A. Protein glycosylation investigated by mass spectrometry: An overview. Cells 2020, 9, 1986. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.Y.; Park, G.W.; Cheon, M.H.; Kwon, K.-H.; Ahn, Y.H.; Moon, M.H.; Lee, H.-J.; Paik, Y.K.; Yoo, J.S. Targeted mass spectrometric approach for biomarker discovery and validation with nonglycosylated tryptic peptides from N-linked glycoproteins in human plasma. Mol. Cell. Proteom. 2011, 10, M111.009290. [Google Scholar] [CrossRef]
- Kambhampati, S.; Li, J.; Evans, B.S.; Allen, D.K. Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry. Plant Methods 2019, 15, 46. [Google Scholar] [CrossRef]
- Reinmuth-Selzle, K.; Tchipilov, T.; Backes, A.T.; Tscheuschner, G.; Tang, K.; Ziegler, K.; Lucas, K.; Pöschl, U.; Fröhlich-Nowoisky, J.; Weller, M.G. Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry. Anal. Bioanal. Chem. 2022, 414, 4457–4470. [Google Scholar] [CrossRef]
- Marti Fernandez, I.; Macrini, C.; Krumbholz, M.; Hensbergen, P.J.; Hipgrave Ederveen, A.L.; Winklmeier, S.; Vural, A.; Kurne, A.; Jenne, D.; Kamp, F.; et al. The glycosylation site of myelin oligodendrocyte glycoprotein affects autoantibody recognition in a large proportion of patients. Front. Immunol. 2019, 10, 1189. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.C.; van Zuydam, N.; Cann, J.A.; Negri, V.A.; Tsafou, K.; Killick, H.; Liu, Z.; McCrae, C.; Rees, D.G.; England, E.; et al. IL-33 is associated with alveolar dysfunction in patients with viral lower respiratory tract disease. Mucosal Immunol. 2025, 18, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Zarei, B.; Javidan, Z.; Fatemi, E.; Rahimi Jamnani, F.; Khatami, S.; Khalaj, V. Targeting c-Met on gastric cancer cells through a fully human fab antibody isolated from a large naive phage antibody library. Daru 2020, 28, 221–235. [Google Scholar] [CrossRef]
- Ledsgaard, L.; Ljungars, A.; Rimbault, C.; Sørensen, C.V.; Tulika, T.; Wade, J.; Wouters, Y.; McCafferty, J.; Laustsen, A.H. Advances in antibody phage display technology. Drug Discov. Today 2022, 27, 2151–2169. [Google Scholar] [CrossRef]
- Even-Desrumeaux, K.; Nevoltris, D.; Lavaut, M.N.; Alim, K.; Borg, J.-P.; Audebert, S.; Kerfelec, B.; Baty, D.; Chames, P. Masked selection: A straightforward and flexible approach for the selection of binders against specific epitopes and differentially expressed proteins by phage display. Mol. Cell. Proteom. 2014, 13, 653–665. [Google Scholar] [CrossRef]
- Alladina, J.W.; Levy, S.D.; Hibbert, K.A.; Januzzi, J.L.; Harris, R.S.; Matthay, M.A.; Thompson, B.T.; Bajwa, E.K.; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Plasma Concentrations of Soluble Suppression of Tumorigenicity-2 and Interleukin-6 Are Predictive of Successful Liberation From Mechanical Ventilation in Patients With the Acute Respiratory Distress Syndrome. Crit. Care Med. 2016, 44, 1735–1743. [Google Scholar] [CrossRef]
- Davini, F.; Fogolari, M.; D’Avanzo, G.; Ristori, M.V.; Nucciarelli, S.; Bani, L.; Cristiano, A.; De Cesaris, M.; Spoto, S.; Angeletti, S. Soluble suppression of tumorigenicity 2 (sst2) as a diagnostic and prognostic marker in acute heart failure and sepsis: A comparative analysis. Diagnostics 2025, 15, 1010. [Google Scholar] [CrossRef] [PubMed]
- Hacker, S.; Dieplinger, B.; Werba, G.; Nickl, S.; Roth, G.A.; Krenn, C.G.; Mueller, T.; Ankersmit, H.J.; Haider, T. Increased serum concentrations of soluble ST2 predict mortality after burn injury. Clin. Chem. Lab. Med. 2018, 56, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Omland, T.; Prebensen, C.; Jonassen, C.; Svensson, M.; Berdal, J.E.; Seljeflot, I.; Myhre, P.L. Soluble ST2 concentrations associate with in-hospital mortality and need for mechanical ventilation in unselected patients with COVID-19. Open Heart 2021, 8, e001884. [Google Scholar] [CrossRef]
- Park, M.; Hur, M.; Kim, H.; Lee, C.H.; Lee, J.H.; Kim, H.W.; Nam, M.; Lee, S. Soluble ST2 as a Useful Biomarker for Predicting Clinical Outcomes in Hospitalized COVID-19 Patients. Diagnostics 2023, 13, 259. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-S.; Moon, S.-J.; Joo, Y.-B.; Jeon, C.-H.; Cho, M.-L.; Ju, J.H.; Oh, H.-J.; Heo, Y.-J.; Park, S.-H.; Kim, H.-Y.; et al. Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis. J. Korean Med. Sci. 2011, 26, 1132–1139. [Google Scholar] [CrossRef]
- Kim, D.-J.; Baek, S.-Y.; Park, M.-K.; Park, K.-S.; Lee, J.H.; Park, S.-H.; Kim, H.-Y.; Kwok, S.-K. Serum level of interleukin-33 and soluble ST2 and their association with disease activity in patients with Behcet’s disease. J. Korean Med. Sci. 2013, 28, 1145–1153. [Google Scholar] [CrossRef]
- Meijers, W.C.; van der Velde, A.R.; Muller Kobold, A.C.; Dijck-Brouwer, J.; Wu, A.H.; Jaffe, A.; de Boer, R.A. Variability of biomarkers in patients with chronic heart failure and healthy controls. Eur. J. Heart Fail. 2017, 19, 357–365. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Mebazaa, A.; Di Somma, S. ST2 and prognosis in acutely decompensated heart failure: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115, 26B–31B. [Google Scholar] [CrossRef] [PubMed]
- Piper, S.; deCourcey, J.; Sherwood, R.; Amin-Youssef, G.; McDonagh, T. Biologic variability of soluble ST2 in patients with stable chronic heart failure and implications for monitoring. Am. J. Cardiol. 2016, 118, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Dieplinger, B.; Januzzi, J.L.; Steinmair, M.; Gabriel, C.; Poelz, W.; Haltmayer, M.; Mueller, T. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma—The Presage ST2 assay. Clin. Chim. Acta 2009, 409, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Traxler, D.; Zimmermann, M.; Simader, E.; Veraar, C.M.; Moser, B.; Mueller, T.; Mildner, M.; Dannenberg, V.; Lainscak, M.; Jug, B.; et al. The inflammatory markers sST2, HSP27 and hsCRP as a prognostic biomarker panel in chronic heart failure patients. Clin. Chim. Acta 2020, 510, 507–514. [Google Scholar] [CrossRef]
- Haider, T.; Simader, E.; Hacker, P.; Ankersmit, H.J.; Heinz, T.; Hajdu, S.; Negrin, L.L. Increased serum concentrations of soluble ST2 are associated with pulmonary complications and mortality in polytraumatized patients. Clin. Chem. Lab. Med. 2018, 56, 810–817. [Google Scholar] [CrossRef]
- Artru, F.; Bou Saleh, M.; Maggiotto, F.; Lassailly, G.; Ningarhari, M.; Demaret, J.; Ntandja-Wandji, L.-C.; Pais de Barros, J.-P.; Labreuche, J.; Drumez, E.; et al. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J. Hepatol. 2020, 72, 1052–1061. [Google Scholar] [CrossRef]
- Ohta, N.; Yasudo, H.; Mizutani, M.; Matsushige, T.; Fukano, R.; Kittaka, S.; Maehara, K.; Ichihara, K.; Ohga, S.; Hasegawa, S. Serum soluble ST2 as a marker of renal scar in pediatric upper urinary tract infection. Cytokine 2019, 120, 258–263. [Google Scholar] [CrossRef]
ELISA | Precision | Sample | n | Mean (ng/mL) | SD (ng/mL) | CV (%) |
---|---|---|---|---|---|---|
DuoSet | intra-assay | 1 | 2 | 8.64 | 0.08 | 0.93 |
2 | 2 | 9.24 | 0.12 | 1.3 | ||
3 | 2 | 8.52 | 0.12 | 1.4 | ||
inter-assay | 1 | 2 | 1.92 | 0.16 | 8.2 | |
2 | 2 | 2.44 | 0.025 | 1.0 | ||
3 | 2 | 0.72 | 0.11 | 16.0 | ||
Quantikine | intra-assay | 1 | 2 | 21.8 | 0.7 | 3.2 |
2 | 2 | 22.8 | 0.41 | 1.8 | ||
3 | 2 | 8.9 | 0.41 | 5.6 | ||
inter-assay | 1 | 2 | 26.4 | 0.47 | 1.8 | |
2 | 2 | 39.5 | 3.1 | 7.8 | ||
3 | 2 | 0.31 | 0.02 | 5.3 |
Quantikine ELISA | DuoSet ELISA | |||
---|---|---|---|---|
Timepoint | Marathoners (n = 27) | Half Marathoners (n = 34) | Marathoners (n = 27) | Half Marathoners (n = 34) |
pre-run | 36.0 [27.9–59.7] | 30.3 [21.4–38.8] | 20.4 [11.1–26.0] | 18.6 [13.7–26.4] |
goal | 63.6 [36.8–80.9] | 35.2 [24.6–54.7] | 29.9 [16.0–41.9] | 22.6 [15.7–37.4] |
post-run | 42.9 [29.5–56.0] | 26.4 [19.6–41.1] | 20.2 [12.6–26.7] | 16.5 [12.4–28.4] |
n | Median (ng/mL) | IQR (ng/mL) | Fold-Change (vs. Reference) | |
---|---|---|---|---|
Quantikine plate + Quantikine standard | 32 | 71.5 | 41.8–115.6 | 1.0 |
Quantikine plate + DuoSet standard | 32 | 308.3 | 106.6–608.6 | 4.3 |
DuoSet plate (uncoated) + Quantikine standard | 32 | 5.0 | 3.7–7.4 | 1.0 |
DuoSet plate (uncoated) + DuoSet standard | 32 | 8.0 | 5.6–11.3 | 1.9 |
Duoset ELISA (2016) | DuoSet ELISA (2023) |
---|---|
sST2 Serum Concentrations (ng/mL) | sST2 Serum Concentrations (ng/mL) |
0.07 | 7.11 |
0.11 | 2.36 |
0.08 | 2.47 |
0.09 | 4.03 |
0.10 | 3.02 |
0.08 | 0.88 |
0.11 | 4.34 |
0.10 | 4.48 |
0.06 | 0.88 |
0.12 | 1.17 |
0.09 | 0.74 |
0.10 | 0.88 |
0.09 | 3.44 |
0.06 | 0.35 |
0.09 | 1.34 |
0.07 | 0.97 |
0.06 | 0.75 |
0.06 | 0.46 |
0.09 | 0.70 |
0.09 [0.07–0.10] | 1.17 [0.81–3.23] |
(a) | ||
Publications Using DuoSet ELISA | n | sST2 (ng/mL) |
Brunner et al. (2004) [6] | 15 | Mean 0.32 SEM ± 0.072 |
Hacker et al. (2009) [10] | 64 | Mean 0.09 IQR: 0.012–0.177 |
Bekos et al. (2016) [7] | 30 | Mean 0.06 SEM ± 0.008 |
Urban et al. (2021) [11] | 20 | Median 18.00 IQR: 12.00–22.00 |
(b) | ||
Publications Using Quantikine ELISA | n | sST2 (ng/mL) |
Han et al. (2017) [12] | 27 | Mean 7.30 SEM ± 0.22 |
Yin et al. (2019) [13] | 306 | Median 549.05 IQR: 427–721 |
Hannappe et al. (2020) [14] | 42 | Mean 13.44 SEM ± 7.60 |
Singh et al. (2024) [15] | 57 | Mean 25.11 SEM ± 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lingitz, M.-T.; Kühtreiber, H.; Auer, L.; Mildner, M.; Moser, B.; Bekos, C.; Aigner, C.; Direder, M.; Mueller, T.; Ankersmit, H.J. The Contingency of Reported sST2 Serum Concentrations with a Protein Detection System (ELISA) from the Same Manufacturer (R&D Biotechne, 2002–2025): An Explanatory Effort by Applied Medical Researchers. Diagnostics 2025, 15, 2412. https://doi.org/10.3390/diagnostics15182412
Lingitz M-T, Kühtreiber H, Auer L, Mildner M, Moser B, Bekos C, Aigner C, Direder M, Mueller T, Ankersmit HJ. The Contingency of Reported sST2 Serum Concentrations with a Protein Detection System (ELISA) from the Same Manufacturer (R&D Biotechne, 2002–2025): An Explanatory Effort by Applied Medical Researchers. Diagnostics. 2025; 15(18):2412. https://doi.org/10.3390/diagnostics15182412
Chicago/Turabian StyleLingitz, Marie-Therese, Hannes Kühtreiber, Lisa Auer, Michael Mildner, Bernhard Moser, Christine Bekos, Clemens Aigner, Martin Direder, Thomas Mueller, and Hendrik Jan Ankersmit. 2025. "The Contingency of Reported sST2 Serum Concentrations with a Protein Detection System (ELISA) from the Same Manufacturer (R&D Biotechne, 2002–2025): An Explanatory Effort by Applied Medical Researchers" Diagnostics 15, no. 18: 2412. https://doi.org/10.3390/diagnostics15182412
APA StyleLingitz, M.-T., Kühtreiber, H., Auer, L., Mildner, M., Moser, B., Bekos, C., Aigner, C., Direder, M., Mueller, T., & Ankersmit, H. J. (2025). The Contingency of Reported sST2 Serum Concentrations with a Protein Detection System (ELISA) from the Same Manufacturer (R&D Biotechne, 2002–2025): An Explanatory Effort by Applied Medical Researchers. Diagnostics, 15(18), 2412. https://doi.org/10.3390/diagnostics15182412