Impact of 68Ga-PSMA PET/MRI on the Accuracy of MRI-Derived Grading Systems for Predicting Extraprostatic Extension in Prostate Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. 68Ga-PSMA PET/MRI
2.3. Image Analysis
2.4. Histopathological Examination
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Prediction of EPE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vis, A.N.; van den Bergh, R.C.N.; van der Poel, H.G.; Mottrie, A.; Stricker, P.D.; Graefen, M.; Patel, V.; Rocco, B.; Lissenberg-Witte, B.; van Leeuwen, P.J. Selection of Patients for Nerve Sparing Surgery in Robot-assisted Radical Prostatectomy. BJUI Compass 2022, 3, 6–18. [Google Scholar] [CrossRef]
- Walz, J.; Epstein, J.I.; Ganzer, R.; Graefen, M.; Guazzoni, G.; Kaouk, J.; Menon, M.; Mottrie, A.; Myers, R.P.; Patel, V.; et al. A Critical Analysis of the Current Knowledge of Surgical Anatomy of the Prostate Related to Optimisation of Cancer Control and Preservation of Continence and Erection in Candidates for Radical Prostatectomy: An Update. Eur. Urol. 2016, 70, 301–311. [Google Scholar] [CrossRef]
- Michl, U.; Tennstedt, P.; Feldmeier, L.; Mandel, P.; Oh, S.J.; Ahyai, S.; Budäus, L.; Chun, F.K.H.; Haese, A.; Heinzer, H.; et al. Nerve-Sparing Surgery Technique, Not the Preservation of the Neurovascular Bundles, Leads to Improved Long-Term Continence Rates after Radical Prostatectomy. Eur. Urol. 2016, 69, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Partin, A.W.; Borland, R.N.; Epstein, J.I.; Brendler, C.B. Influence of Wide Excision of the Neurovascular Bundle(s) on Prognosis in Men with Clinically Localized Prostate Cancer with Established Capsular Penetration. J. Urol. 1993, 150, 142–146. [Google Scholar] [CrossRef]
- Feng, T.S.; Sharif-Afshar, A.R.; Wu, J.; Li, Q.; Luthringer, D.; Saouaf, R.; Kim, H.L. Multiparametric MRI Improves Accuracy of Clinical Nomograms for Predicting Extracapsular Extension of Prostate Cancer. Urology 2015, 86, 332–337. [Google Scholar] [CrossRef]
- Morlacco, A.; Sharma, V.; Viers, B.R.; Rangel, L.J.; Carlson, R.E.; Froemming, A.T.; Karnes, R.J. The Incremental Role of Magnetic Resonance Imaging for Prostate Cancer Staging before Radical Prostatectomy. Eur. Urol. 2017, 71, 701–704. [Google Scholar] [CrossRef]
- de Rooij, M.; Hamoen, E.H.J.; Witjes, J.A.; Barentsz, J.O.; Rovers, M.M. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-Analysis. Eur. Urol. 2016, 70, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Onay, A.; Ertas, G.; Vural, M.; Colak, E.; Esen, T.; Bakir, B. The Role of T2-Weighted Images in Assessing the Grade of Extraprostatic Extension of the Prostate Carcinoma. Abdom. Radiol. 2020, 45, 3293–3300. [Google Scholar] [CrossRef]
- Onay, A.; Bakir, B. The Relationship between Amount of Extra-Prostatic Extension and Length of Capsular Contact: Performances from Mr Images and Radical Prostatectomy Specimens. Turk. J. Med. Sci. 2021, 51, 1940–1952. [Google Scholar] [CrossRef] [PubMed]
- Mehralivand, S.; Shih, J.H.; Harmon, S.; Smith, C.; Bloom, J.; Czarniecki, M.; Gold, S.; Hale, G.; Rayn, K.; Merino, M.J.; et al. A Grading System for the Assessment of Risk of Extraprostatic Extension of Prostate Cancer at Multiparametric MRI. Radiology 2019, 290, 709–719. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- Hope, T.A.; Eiber, M.; Armstrong, W.R.; Juarez, R.; Murthy, V.; Lawhn-Heath, C.; Behr, S.C.; Zhang, L.; Barbato, F.; Ceci, F.; et al. Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection. JAMA Oncol. 2021, 7, 1635. [Google Scholar] [CrossRef]
- Van Damme, J.; Tombal, B.; Collette, L.; Van Nieuwenhove, S.; Pasoglou, V.; Gérard, T.; Jamar, F.; Lhommel, R.; Lecouvet, F.E. Comparison of 68Ga-Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography Computed Tomography (PET-CT) and Whole-Body Magnetic Resonance Imaging (WB-MRI) with Diffusion Sequences (DWI) in the Staging of Advanced Prostate Cancer. Cancers 2021, 13, 5286. [Google Scholar] [CrossRef]
- Wu, H.; Xu, T.; Wang, X.; Yu, Y.-B.; Fan, Z.-Y.; Li, D.-X.; Luo, L.; Yang, X.-C.; Jiao, W.; Niu, H.-T. Diagnostic Performance of 68 Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-Analysis. World J. Mens. Health 2020, 38, 208. [Google Scholar] [CrossRef]
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.S.; Lawrentschuk, N.; et al. Gallium-68 Prostate-Specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-Specific Membrane Antigen-Avid Lesions: A Systematic Review and Meta-Analysis. Eur. Urol. 2020, 77, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carroll, P.R.; Pouliot, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A.; et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with 18 F-DCFPyL in Prostate Cancer Patients (OSPREY). J. Urol. 2021, 206, 52–61. [Google Scholar] [CrossRef]
- Spena, G.; Moretti, T.B.; Dávila, F.S.; Dos Anjos, G.; Khan, I.; Calace, F.P.; Aveta, A.; Pandolfo, S.D.; Tufano, A.; Izzo, A.; et al. Ga68-PSMA PET for Lymph Node Staging in Intermediate and High-Risk Prostate Cancer Patients Undergoing Robotic Assisted Radical Prostatectomy. Minerva Urol. Nephrol. 2024, 76, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Qiu, X.; Zhang, Q.; Zhang, C.; Zhou, Y.-H.; Zhao, X.; Fu, Y.; Wang, F.; Guo, H. PSMA Uptake on [68Ga]-PSMA-11-PET/CT Positively Correlates with Prostate Cancer Aggressiveness. Q. J. Nucl. Med. Mol. Imaging 2022, 66, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Demirci, E.; Kabasakal, L.; Şahin, O.E.; Akgün, E.; Gültekin, M.H.; Doğanca, T.; Tuna, M.B.; Öbek, C.; Kiliç, M.; Esen, T.; et al. Can SUVmax Values of Ga-68-PSMA PET/CT Scan Predict the Clinically Significant Prostate Cancer? Nucl. Med. Commun. 2019, 40, 86–91. [Google Scholar] [CrossRef]
- Bahler, C.D.; Tachibana, I.; Tann, M.; Collins, K.; Swensson, J.K.; Green, M.A.; Mathias, C.J.; Tong, Y.; Yong, C.; Boris, R.S.; et al. Comparing Magnetic Resonance Imaging and Prostate-Specific Membrane Antigen-Positron Emission Tomography for Prediction of Extraprostatic Extension of Prostate Cancer and Surgical Guidance: A Prospective Nonrandomized Clinical Trial. J. Urol. 2024, 212, 290–298. [Google Scholar] [CrossRef]
- Dinckal, M.; Ergun, K.E.; Kalemci, M.S.; Guler, E.; Tokac, R.; Ordu, S.; Ogut, N.; Ozgul, S.; Sanli, O.; Sen, S.; et al. Head-to-Head Comparison of GA-68 PSMA PET/CT and Multiparametric MRI Findings with Postoperative Results in Preoperative Locoregional Staging and Localization of Prostate Cancer. Prostate 2024, 85, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Soeterik, T.F.W.; Heetman, J.G.; Hermsen, R.; Wever, L.; Lavalaye, J.; Vinken, M.; Bahler, C.D.; Yong, C.; Tann, M.; Kesch, C.; et al. The Added Value of Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography to Magnetic Resonance Imaging for Local Staging of Prostate Cancer in Patients Undergoing Radical Prostatectomy. Eur. Urol. Oncol. 2024, 8, 731–738. [Google Scholar] [CrossRef]
- Sonni, I.; Felker, E.R.; Lenis, A.T.; Sisk, A.E.; Bahri, S.; Allen-Auerbach, M.; Armstrong, W.R.; Suvannarerg, V.; Tubtawee, T.; Grogan, T.; et al. Head-to-Head Comparison of 68Ga-PSMA-11 PET/CT and MpMRI with Histopathology Gold-Standard in the Detection, Intra-Prostatic Localization and Local Extension of Primary Prostate Cancer: Results from a Prospective Single-Center Imaging Trial. J. Nucl. Med. 2022, 63, 847–854. [Google Scholar] [CrossRef]
- Kabasakal, L.; Demirci, E.; Ocak, M.; Akyel, R.; Nematyazar, J.; Aygun, A.; Halac, M.; Talat, Z.; Araman, A. Evaluation of PSMA PET/CT Imaging Using a 68Ga-HBED-CC Ligand in Patients with Prostate Cancer and the Value of Early Pelvic Imaging. Nucl. Med. Commun. 2015, 36, 582–587. [Google Scholar] [CrossRef]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef]
- Ceci, F.; Oprea-Lager, D.E.; Emmett, L.; Adam, J.A.; Bomanji, J.; Czernin, J.; Eiber, M.; Haberkorn, U.; Hofman, M.S.; Hope, T.A.; et al. E-PSMA: The EANM Standardized Reporting Guidelines v1.0 for PSMA-PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1626–1638. [Google Scholar] [CrossRef]
- Donswijk, M.L.; Ettema, R.H.; Meijer, D.; Wondergem, M.; Cheung, Z.; Bekers, E.M.; van Leeuwen, P.J.; van den Bergh, R.C.N.; van der Poel, H.G.; Vis, A.N.; et al. The Accuracy and Intra- and Interobserver Variability of PSMA PET/CT for the Local Staging of Primary Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1741–1752. [Google Scholar] [CrossRef]
- van Leenders, G.J.L.H.; van der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, P.A.; Moch, H.; Cubilla, A.L.; Ulbright, T.M.; Reuter, V.E. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part B: Prostate and Bladder Tumours. Eur. Urol. 2016, 70, 106–119. [Google Scholar] [CrossRef]
- Netto, G.J.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs—Part B: Prostate and Urinary Tract Tumors. Eur. Urol. 2022, 82, 469–482. [Google Scholar] [CrossRef]
- Sanda, M.G.; Dunn, R.L.; Michalski, J.; Sandler, H.M.; Northouse, L.; Hembroff, L.; Lin, X.; Greenfield, T.K.; Litwin, M.S.; Saigal, C.S.; et al. Quality of Life and Satisfaction with Outcome among Prostate-Cancer Survivors. N. Engl. J. Med. 2008, 358, 1250–1261. [Google Scholar] [CrossRef]
- Pellegrino, F.; Falagario, U.G.; Knipper, S.; Martini, A.; Akre, O.; Egevad, L.; Aly, M.; Moschovas, M.C.; Bravi, C.A.; Tran, J.; et al. Assessing the Impact of Positive Surgical Margins on Mortality in Patients Who Underwent Robotic Radical Prostatectomy: 20 Years’ Report from the EAU Robotic Urology Section Scientific Working Group. Eur. Urol. Oncol. 2024, 7, 888–896. [Google Scholar] [CrossRef]
- Bakir, B.; Onay, A.; Vural, M.; Armutlu, A.; Yildiz, S.Ö.; Esen, T. Can Extraprostatic Extension Be Predicted by Tumor-Capsule Contact Length in Prostate Cancer? Relationship with International Society of Urological Pathology Grade Groups. Am. J. Roentgenol. 2020, 214, 588–596. [Google Scholar] [CrossRef]
- Onay, A.; Vural, M.; Armutlu, A.; Ozel Yıldız, S.; Kiremit, M.C.; Esen, T.; Bakır, B. Evaluation of the Most Optimal Multiparametric Magnetic Resonance Imaging Sequence for Determining Pathological Length of Capsular Contact. Eur. J. Radiol. 2019, 112, 192–199. [Google Scholar] [CrossRef]
- Abrams-Pompe, R.S.; Fanti, S.; Schoots, I.G.; Moore, C.M.; Turkbey, B.; Vickers, A.J.; Walz, J.; Steuber, T.; Eastham, J.A. The Role of Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography in the Primary Staging of Newly Diagnosed Prostate Cancer: A Systematic Review of the Literature. Eur. Urol. Oncol. 2021, 4, 370–395. [Google Scholar] [CrossRef]
- Lee, H.; Kim, C.K.; Park, B.K.; Sung, H.H.; Han, D.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Choi, H.Y.; et al. Accuracy of Preoperative Multiparametric Magnetic Resonance Imaging for Prediction of Unfavorable Pathology in Patients with Localized Prostate Cancer Undergoing Radical Prostatectomy. World J. Urol. 2017, 35, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Brauchli, D.; Singh, D.; Chabert, C.; Somasundaram, A.; Collie, L. Tumour–Capsule Interface Measured on 18F-DCFPyL PSMA Positron Emission Tomography/CT Imaging Comparable to Multi-Parametric MRI in Predicting Extra-Prostatic Extension of Prostate Cancer at Initial Staging. J. Med. Imaging Radiat. Oncol. 2020, 64, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Hvittfeldt, E.; Hedeer, F.; Thimansson, E.; Sandeman, K.; Minarik, D.; Ingvar, J.; Bjartell, A.; Trägårdh, E. Semi-Standardized Evaluation of Extraprostatic Extension and Seminal Vesicle Invasion with [18F]PSMA-1007 PET/CT: A Comparison to MRI Using Histopathology as Reference. EJNMMI Rep. 2025, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Freedman, D.; Becker, A.S.; Leithner, D.; Charbel, C.; Mayerhoefer, M.E.; Friedman, K.P.; Tong, A.; Wise, D.R.; Taneja, S.S.; et al. Evaluating Extraprostatic Extension of Prostate Cancer: Pragmatic Integration of MRI and PSMA-PET/CT. Abdom. Radiol. 2025. [Google Scholar] [CrossRef]
- Spielvogel, C.P.; Ning, J.; Kluge, K.; Haberl, D.; Wasinger, G.; Yu, J.; Einspieler, H.; Papp, L.; Grubmüller, B.; Shariat, S.F.; et al. Preoperative Detection of Extraprostatic Tumor Extension in Patients with Primary Prostate Cancer Utilizing [68Ga]Ga-PSMA-11 PET/MRI. Insights Imaging 2024, 15, 299. [Google Scholar] [CrossRef]
- Muehlematter, U.J.; Burger, I.A.; Becker, A.S.; Schawkat, K.; Hötker, A.M.; Reiner, C.S.; Müller, J.; Rupp, N.J.; Rüschoff, J.H.; Eberli, D.; et al. Diagnostic Accuracy of Multiparametric MRI versus 68Ga-PSMA-11 PET/MRI for Extracapsular Extension and Seminal Vesicle Invasion in Patients with Prostate Cancer. Radiology 2019, 293, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Ghafoor, S.; Becker, A.S.; Han, S.; Wibmer, A.G.; Hricak, H.; Burger, I.A.; Schöder, H.; Vargas, H.A. Prostate-Specific Membrane Antigen Positron Emission Tomography (PSMA-PET) for Local Staging of Prostate Cancer: A Systematic Review and Meta-Analysis. Eur. J. Hybrid Imaging 2020, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.; Karaarslan, E.; Güner, A.L.; Sağlıcan, Y.; Tuna, M.B.; Kural, A.R. Comparing the Diagnostic Performance of Multiparametric Prostate MRI Versus 68Ga-PSMA PET-CT in the Evaluation Lymph Node Involvement and Extraprostatic Extension. Acad. Radiol. 2022, 29, 698–704. [Google Scholar] [CrossRef]
- Kivikallio, A.; Malaspina, S.; Saarinen, I.; Seppänen, M.; Anttinen, M.; Jambor, I.; Verho, J.; Kemppainen, J.; Aronen, H.J.; Boström, P.J.; et al. Prospective Comparison of 18F-PSMA-1007 PET/CT and MRI with Histopathology as the Reference Standard for Intraprostatic Tumour Detection and T-Staging of High-Risk Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 3709–3719. [Google Scholar] [CrossRef] [PubMed]
- Gossili, F.; Mogensen, A.W.; Konnerup, T.C.; Bouchelouche, K.; Alberts, I.; Afshar-Oromieh, A.; Zacho, H.D. The Diagnostic Accuracy of Radiolabeled PSMA-Ligand PET for Tumour Staging in Newly Diagnosed Prostate Cancer Patients Compared to Histopathology: A Systematic Review and Meta-Analysis. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 281–294. [Google Scholar] [CrossRef]
- Uslu-Beşli, L.; Bakır, B.; Asa, S.; Güner, E.; Demirdağ, Ç.; Şahin, O.E.; Karayel, E.; Sağer, M.S.; Sayman, H.B.; Sönmezoğlu, K. Correlation of SUVmax and Apparent Diffusion Coefficient Values Detected by Ga-68 PSMA PET/MRI in Primary Prostate Lesions and Their Significance in Lymph Node Metastasis: Preliminary Results of an On-Going Study. Mol. Imaging Radionucl. Ther. 2019, 28, 104–111. [Google Scholar] [CrossRef]
- Bodar, Y.J.L.; Veerman, H.; Meijer, D.; de Bie, K.; van Leeuwen, P.J.; Donswijk, M.L.; van Moorselaar, R.J.A.; Hendrikse, N.H.; Boellaard, R.; Oprea-Lager, D.E.; et al. Standardised Uptake Values as Determined on Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Is Associated with Oncological Outcomes in Patients with Prostate Cancer. BJU Int. 2022, 129, 768–776. [Google Scholar] [CrossRef]
- Jiao, J.; Kang, F.; Zhang, J.; Quan, Z.; Wen, W.; Zhao, X.; Ma, S.; Wu, P.; Yang, F.; Guo, W.; et al. Establishment and Prospective Validation of an SUVmax Cutoff Value to Discriminate Clinically Significant Prostate Cancer from Benign Prostate Diseases in Patients with Suspected Prostate Cancer by 68Ga-PSMA PET/CT: A Real-World Study. Theranostics 2021, 11, 8396–8411. [Google Scholar] [CrossRef]
- Kinahan, P.E.; Fletcher, J.W. Positron Emission Tomography-Computed Tomography Standardized Uptake Values in Clinical Practice and Assessing Response to Therapy. Semin. Ultrasound CT MRI 2010, 31, 496–505. [Google Scholar] [CrossRef]
- Urso, L.; Badrane, I.; Manco, L.; Castello, A.; Lancia, F.; Collavino, J.; Crestani, A.; Castellani, M.; Cittanti, C.; Bartolomei, M.; et al. The Role of Radiomics and Artificial Intelligence Applied to Staging PSMA PET in Assessing Prostate Cancer Aggressiveness. J. Clin. Med. 2025, 14, 3318. [Google Scholar] [CrossRef]
- Liu, J.; Sandhu, K.; Woon, D.T.S.; Perera, M.; Lawrentschuk, N. The Value of Artificial Intelligence in Prostate-Specific Membrane Antigen Positron Emission Tomography: An Update. Semin. Nucl. Med. 2025, 55, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Liu, F.; Peng, Y.; Liu, X.; Li, P.; Liu, Q.; Bi, L.; Song, S. Using Radiomics Model for Predicting Extraprostatic Extension with PSMA PET/CT Studies: A Comparative Study with the Mehralivand Grading System. Cancer Imaging 2025, 25, 77. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Lin, H.; Xue, Y.-N.; Zhuang, Y.-D.; Bian, S.-Y.; Zhang, Y.-Y.; Yang, Y.-J.; Pan, K.-H. Multimodal Imaging Deep Learning Model for Predicting Extraprostatic Extension in Prostate Cancer Using MpMRI and 18 F-PSMA-PET/CT. Cancer Imaging 2025, 25, 103. [Google Scholar] [CrossRef] [PubMed]
Number of patients | 45 |
Age, years, mean ± SD | 65 ± 7 |
PSA value at time of PET/MRI, mean ± SD | 14.47 ± 17.17 |
ISUP grades obtained by histopathology, n (%) | |
ISUP grade 1 | 2 (4.4) |
ISUP grade 2 | 20 (44.4) |
ISUP grade 3 | 17 (37.8) |
ISUP grade 4 | 4 (8.9) |
ISUP grade 5 | 2 (4.4) |
Presence of extraprostatic extension at histopathology, n (%) | 19 (42.2) |
Presence of seminal vesicle infiltration at histopathology, n (%) | 12 (26.7) |
Tumor extent in the prostate, mean ± SD (%) | 21.77 ± 25.43 |
Presence of lymphovascular invasion at histopathology, n (%) | 12 (26.7) |
Presence of lymph node metastasis at histopathology, n (%) | 9 (20) |
Presence of bone metastasis detected by imaging, n (%) | 3 (6.7) |
Presence of visceral organ metastasis detected by imaging, n (%) | 0 (0) |
Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) | |
---|---|---|---|---|---|
MRI Features | |||||
Capsular irregularity or bulge | 78.9 [54.4–94.0] | 73.1 [52.2–88.4] | 68.2 [52.2–80.8] | 82.6 [65.9–92.1] | 75.6 [60.5–87.1] |
Overt EPE | 31.6 [12.6–56.6] | 88.5 [69.9–97.6] | 66.7 [36.4–87.5] | 63.9 [55.9–21.2] | 64.4 [48.8–78.1] |
Neurovascular bundle asymmetry | 42.1 [20.3–66.5] | 88.5 [69.9–97.6] | 72.7 [44.8–89.7] | 67.6 [58.2–75.9] | 68.9 [53.4–81.8] |
CLL ≥ 1.5 cm | 89.5 [66.9–98.7] | 57.7 [36.9–76.7] | 60.7 [49.0–71.3] | 88.2 [66.0–96.7] | 71.1 [55.7–83.6] |
SVI | 52.6 [28.9–75.6] | 92.3 [74.9–99.1] | 83.3 [55.3–95.3] | 72.7 [62.1–81.3] | 75.6 [60.5–87.1] |
Tumor size ≥ 14.25 mm | 78.9 [54.4–94.0] | 73.1 [52.2–88.4] | 68.2 [52.2–80.8] | 82.6 [65.9–92.1] | 75.6 [60.5–87.1] |
EPE grade | |||||
EPE grade ≥ 1 | 89.5 [66.9–98.7] | 57.7 [36.9–76.7] | 60.7 [49.0–71.3] | 88.2 [66.0–96.7] | 71.1 [55.7–83.6] |
EPE grade ≥ 2 | 78.9 [54.4–94.0] | 73.1 [52.2–88.4] | 68.2 [52.2–80.8] | 82.6 [65.9–92.1] | 75.6 [60.5–87.1] |
EPE grade ≥ 3 | 31.6 [12.6–56.6] | 88.5 [69.9–97.6] | 66.7 [36.4–87.5] | 63.9 [55.9–71.2] | 64.4 [48.8–78.1] |
ISUP grade | |||||
ISUP grade ≥ 2 | 89.5 [66.9–98.7] | 23.1 [9.0–43.7] | 46.0 [39.6–52.5] | 75.0 [40.4–93.0] | 51.1 [35.8–66.3] |
ISUP grade ≥ 3 | 68.4 [43.5–87.4] | 61.5 [40.6–79.8] | 56.5 [42.3–69.8] | 72.7 [56.3–84.7] | 64.4 [48.8–78.1] |
ISUP grade ≥ 4 | 36.8 [16.3–61.6] | 80.8 [60.7–93.5] | 58.3 [34.4–78.9] | 63.6 [54.2–72.1] | 62.2 [46.5–76.2] |
PET features | |||||
Overt EPE | 63.2 [38.4–83.7] | 80.8 [60.7–93.5] | 70.6 [50.4–85.0] | 75.0 [61.8–84.8] | 73.3 [58.1–85.4] |
Overt SVI | 26.3 [9.2–51.2] | 96.2 [80.4–99.9] | 83.3 [38.8–97.5] | 64.1 [57.5–70.3] | 66.7 [51.1–80.0] |
SUVmax ≥ 13.84 | 52.6 [28.9–75.6] | 92.3 [74.9–99.1] | 83.3 [55.3–95.3] | 72.7 [62.1–81.3] | 75.6 [60.5–87.1] |
SUVmean ≥ 7.195 | 57.9 [33.5–79.8] | 84.6 [65.1–95.6] | 73.3 [50.8–88.0] | 73.3 [61.3–82.7] | 73.3 [58.1–85.4] |
PSMA-TV ≥ 1.395 cm3 | 94.7 [74.0–99.9] | 65.4 [44.3–82.8] | 66.7 [53.9–77.4] | 94.4 [71.2–99.2] | 77.8 [62.9–88.8] |
PSA value | |||||
logPSA ≥ 0.8717 | 68.4 [43.5–87.4] | 61.5 [40.6–79.8] | 56.5 [42.3–69.8] | 72.7 [56.3–84.7] | 64.4 [48.8–78.1] |
p Value | β Coefficient | Odds Ratio | 95% CI | |
---|---|---|---|---|
Univariable Logistic Regression Analysis | ||||
MRI Features | ||||
Capsular irregularity or bulge | 0.001 | 2.32 | 10.2 | 2.5–41.4 |
Neurovascular bundle asymmetry | 0.026 | 1.72 | 5.6 | 1.2–25.2 |
CLL ≥ 1.5 cm | 0.004 | 2.45 | 11.6 | 2.2–60.9 |
SVI | 0.003 | 2.59 | 13.3 | 2.4–73.0 |
Tumor size ≥ 14.25 mm | 0.001 | 2.32 | 10.2 | 2.5–41.4 |
EPE grade | ||||
EPE grade ≥ 1 | 0.004 | 2.45 | 11.6 | 2.2–60.9 |
EPE grade ≥ 2 | 0.001 | 2.32 | 10.2 | 2.5–41.4 |
ISUP grade | ||||
ISUP grade ≥ 3 | 0.051 | 1.24 | 3.5 | 1.0–12.1 |
PET features | ||||
Overt EPE | 0.004 | 1.97 | 7.2 | 1.9–27.7 |
SUVmax ≥ 13.84 | 0.003 | 2.59 | 13.3 | 2.4–73.0 |
SUVmean ≥ 7.195 | 0.005 | 2.02 | 7.6 | 1.9–30.7 |
PSMA-TV ≥ 1.395 cm3 | 0.001 | 3.53 | 34.0 | 3.9–297.7 |
Multivariable logistic regression analysis | ||||
EPE grade and ISUP grade | ||||
EPE grade ≥ 2 | 0.001 | 1.16 | 3.2 | 1.6–6.4 |
ISUP grade ≥ 3 | 0.177 | 0.49 | 1.6 | 0.8–3.3 |
Intercept | 0.266 | 0.67 | ||
EPE grade and ISUP grade and tumor size | ||||
Tumor size ≥ 14.25 mm | 0.001 | 1.42 | 4.1 | 1.7–9.8 |
EPE grade ≥ 2 | 0.130 | 0.64 | 1.9 | 0.8–4.3 |
ISUP grade ≥ 3 | 0.026 | 0.97 | 2.7 | 1.1–6.3 |
Intercept | 0.216 | 0.62 | ||
PET features only | ||||
Overt EPE on PET | 0.583 | 0.24 | 1.3 | 1.5–3.1 |
SUVmax ≥ 13.84 | 0.022 | 1.38 | 4.0 | 1.2–12.9 |
PSMA-TV ≥ 1.395 cm3 | 0.005 | 1.83 | 6.2 | 1.8–21.9 |
Intercept | 0.503 | −0.43 | ||
EPE grade and SUVmax | ||||
EPE grade ≥ 2 | 0.007 | 1.06 | 2.9 | 1.3–6.3 |
SUVmax ≥ 13.84 | 0.014 | 1.18 | 3.3 | 1.3–8.3 |
Intercept | 0.693 | 0.19 | ||
EPE grade and PSMA-TV | ||||
EPE grade ≥ 2 | 0.075 | 0.74 | 2.1 | 0.9–4.7 |
PSMA-TV ≥ 1.395 cm3 | 0.010 | 1.48 | 4.4 | 1.4–13.5 |
Intercept | 0.069 | −1.03 | ||
EPE grade and ISUP grade and SUVmax | ||||
EPE grade ≥ 2 | 0.007 | 1.06 | 2.9 | 1.3–6.3 |
ISUP grade ≥ 3 | 0.426 | 0.32 | 1.4 | 0.6–3.0 |
SUVmax ≥ 13.84 | 0.014 | 1.18 | 3.3 | 1.3–8.3 |
Intercept | 0.693 | 0.19 | ||
EPE grade and ISUP grade and PSMA-TV | ||||
EPE grade ≥ 2 | 0.106 | 0.70 | 2.0 | 0.86–4.8 |
ISUP grade ≥ 3 | 0.061 | 0.78 | 2.2 | 1.0–4.9 |
PSMA-TV ≥ 1.395 cm3 | 0.001 | 1.86 | 6.4 | 2.0–20.0 |
Intercept | 0.044 | −1.15 | ||
EPE grade and ISUP grade and Tumor size and SUVmax | ||||
EPE grade ≥ 2 | 0.135 | 0.66 | 1.9 | 0.8–4.6 |
ISUP grade ≥ 3 | 0.089 | 0.79 | 2.2 | 0.9–5.5 |
Tumor size ≥ 14.25 mm | 0.006 | 1.30 | 3.7 | 1.5–9.1 |
SUVmax ≥ 13.84 | 0.046 | 0.97 | 2.6 | 1.0–6.8 |
Intercept | 0.987 | −0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uslu-Beşli, L.; Durmaz, S.; Onay, A.; Bakır, B.; Gürses, İ.; Özel-Yıldız, S.; Demirdağ, Ç.; Sayman, H.B. Impact of 68Ga-PSMA PET/MRI on the Accuracy of MRI-Derived Grading Systems for Predicting Extraprostatic Extension in Prostate Cancer. Diagnostics 2025, 15, 2405. https://doi.org/10.3390/diagnostics15182405
Uslu-Beşli L, Durmaz S, Onay A, Bakır B, Gürses İ, Özel-Yıldız S, Demirdağ Ç, Sayman HB. Impact of 68Ga-PSMA PET/MRI on the Accuracy of MRI-Derived Grading Systems for Predicting Extraprostatic Extension in Prostate Cancer. Diagnostics. 2025; 15(18):2405. https://doi.org/10.3390/diagnostics15182405
Chicago/Turabian StyleUslu-Beşli, Lebriz, Selahattin Durmaz, Aslıhan Onay, Barış Bakır, İclal Gürses, Sevda Özel-Yıldız, Çetin Demirdağ, and Haluk Burçak Sayman. 2025. "Impact of 68Ga-PSMA PET/MRI on the Accuracy of MRI-Derived Grading Systems for Predicting Extraprostatic Extension in Prostate Cancer" Diagnostics 15, no. 18: 2405. https://doi.org/10.3390/diagnostics15182405
APA StyleUslu-Beşli, L., Durmaz, S., Onay, A., Bakır, B., Gürses, İ., Özel-Yıldız, S., Demirdağ, Ç., & Sayman, H. B. (2025). Impact of 68Ga-PSMA PET/MRI on the Accuracy of MRI-Derived Grading Systems for Predicting Extraprostatic Extension in Prostate Cancer. Diagnostics, 15(18), 2405. https://doi.org/10.3390/diagnostics15182405