Squamous Cell Carcinoma of the Nail Unit: A Comprehensive Review of Clinical Features, Diagnostic Workflow, Management Strategies and Therapeutic Options
Abstract
1. Introduction
2. Materials and Methods
3. Anatomy & Epidemiology
- Nail Matrix: Located beneath the proximal nail fold, the matrix is responsible for producing the bulk of the nail plate. Tumors arising in this area can significantly disrupt nail growth and morphology.
- Nail Bed: A thin epithelial layer lying beneath the nail plate that continues to contribute to nail formation and maintains nail adherence. The nail bed is a common origin site for subungual squamous cell carcinoma.
- Nail Plate: The hard, keratinized structure composed primarily of compacted keratinocytes. It serves as a protective covering but also conceals early subungual tumors, contributing to diagnostic delay.
- Hyponychium: The epithelium under the distal nail plate, located just beyond the nail bed, which acts as a barrier to pathogens.
- Proximal and Lateral Nail Folds: These surround and support the nail plate, providing a reservoir for inflammatory and neoplastic processes.
3.1. Epidemiology
- Sex distribution: Historically, SCCNU has been reported more commonly in males, particularly when affecting the fingernails. This has been attributed to greater exposure to occupational trauma, ultraviolet radiation, and chemical carcinogens [21]. However, some recent studies suggest a narrowing gender gap, possibly due to increased awareness and broader occupational exposure among females.
- Site predilection: The thumb and index finger are the most frequently involved digits, likely due to their greater exposure to trauma and environmental factors [22]. SCC of the toenails is rarer but not unheard of, and it often goes unrecognized longer due to lower patient concern or visibility.
3.2. Risk Factors
- HPV: High-risk HPV types, particularly HPV-16, have been implicated in the pathogenesis of SCCNU. Studies have detected HPV DNA in approximately 30–60% of SCCNU specimens [20,26,27]. The virus is believed to promote carcinogenesis via E6 and E7 oncoproteins that inhibit p53 and retinoblastoma protein (Rb), respectively [28]. The association between high-risk HPV infection and SCCNU has raised interest in potential public health interventions, including HPV vaccination. While current vaccines target HPV types most relevant to cervical and anogenital cancers, they may also offer indirect protection against HPV-related skin cancers, especially in immunosuppressed individuals or those with occupational exposure [29,30]. Further epidemiological studies are needed to assess the vaccine’s role in reducing SCCNU incidence.
- Immunosuppression: Organ transplant recipients, HIV-positive individuals, and patients on chronic immunosuppressive therapy exhibit a higher risk of developing SCC, including in the nail unit [31,32]. Immunosuppressed patients present with SCCNU at an earlier age and with a higher frequency of polydactylous disease [3]. Additionally, the nail matrix is an immune-privileged site, with reduced expression of HLA class I molecules (HLA-A, -B, -C), along with a relative paucity of CD4+ and CD8+ T lymphocytes. Furthermore, the antigen-presenting functions of Langerhans cells and macrophages may be diminished in this region, potentially impairing local immune surveillance. However, because most SCCNU arise from the nail bed or periungual folds, the precise contribution of the matrix’s immune-privileged status to HPV-related carcinogenesis remains unclear [3].
- Pre-existing conditions: Long-standing chronic infections (e.g., verruca vulgaris and paronychia), actinic keratoses, or genetic conditions such as xeroderma pigmentosum may predispose to SCCNU [2].
4. Clinical Presentation
- Subungual hyperkeratosis: Accumulation of keratin debris beneath the nail plate, often associated with onycholysis (separation of the nail plate from the bed).
- Nail dystrophy: Irregular growth, longitudinal ridging, or splitting of the nail.
- Warty or verrucous lesion: Particularly when the tumor extends beyond the nail bed or into the lateral fold.
- Ulceration or erosion: Advanced lesions may show destruction of overlying tissues and nail plates.
- Persistent pain or bleeding: Especially when the tumor invades deeper structures or erodes vessels.
- Mass formation: A firm, nodular lesion under or around the nail is sometimes visible only after nail removal.
4.1. Red Flags Suggesting SCCNU
- Chronic, non-healing nail lesions are unresponsive to antifungals or antibiotics.
- A solitary, progressive subungual mass or growth.
- Intermittent or spontaneous bleeding from the nail or surrounding tissue.
- Nail plate destruction without a history of significant trauma.
- Sudden onset of nail dystrophy in a middle-aged or elderly patient.
- Associated pain or discomfort is not typical for fungal infections or benign growth.
4.2. Dermoscopic Features
4.3. Reflectance Confocal Microscopy and Line-Field Confocal Optical Coherence Tomography
5. Histopathology and Immunohistochemistry
5.1. Histopathology
5.2. Immunohistochemistry
- The basaloid (blue) pattern: This subtype is composed predominantly of basaloid keratinocytes and exhibits two histologic variants. The first features a flat epithelium with keratinocytes showing scant cytoplasm, hyperchromatic basophilic nuclei, and frequent full-thickness mitoses. The second, a verrucous variant, contains keratinocytes with enlarged eosinophilic cytoplasm, prominent nuclear atypia, atypical hyperparakeratosis, and koilocytosis. This basaloid pattern has been strongly associated with abnormal p53 expression and the presence of high-risk HPV infection. Clinically, it is more often observed in SCC in situ, tends to occur in the periungual area, and is more common in younger patients.
- The keratinizing (pink) pattern: Characterized by a flat or ulcerated epithelium composed of keratinocytes with vesicular nuclei, eosinophilic cytoplasm, and marked dyskeratosis, this pattern gives the tissue a hypereosinophilic “pink” appearance under low magnification. Histologic features include elongation of rete ridges, loss of cellular cohesion, and the presence of cytoid bodies, but notably, koilocytosis is absent. The keratinizing pattern shows a significant association with elevated Ki-67 expression, reflecting high proliferative activity, and lacks evidence of HPV infection. It is typically seen in invasive SCC, usually located in the subungual region, and occurs predominantly in elderly individuals.
6. Molecular Features
7. Diagnostic Workflow
7.1. Imaging
7.2. Biopsy Techniques
7.3. Staging
8. Management and Prognosis
8.1. Surgical Management
8.2. Non-Surgical and Adjunctive Therapies
8.2.1. Topical Therapies and Vaccination
8.2.2. Radiotherapy
8.2.3. Systemic Treatment
8.3. Prognosis and Follow-Up
- Tumor size and depth: larger and deeper tumors have a higher recurrence risk.
- Bone invasion is associated with poorer prognosis and the need for amputation.
- Histopathologic differentiation: poorly differentiated tumors as well as specific subtypes (e.g., desmoplastic, adenosquamous, and acantoholytic subtypes).
- PNI.
- HPV status.
- Surgical margin status.
9. Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCCNU | squamous cell carcinoma of the nail unit |
HPV | human papillomavirus |
RCM | reflectance confocal microscopy |
LC-OCT | line-field confocal optical coherence tomography |
IHC | immunohistochemistry |
EMA | epithelial membrane antigen |
NGS | next-generation sequencing |
MRI | magnetic resonance imaging |
FNAC | fine-needle aspiration cytology |
PET-CT | positron emission tomography–computed tomography |
AJCC | American Joint Committee on Cancer |
BWH | Brigham and Women’s Hospital |
PNI | perineural invasion |
EADO | European Association of Dermato-Oncology |
MMS | Mohs micrographic surgery |
WLE | wide local excision |
RT | radiation therapy |
ICIs | immune checkpoint inhibitors |
miRNAs | microRNAs |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Starace, M.; Alessandrini, A.; Dika, E.; Piraccini, B.M. Squamous cell carcinoma of the nail unit. Dermatol. Pract. Concept. 2018, 8, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Bray, E.R.; Tosti, A.; Morrison, B.W. Update on Squamous Cell Carcinoma of the Nail Unit: An Human Papillomavirus-Associated Condition. Skin Appendage Disord. 2024, 10, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U.; Nenoff, P.; Haroske, G.; Haenssle, H.A. The Diagnosis and Treatment of Nail Disorders. Dtsch. Ärztebl. Int. 2016, 113, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Sławińska, M.; Żółkiewicz, J.; Ribereau-Gayon, E.; Maińska, U.; Sobjanek, M.; Thomas, L. Intra-operative dermoscopy (onychoscopy) of the nail unit-A systematic review. J. Eur. Acad. Dermatol. Venereol. (JEADV) 2024, 38, 1988–1996. [Google Scholar] [CrossRef]
- Carlioz, V.; Perier-Muzet, M.; Debarbieux, S.; Amini-Adle, M.; Dalle, S.; Duru, G.; Thomas, L. Intraoperative dermoscopy features of subungual squamous cell carcinoma: A study of 53 cases. Clin. Exp. Dermatol. 2021, 46, 82–88. [Google Scholar] [CrossRef]
- Bertanha, L.; Noriega, L.F.; Di Chiacchio, N.G.; Matter, A.; Di Chiacchio, N. Differential diagnosis of pigmented nail lesions. An. Bras. Dermatol. 2024, 99, 799–814. [Google Scholar] [CrossRef]
- Dika, E.; Starace, M.; Lambertini, M.; Patrizi, A.; Veronesi, G.; Alessandrini, A.; Piraccini, B.M. Oral and nail pigmentations: A useful parallelism for the clinician. J. Dtsch. Dermatol. Ges. (JDDG) 2020, 18, 7–14. [Google Scholar] [CrossRef]
- Dika, E.; Fanti, P.A.; Baraldi, C.; Venturi, F.; Scotti, B.; Veronesi, G.; Miccio, L.; Vaccari, S. Amelanotic melanoma of the nail unit: Clinical and dermoscopic features of the nail plate changes. Skin Res. Technol. 2024, 30, e70051. [Google Scholar] [CrossRef]
- Eijkenboom, Q.L.; Daxenberger, F.; Guertler, A.; Steckmeier, S.; French, L.E.; Sattler, E.C. Line-field confocal optical coherence tomography (LC-OCT) for the in vivo examination of nails: Analysis of typical features for the differentiation of nail disorders. J. Eur. Acad. Dermatol. Venereol. (JEADV) 2024, 38, e413–e416. [Google Scholar] [CrossRef]
- Mazzilli, S.; Cosio, T.; Diluvio, L.; Vollono, L.; Gonzalez, S.; Di Prete, M.; Orlandi, A.; Bianchi, L.; Campione, E. Dermoscopy and Reflectance Confocal Microscopy in the Diagnosis and Management of Nail Fold Squamous Cell Carcinoma. J. Med. Life 2020, 13, 107–111. [Google Scholar] [CrossRef]
- Dika, E.; Starace, M.; Patrizi, A.; Fanti, P.A.; Piraccini, B.M. Squamous Cell Carcinoma of the Nail Unit: A Clinical Histopathologic Study and a Proposal for Classification. Dermatol. Surg. 2019, 45, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Vollono, L.; Richert, B. Diagnosis and Management of Malignant Epithelial Nail Unit Tumors. Diagnostics 2024, 14, 2379. [Google Scholar] [CrossRef] [PubMed]
- Gou, D.; Nijhawan, R.I.; Srivastava, D. Mohs Micrographic Surgery as the Standard of Care for Nail Unit Squamous Cell Carcinoma. Dermatol. Surg. 2020, 46, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Barone, H.; Schaeffer, M.; Buckland, M.; LaFond, A.A.; Krach, K. Squamous Cell Carcinoma in Situ of the Nail Unit: Current Evidence and Recommendations for Patient Centered Treatment. J. Cutan. Med. Surg. 2023, 27, 51–59. [Google Scholar] [CrossRef]
- De Berker, D. Nail anatomy. Clin. Dermatol. 2013, 31, 509–515. [Google Scholar] [CrossRef]
- Disorders of the Hair and Nail: Diagnosis and Treatment—Antonella Tosti—Bianca Maria Piraccini—Libro in Lingua Inglese—McGraw-Hill Education—|Feltrinelli n.d. Available online: https://www.lafeltrinelli.it/disorders-of-hair-nail-diagnosis-libro-inglese-antonella-tosti-bianca-maria-piraccini/e/9781260462470?gad_source=1&gad_campaignid=17182894279&gbraid=0AAAAAC8kHMS0k402JdSexdZZCK2eQ59JT&gclid=Cj0KCQjwhO3DBhDkARIsANxrhTpGi_nl8DRNbZeAuRNEOsv5d8Ih0Zc9JGQuQcOk77Jd3-Yxh5NWHYcaAlbVEALw_wcB (accessed on 19 July 2025).
- Cammas, C.; Carmès, S.; Brunelli, F.; Dumontier, C. Surgical anatomy of the nail. Hand Surg. Rehabil. 2024, 43, 101644. [Google Scholar] [CrossRef]
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Dika, E.; de Biase, D.; Lambertini, M.; Alessandrini, A.M.; Acquaviva, G.; De Leo, A.; Tallini, G.; Ricci, C.; Starace, M.; Misciali, C.; et al. Mutational landscape in squamous cell carcinoma of the nail unit. Exp. Dermatol. 2022, 31, 854–861. [Google Scholar] [CrossRef]
- Diffey, B.L. The risk of squamous cell carcinoma in women from exposure to UVA lamps used in cosmetic nail treatment. Br. J. Dermatol. 2012, 167, 1175–1178. [Google Scholar] [CrossRef]
- Pagnotta, A.; Patanè, L.; Zoccali, C.; Kaciulyte, J.; Lo Torto, F.; Ribuffo, D. Squamous Cell Carcinoma of the Thumb: Misdiagnosis and Consequences. J. Clin. Med. 2025, 14, 4640. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, V.; Maida, P.; Salvati, L.; Scarfì, F.; Trane, L.; Gori, A.; Silvestri, F.; Venturi, F.; Covarelli, P. Trauma and foreign bodies may favour the onset of melanoma metastases. Clin. Exp. Dermatol. 2020, 45, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Pentenero, M.; Azzi, L.; Lodi, G.; Manfredi, M.; Varoni, E. Chronic mechanical trauma/irritation and oral carcinoma: A systematic review showing low evidence to support an association. Oral Dis. 2022, 28, 2110–2118. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, V.; Scarfì, F.; Silvestri, F.; Maida, P.; Venturi, F.; Trane, L.; Gori, A. Genital piercing: A warning for the risk of vulvar lichen sclerosus. Dermatol. Ther. 2021, 34, e14703. [Google Scholar] [CrossRef]
- Shimizu, A.; Kuriyama, Y.; Hasegawa, M.; Tamura, A.; Ishikawa, O. Nail squamous cell carcinoma: A hidden high-risk human papillomavirus reservoir for sexually transmitted infections. J. Am. Acad. Dermatol. 2019, 81, 1358–1370. [Google Scholar] [CrossRef]
- Baba, S.K.; Alblooshi, S.S.E.; Yaqoob, R.; Behl, S.; Al Saleem, M.; Rakha, E.A.; Malik, F.; Singh, M.; Macha, M.A.; Akhtar, M.K.; et al. Human papilloma virus (HPV) mediated cancers: An insightful update. J. Transl. Med. 2025, 23, 483. [Google Scholar] [CrossRef]
- Lu, D.W.; El-Mofty, S.K.; Wang, H.L. Expression of p16, Rb, and p53 proteins in squamous cell carcinomas of the anorectal region harboring human papillomavirus DNA. Mod. Pathol. 2003, 16, 692–699. [Google Scholar] [CrossRef][Green Version]
- Vinzón, S.E.; Rösl, F. HPV vaccination for prevention of skin cancer. Hum. Vaccines Immunother. 2015, 11, 353–357. [Google Scholar] [CrossRef]
- Savani, B.N.; Goodman, S.; Barrett, A.J. Can routine posttransplant HPV vaccination prevent commonly occurring epithelial cancers after allogeneic stem cell transplantation? Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 2219–2221. [Google Scholar] [CrossRef][Green Version]
- Bibee, K.; Swartz, A.; Sridharan, S.; Kurten, C.H.L.; Wessel, C.B.; Skinner, H.; Zandberg, D.P. Cutaneous Squamous Cell Carcinoma in the Organ Transplant Recipient. Oral Oncol. 2020, 103, 104562. [Google Scholar] [CrossRef]
- Khaddour, K.; Murakami, N.; Ruiz, E.S.; Silk, A.W. Cutaneous Squamous Cell Carcinoma in Patients with Solid-Organ-Transplant-Associated Immunosuppression. Cancers 2024, 16, 3083. [Google Scholar] [CrossRef]
- Diepgen, T.L.; Fartasch, M.; Drexler, H.; Schmitt, J. Occupational skin cancer induced by ultraviolet radiation and its prevention. Br. J. Dermatol. 2012, 167 (Suppl. S2), 76–84. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulos, P.; Norman, R. Occupational nonsolar risk factors of squamous cell carcinoma of the skin: A population-based case-controlled study. Dermatol. Online J. 2005, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Gu, H.; Lee, Y.-H.; Yang, M.; Kim, H.; Kwon, O.; Kim, Y.H.; Kang, M.-Y. Occupational Risk Factors for Skin Cancer: A Comprehensive Review. J. Korean Med. Sci. 2024, 39, e316. [Google Scholar] [CrossRef] [PubMed]
- El Ghissassi, F.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part D: Radiation. Lancet Oncol. 2009, 10, 751–752. [Google Scholar] [CrossRef]
- Dessinioti, C.; Stratigos, A.J. An Epidemiological Update on Indoor Tanning and the Risk of Skin Cancers. Curr. Oncol. 2022, 29, 8886–8903. [Google Scholar] [CrossRef]
- Perruchoud, D.L.; Varonier, C.; Haneke, E.; Hunger, R.E.; Beltraminelli, H.; Borradori, L.; Ehnis Pérez, A. Bowen disease of the nail unit: A retrospective study of 12 cases and their association with human papillomaviruses. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1503–1506. [Google Scholar] [CrossRef]
- Renzi, C.; Mastroeni, S.; Mannooranparampil, T.J.; Passarelli, F.; Caggiati, A.; Potenza, C.; Pasquini, P. Delay in diagnosis and treatment of squamous cell carcinoma of the skin. Acta Derm. Venereol. 2010, 90, 595–601. [Google Scholar] [CrossRef]
- Lee, D.K.; Lipner, S.R. Optimal diagnosis and management of common nail disorders. Ann. Med. 2022, 54, 694–712. [Google Scholar] [CrossRef]
- Cinotti, E.; Veronesi, G.; Labeille, B.; Cambazard, F.; Piraccini, B.M.; Dika, E.; Perrot, J.L.; Rubegni, P. Imaging technique for the diagnosis of onychomatricoma. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1874–1878. [Google Scholar] [CrossRef]
- Padilha, C.B.D.S.; Balassiano, L.K.D.A.; Pinto, J.C.; de Souza, F.C.S.; Kac, B.K.; Treu, C.M. Subungual squamous cell carcinoma. An. Bras. Dermatol. 2016, 91, 817–819. [Google Scholar] [CrossRef]
- Tambe, S.A.; Patil, P.D.; Saple, D.G.; Kulkarni, U.Y. Squamous Cell Carcinoma of the Nail Bed: The Great Mimicker. J. Cutan. Aesthetic Surg. 2017, 10, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Piraccini, B.M.; Alessandrini, A.; Starace, M. Onychoscopy: Dermoscopy of the Nails. Dermatol. Clin. 2018, 36, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Grover, C.; Jakhar, D. Onychoscopy: A practical guide. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Zalaudek, I.; Argenziano, G.; Pellacani, G. New directions in dermatopathology: In vivo confocal microscopy in clinical practice. Dermatol. Clin. 2012, 30, 799–814. [Google Scholar] [CrossRef]
- Cinotti, E.; Labeille, B.; Cambazard, F.; Perrot, J.-L. Confocal Microscopy for Special Sites and Special Uses. Dermatol. Clin. 2016, 34, 477–485. [Google Scholar] [CrossRef]
- Debarbieux, S.; Gaspar, R.; Depaepe, L.; Dalle, S.; Balme, B.; Thomas, L. Intraoperative diagnosis of nonpigmented nail tumours with ex vivo fluorescence confocal microscopy: 10 cases. Br. J. Dermatol. 2015, 172, 1037–1044. [Google Scholar] [CrossRef]
- Veronesi, G.; Scotti, B.; Vaccari, S.; Baraldi, C.; Magnaterra, E.; Dika, E. Onychopapilloma: Does free edge confocal microscopy of the nail improve the diagnosis? Skin Res. Technol. 2024, 30, e13592. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; Bataille, V.; Bastholt, L.; Dreno, B.; Fargnoli, M.C.; Forsea, A.M.; Frenard, C.; et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 1. epidemiology, diagnostics and prevention. Eur. J. Cancer 2020, 128, 60–82. [Google Scholar] [CrossRef]
- Tran, K.T.; Wright, N.A.; Cockerell, C.J. Biopsy of the pigmented lesion—When and how. J. Am. Acad. Dermatol. 2008, 59, 852–871. [Google Scholar] [CrossRef]
- Bedir, R.; Güçer, H.; Şehitoğlu, İ.; Yurdakul, C.; Bağcı, P.; Üstüner, P. The Role of p16, p21, p27, p53 and Ki-67 Expression in the Differential Diagnosis of Cutaneous Squamous Cell Carcinomas and Keratoacanthomas: An Immunohistochemical Study. Balk. Med. J. 2016, 33, 121–127. [Google Scholar] [CrossRef]
- Moulart, F.; Olemans, C.; de Saint Aubain, N.; Richert, B.; André, J. Squamous cell carcinoma of the nail apparatus: Histopathology and immunohistochemistry correlation study. J. Cutan. Pathol. 2024, 51, 714–723. [Google Scholar] [CrossRef]
- Schweinzer, K.; Kofler, L.; Bauer, J.; Metzler, G.; Breuninger, H.; Häfner, H.-M. Cytokeratin AE1/AE3 immunostaining and 3D-histology: Improvement of diagnosis in desmoplastic squamous cell carcinoma of the skin. Arch. Dermatol. Res. 2017, 309, 43–46. [Google Scholar] [CrossRef]
- Missero, C.; Antonini, D. p63 in Squamous Cell Carcinoma of the Skin: More Than a Stem Cell/Progenitor Marker. J. Investig. Dermatol. 2017, 137, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.W.; Shepherd, P.; Theaker, J.M. Ber EP4 and epithelial membrane antigen aid distinction of basal cell, squamous cell and basosquamous carcinomas of the skin. Histopathology 2000, 37, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Riddel, C.; Rashid, R.; Thomas, V. Ungual and periungual human papillomavirus-associated squamous cell carcinoma: A review. J. Am. Acad. Dermatol. 2011, 64, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Schwab, M.; Lohr, S.; Schneider, J.; Kaiser, M.; Krunic, D.; Helbig, D.; Géraud, C.; Angel, P. Podoplanin is required for tumor cell invasion in cutaneous squamous cell carcinoma. Exp. Dermatol. 2021, 30, 1619–1630. [Google Scholar] [CrossRef]
- Chitsazzadeh, V.; Coarfa, C.; Drummond, J.A.; Nguyen, T.; Joseph, A.; Chilukuri, S.; Charpiot, E.; Adelmann, C.H.; Ching, G.; Nguyen, T.N.; et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat. Commun. 2016, 7, 12601. [Google Scholar] [CrossRef]
- Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015, 348, 880–886. [Google Scholar] [CrossRef]
- Stern, D.K.; Creasey, A.A.; Quijije, J.; Lebwohl, M.G. UV-A and UV-B penetration of normal human cadaveric fingernail plate. Arch. Dermatol. 2011, 147, 439–441. [Google Scholar] [CrossRef]
- Inman, G.J.; Wang, J.; Nagano, A.; Alexandrov, L.B.; Purdie, K.J.; Taylor, R.G.; Sherwood, V.; Thomson, J.; Hogan, S.; Spender, L.C.; et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun. 2018, 9, 3667. [Google Scholar] [CrossRef]
- Amôr, N.G.; Santos, P.S.D.S.; Campanelli, A.P. The Tumor Microenvironment in SCC: Mechanisms and Therapeutic Opportunities. Front. Cell Dev. Biol. 2021, 9, 636544. [Google Scholar] [CrossRef] [PubMed]
- De Lima, P.O.; Joseph, S.; Panizza, B.; Simpson, F. Epidermal Growth Factor Receptor’s Function in Cutaneous Squamous Cell Carcinoma and Its Role as a Therapeutic Target in the Age of Immunotherapies. Curr. Treat. Options Oncol. 2020, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Wortsman, X. Concepts, Role, and Advances on Nail Imaging. Dermatol. Clin. 2021, 39, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.A.; Filitis, D.; Samie, F.H.; Piliang, M.; Knackstedt, T.J. Evaluating the Utility of Routine Imaging in Squamous Cell Carcinoma of the Nail Unit. Dermatol. Surg. 2020, 46, 1375–1381. [Google Scholar] [CrossRef]
- Ammar, A.; Salon, A.; Moulonguet, I.; Drapé, J.-L. MRI of squamous cell carcinoma of the nail apparatus: Report of 6 cases. Skeletal Radiol. 2023, 52, 613–622. [Google Scholar] [CrossRef]
- Dominguez-Cherit, J. Subungual Invasive Squamous Cell Carcinoma with Doubtful Underlying Bone Invasion: A Treatment Proposal. Skin Appendage Disord. 2021, 7, 108–111. [Google Scholar] [CrossRef]
- Mundada, P.; Becker, M.; Lenoir, V.; Stefanelli, S.; Rougemont, A.-L.; Beaulieu, J.Y.; Boudabbous, S. High resolution MRI of nail tumors and tumor-like conditions. Eur. J. Radiol. 2019, 112, 93–105. [Google Scholar] [CrossRef]
- Wortsman, X. Top Advances in Dermatologic Ultrasound. J. Ultrasound Med. 2023, 42, 521–545. [Google Scholar] [CrossRef]
- Hobayan, C.G.P.; Gray, A.N.; Waters, M.F.; Mager, L.A.; Kobayashi, S.; Essien, E.W.; Ulman, C.A.; Kaffenberger, B.H. Diagnostic accuracy of high-frequency ultrasound for cutaneous neoplasms: A narrative review of the literature. Arch. Dermatol. Res. 2024, 316, 419. [Google Scholar] [CrossRef]
- Sechi, A.; Alessandrini, A.; Patrizi, A.; Starace, M.; Caposiena Caro, R.D.; Vara, G.; Brandi, N.; Golfieri, R.; Piraccini, B.M. Ultrasound features of the subungual glomus tumor and squamous cell carcinomas. Skin Res. Technol. 2020, 26, 867–875. [Google Scholar] [CrossRef]
- Polańska, A.; Mikiel, D.; Szymoniak-Lipska, M.; Olszewska, B.; Dańczak-Pazdrowska, A. High-Frequency Ultrasonography in Hair and Nail Disorders-How It May Be Helpful. Diagnostics 2025, 15, 332. [Google Scholar] [CrossRef]
- Hallur, N.; Sathar, R.; Siddiqua, A.; Zakaullah, S.; Kothari, C. Evaluation of Metastatic Lymph Nodes in Oral Squamous Cell Carcinoma: A Comparative Study of Clinical, FNAC, Ultra Sonography and Computed Tomography with Post Operative Histopathology. Indian J. Otolaryngol. Head Neck Surg. 2022, 74, 5921–5926. [Google Scholar] [CrossRef]
- Saha, S.; Woodhouse, N.R.; Gok, G.; Ramesar, K.; Moody, A.; Howlett, D.C. Ultrasound guided Core Biopsy, Fine Needle Aspiration Cytology and Surgical Excision Biopsy in the diagnosis of metastatic squamous cell carcinoma in the head and neck: An eleven year experience. Eur. J. Radiol. 2011, 80, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Belkin, D.A.; Wysong, A. Radiographic imaging for skin cancer. Semin. Cutan. Med. Surg. 2016, 35, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Libson, K.; Sheridan, C.; Carr, D.R.; Shahwan, K.T. Use of Imaging in Cutaneous Squamous Cell Carcinoma to Detect High-Risk Tumor Features, Nodal Metastasis, and Distant Metastasis: A Systematic Review. Dermatol. Surg. 2024, 50, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Heppt, M.V.; Steeb, T.; Alter, M.; Amaral, T.; Bauer, A.; Bechara, F.G.; Becker, J.C.; Breitbart, E.W.; Breuninger, H.; et al. S3 guideline “actinic keratosis and cutaneous squamous cell carcinoma”—Update 2023, part 2: Epidemiology and etiology, diagnostics, surgical and systemic treatment of cutaneous squamous cell carcinoma (cSCC), surveillance and prevention. J. Dtsch. Dermatol. Ges. (JDDG) 2023, 21, 1422–1433. [Google Scholar] [CrossRef]
- Hirshoren, N.; Olayos, E.; Herschtal, A.; Ravi Kumar, A.S.; Gyorki, D.E. Preoperative Positron Emission Tomography for Node-Positive Head and Neck Cutaneous Squamous Cell Carcinoma. Otolaryngol.-Head Neck Surg. 2018, 158, 122–126. [Google Scholar] [CrossRef]
- Venturi, F.; Pellacani, G.; Farnetani, F.; Maibach, H.; Tassone, D.; Dika, E. Noninvasive diagnostic techniques in the preoperative setting of Mohs micrographic surgery: A review of the literature. Dermatol. Ther. 2022, 35, e15832. [Google Scholar] [CrossRef]
- Rich, P. Nail biopsy: Indications and methods. Dermatol. Surg. 1992, 18, 673–682. [Google Scholar] [CrossRef]
- Dika, E.; Starace, M.; Alessandrini, A.; Patrizi, A.; Baraldi, C.; Misciali, C.; Fanti, P.A.; Waśkiel-Burnat, A.; Rudnicka, L.; Piraccini, B.M. The Histopathologic Evaluation of Diagnostic Procedures in Nail Melanoma. Dermatol. Pract. Concept. 2023, 13, e2023092. [Google Scholar] [CrossRef] [PubMed]
- Grover, C.; Bansal, S. Nail Biopsy: A User’s Manual. Indian Dermatol. Online J. 2018, 9, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Karia, P.S.; Jambusaria-Pahlajani, A.; Harrington, D.P.; Murphy, G.F.; Qureshi, A.A.; Schmults, C.D. Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and Women’s Hospital tumor staging for cutaneous squamous cell carcinoma. J. Clin. Oncol. 2014, 32, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) TNM Classification of Malignant Tumours, 9th ed.; Wiley: Hoboken, NJ, USA, 2025; Available online: https://www.wiley.com/en-us/TNM+Classification+of+Malignant+Tumours%2C+9th+Edition-p-9781394216871 (accessed on 3 September 2025).
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; van Akkooi, A.; Bataille, V.; Bastholt, L.; Dreno, B.; Dummer, R.; Fargnoli, M.C.; et al. European consensus-based interdisciplinary guideline for invasive cutaneous squamous cell carcinoma. Part 1: Diagnostics and prevention-Update 2023. Eur. J. Cancer 2023, 193, 113251. [Google Scholar] [CrossRef]
- Breuninger, H.; Brantsch, K.; Eigentler, T.; Häfner, H.-M. Comparison and evaluation of the current staging of cutaneous carcinomas. J. Dtsch. Dermatol. Ges. (JDDG) 2012, 10, 579–586. [Google Scholar] [CrossRef]
- Dijksterhuis, A.; Friedeman, E.; Van Der Heijden, B. Squamous Cell Carcinoma of the Nail Unit: Review of the Literature. J. Hand Surg. 2018, 43, 374–379.e2. [Google Scholar] [CrossRef]
- Lambertini, M.; Piraccini, B.M.; Fanti, P.A.; Dika, E. Mohs micrographic surgery for nail unit tumours: An update and a critical review of the literature. J. Eur. Acad. Dermatol. Venereol. (JEADV) 2018, 32, 1638–1644. [Google Scholar] [CrossRef]
- Taylor, D.; Weiss, E. Mohs Micrographic Surgery for Management of Nail Unit Squamous Cell Carcinomas. Dermatol. Surg. 2017, 43, 1302–1303. [Google Scholar] [CrossRef]
- Dika, E.; Fanti, P.A.; Patrizi, A.; Misciali, C.; Vaccari, S.; Piraccini, B.M. Mohs Surgery for Squamous Cell Carcinoma of the Nail Unit: 10 Years of Experience. Dermatol. Surg. 2015, 41, 1015–1019. [Google Scholar] [CrossRef]
- Topin-Ruiz, S.; Surinach, C.; Dalle, S.; Duru, G.; Balme, B.; Thomas, L. Surgical Treatment of Subungual Squamous Cell Carcinoma by Wide Excision of the Nail Unit and Skin Graft Reconstruction: An Evaluation of Treatment Efficiency and Outcomes. JAMA Dermatol. 2017, 153, 442–448. [Google Scholar] [CrossRef]
- Ning, A.Y.; Levoska, M.A.; Zheng, D.X.; Carroll, B.T.; Wong, C.Y. Treatment Options and Outcomes for Squamous Cell Carcinoma of the Nail Unit: A Systematic Review. Dermatol. Surg. 2022, 48, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Flores-Terry, M.; Romero-Aguilera, G.; Mendoza, C.; Franco, M.; Cortina, P.; Garcia-Arpa, M.; Gonzalez-Ruiz, L.; Garrido, J.A. Functional Surgery for Malignant Subungual Tumors: A Case Series and Literature Review. Actas Dermosifiliogr. 2018, 109, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.-S.; Li, F.; Jiang, J.-Y.; Huang, S.-D.; Ji, X.; Zhu, P.; Wang, D.-G. Recurrence rates after functional surgery versus amputation for nail squamous cell carcinoma not involving the bone: A systematic review. Indian J. Dermatol. Venereol. Leprol. 2025, 91, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Scarfì, F.; Patrizi, A.; Veronesi, G.; Lambertini, M.; Tartari, F.; Mussi, M.; Melotti, B.; Dika, E. The role of topical imiquimod in melanoma cutaneous metastases: A critical review of the literature. Dermatol. Ther. 2020, 33, e14165. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Koo, D.W.; Lee, J.S. Bowen disease of the nail apparatus with HPV16 positivity and resolution with human papillomavirus vaccination. Br. J. Dermatol. 2020, 183, e1. [Google Scholar] [CrossRef]
- Hunt, W.T.; Cameron, A.; Craig, P.; de Berker, D.A. Multiple-digit periungual Bowen’s disease: A novel treatment approach with radiotherapy. Clin. Exp. Dermatol. 2013, 38, 857–861. [Google Scholar] [CrossRef]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; van Akkooi, A.; Bataille, V.; Bastholt, L.; Dreno, B.; Dummer, R.; Fargnoli, M.C.; et al. European consensus-based interdisciplinary guideline for invasive cutaneous squamous cell carcinoma: Part 2. Treatment-Update 2023. Eur. J. Cancer 2023, 193, 113252. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; Bataille, V.; Bastholt, L.; Dreno, B.; Concetta Fargnoli, M.; Forsea, A.M.; Frenard, C.; et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 2. Treatment. Eur. J. Cancer 2020, 128, 83–102. [Google Scholar] [CrossRef]
- Bertino, G.; Groselj, A.; Campana, L.G.; Kunte, C.; Schepler, H.; Gehl, J.; Muir, T.; Clover, J.A.P.; Quaglino, P.; Kis, E.; et al. Electrochemotherapy for the treatment of cutaneous squamous cell carcinoma: The INSPECT experience (2008–2020). Front. Oncol. 2022, 12, 951662. [Google Scholar] [CrossRef]
- Kim, E.Y.; Ruiz, E.S.; DeSimone, M.S.; Shalhout, S.Z.; Hanna, G.J.; Miller, D.M.; Schmults, C.; Rettig, E.M.; Foreman, R.K.; Sethi, R.; et al. Neoadjuvant-Intent Immunotherapy in Advanced, Resectable Cutaneous Squamous Cell Carcinoma. JAMA Otolaryngol.—Head Neck Surg. 2024, 150, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Gross, N.D.; Miller, D.M.; Khushalani, N.I.; Divi, V.; Ruiz, E.S.; Lipson, E.J.; Meier, F.; Su, Y.B.; Swiecicki, P.L.; Atlas, J.; et al. Neoadjuvant Cemiplimab for Stage II to IV Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 387, 1557–1568. [Google Scholar] [CrossRef] [PubMed]
- Spadafora, M.; Paganelli, A.; Raucci, M.; Kaleci, S.; Peris, K.; Guida, S.; Pellacani, G.; Longo, C. Neoadjuvant Immunotherapy in Cutaneous Squamous Cell Carcinoma: Systematic Literature Review and State of the Art. Cancers 2025, 17, 637. [Google Scholar] [CrossRef] [PubMed]
- Yaniv, D.; Naara, S.; Netto, F.O.G.; Stafford, H.; Buell, J.; Chiang, E.; Shahrukh, A.; Li, S.; Nagarajan, P.; Hanna, E.Y.; et al. Response-Adapted Oncologic Surgery in Cutaneous Squamous Cell Carcinoma: A Paradigm Shift Following Neoadjuvant Immunotherapy. Ann. Surg. Oncol. 2025. [Google Scholar] [CrossRef]
- De Giorgi, V.; Trane, L.; Savarese, I.; Silvestri, F.; Venturi, F.; Zuccaro, B.; Scarfì, F. Lasting response after discontinuation of cemiplimab in a patient with locally advanced basal cell carcinoma. Clin. Exp. Dermatol. 2021, 46, 1612–1614. [Google Scholar] [CrossRef]
- Venturi, F.; Rapparini, L.; Sgarzani, R.; Scotti, B.; Campione, E.; Dika, E. Cytoreductive approach with hedgehog inhibitors followed by reflectance confocal microscopy assisted Mohs surgery for morpheiform basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol. (JEADV) 2024, 39, e32. [Google Scholar] [CrossRef]
- Dika, E.; Melotti, B.; Comito, F.; Tassone, D.; Baraldi, C.; Campione, E.; Mussi, M.; Venturi, F. Neoadjuvant treatment of basosquamous carcinomas with Sonidegib: An innovative approach. Exp. Dermatol. 2023, 32, 2038. [Google Scholar] [CrossRef]
- Davar, D. Phase II Neoadjuvant Study of PD-1 Inhibitor Pembrolizumab in PD-1 Naive Cutaneous Squamous Cell Carcinoma (cSCC). 2025. Available online: https://clinicaltrials.gov/study/NCT04808999?term=NCT02252042%20NCT02883556%20NCT03284424%20NCT03833167%20NCT04150900%20NCT04808999%20NCT04929041%20NCT05027633&rank=3 (accessed on 6 July 2025).
- Cinotti, E.; Fouilloux, B.; Perrot, J.L.; Labeille, B.; Douchet, C.; Cambazard, F. Confocal microscopy for healthy and pathological nail. J. Eur. Acad. Dermatol. Venereol. (JEADV) 2014, 28, 853–858. [Google Scholar] [CrossRef]
- De Giorgi, V.; Scarfì, F.; Gori, A.; Silvestri, F.; Trane, L.; Maida, P.; Venturi, F.; Covarelli, P. Short-term teledermoscopic monitoring of atypical melanocytic lesions in the early diagnosis of melanoma: Utility more apparent than real. J. Eur. Acad. Dermatol. Venereol. (JEADV) 2020, 34, e398–e399. [Google Scholar] [CrossRef]
- Quadri, M.; Iuliano, M.; Rosa, P.; Mangino, G.; Palazzo, E. Exploring the Complexity of Cutaneous Squamous CellCarcinoma Microenvironment: Focus on Immune Cell Roles by Novel 3D In Vitro Models. Life 2025, 15, 1170. [Google Scholar] [CrossRef]
- Venturi, F.; Magnaterra, E.; Scotti, B.; Ferracin, M.; Dika, E. Predictive Factors for Sentinel Lymph Node Positivity in Melanoma Patients-The Role of Liquid Biopsy, MicroRNA and Gene Expression Profile Panels. Cancers 2025, 17, 1281. [Google Scholar] [CrossRef]
- Naddeo, M.; Broseghini, E.; Venturi, F.; Vaccari, S.; Corti, B.; Lambertini, M.; Ricci, C.; Fontana, B.; Durante, G.; Pariali, M.; et al. Association of miR-146a-5p and miR-21-5p with Prognostic Features in Melanomas. Cancers 2024, 16, 1688. [Google Scholar] [CrossRef]
- Durante, G.; Comito, F.; Lambertini, M.; Broseghini, E.; Dika, E.; Ferracin, M. Non-coding RNA dysregulation in skin cancers. Essays Biochem. 2021, 65, 641–655. [Google Scholar] [CrossRef]
- Durante, G.; Broseghini, E.; Comito, F.; Naddeo, M.; Milani, M.; Salamon, I.; Campione, E.; Dika, E.; Ferracin, M. Circulating microRNA biomarkers in melanoma and non-melanoma skin cancer. Expert Rev. Mol. Diagn. 2022, 22, 305–318. [Google Scholar] [CrossRef]
- Aleissa, S.; Cowen, E.; Navarrete-Dechent, C.; Busam, K.J.; Rossi, A.M.; Lee, E.H.; Nehal, K.S. Squamous cell carcinoma in situ upstaging is not frequent in the nail unit: A tertiary cancer center experience. Arch. Dermatol. Res. 2022, 314, 89–93. [Google Scholar] [CrossRef]
- Miller, D.M. The evolving treatment landscape for CSCC. Arch. Dermatol. Res. 2025, 317, 502. [Google Scholar] [CrossRef] [PubMed]
Condition | Common Age Group | Presentation Duration | Typical Symptoms | Diagnostic Clues |
---|---|---|---|---|
SCC of the Nail Unit (SCCNU) | 50–70 years | Months to years | Pain, nail dystrophy, subungual mass, bleeding | Persistent lesion, irregular vascularity, poor response to therapy |
Onychomycosis | All ages | Months to years | Discoloration, thickened nails, subungual debris | KOH positive, fungal culture, nail thickening |
Chronic Paronychia | All ages (adults more common) | Weeks to months | Swelling, redness, tenderness around nail fold | History of wet work, inflammation without mass |
Subungual Wart | Children and young adults | Months | Warty growth, rough surface under nail | Verrucous surface, HPV association |
Pyogenic Granuloma | All ages | Acute (days to weeks) | Rapidly growing red nodule, bleeds easily | Bright red, lobular lesion, bleeds on contact |
Amelanotic Melanoma | 50–70 years | Months | Painless discoloration or subungual mass | Pigment network absent, vascular patterns |
Glomus Tumor | 20–40 years | Months | Severe localized pain, cold sensitivity | MRI: vascular nodule; intense pain on pressure |
Dermoscopic Feature | Description | Diagnostic Implication |
---|---|---|
Irregular vascular patterns | Dotted, glomerular, or serpentine vessels arranged chaotically | Suggestive of malignancy and neoangiogenesis |
White/yellow hyperkeratotic masses | Compact keratin under the nail or surrounding nail fold | Correlates with tumor-induced keratinization |
Onycholysis with jagged proximal edge | Separation of the nail plate with serrated inner margin | Common in both SCC and fungal infection |
Hemorrhages | Red to black dots or streaks, often linear or globular | Indicates capillary rupture; not pathognomonic |
Surface scaling | Roughened texture, often with debris accumulation | Frequently seen in verrucous SCC variants |
Ulceration or crusting | Superficial erosion or scab formation over lesion | Indicates rapid growth or secondary trauma |
Absence of pigment network | Especially important in amelanotic or pigmented lesions | Helps differentiate from subungual melanoma |
Milky-red areas or polychromatic dots | Highly vascularized zones with mixed color features | Strongly suggests malignancy, especially in SCC |
Condition | Key Dermoscopic Features | Contrast with SCCNU |
---|---|---|
Onychomycosis | Linear white streaks, yellowish discoloration, uniform onycholysis | Lacks vascular irregularities or bleeding |
Wart (HPV-related) | Papilliform surface with central black dots (thrombosed vessels), hyperkeratotic rim | More regular vascularity, less aggressive pattern |
Pyogenic Granuloma | Homogeneous red area, white rail lines, collarette scale | Rapid onset and highly vascular but usually painful |
Melanoma | Brown-black longitudinal streaks, Hutchinson’s sign, pigment network | SCCNU typically lacks consistent pigment features |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venturi, F.; Magnaterra, E.; Scotti, B.; Alessandrini, A.; Veneziano, L.; Vaccari, S.; Baraldi, C.; Dika, E. Squamous Cell Carcinoma of the Nail Unit: A Comprehensive Review of Clinical Features, Diagnostic Workflow, Management Strategies and Therapeutic Options. Diagnostics 2025, 15, 2378. https://doi.org/10.3390/diagnostics15182378
Venturi F, Magnaterra E, Scotti B, Alessandrini A, Veneziano L, Vaccari S, Baraldi C, Dika E. Squamous Cell Carcinoma of the Nail Unit: A Comprehensive Review of Clinical Features, Diagnostic Workflow, Management Strategies and Therapeutic Options. Diagnostics. 2025; 15(18):2378. https://doi.org/10.3390/diagnostics15182378
Chicago/Turabian StyleVenturi, Federico, Elisabetta Magnaterra, Biagio Scotti, Aurora Alessandrini, Leonardo Veneziano, Sabina Vaccari, Carlotta Baraldi, and Emi Dika. 2025. "Squamous Cell Carcinoma of the Nail Unit: A Comprehensive Review of Clinical Features, Diagnostic Workflow, Management Strategies and Therapeutic Options" Diagnostics 15, no. 18: 2378. https://doi.org/10.3390/diagnostics15182378
APA StyleVenturi, F., Magnaterra, E., Scotti, B., Alessandrini, A., Veneziano, L., Vaccari, S., Baraldi, C., & Dika, E. (2025). Squamous Cell Carcinoma of the Nail Unit: A Comprehensive Review of Clinical Features, Diagnostic Workflow, Management Strategies and Therapeutic Options. Diagnostics, 15(18), 2378. https://doi.org/10.3390/diagnostics15182378