Diagnostic Innovations to Combat Antibiotic Resistance in Critical Care: Tools for Targeted Therapy and Stewardship
Abstract
1. Introduction
2. Challenge of Antibiotic Resistance in Critical Care
3. Diagnostic Innovations as Tools for Targeted Therapy
3.1. Pathogen Identification
3.1.1. Molecular and Genotypic Tools
3.1.2. MALDI-TOF Mass Spectrometry (MS)
3.1.3. Point-of-Care and Bedside Tools for Identification
3.1.4. Lateral Flow Assays (LFAs)
3.1.5. Biosensors and Lab-on-a-Chip Platforms for Pathogen Identification
3.1.6. Smartphone-Based Diagnostics for Pathogen Identification
3.2. Resistance Detection
3.2.1. Molecular Detection of Resistance Genes
3.2.2. Phenotypic Resistance Testing via Biosensors and LOC Platforms
3.2.3. Rapid Antimicrobial Susceptibility Testing (rAST)
3.2.4. Smartphone-Based Diagnostics for Resistance Detection and Surveillance
3.3. Host Response-Based Diagnostics
3.3.1. Biomarker Detection
3.3.2. AI-Powered Predictive Tools in Antimicrobial Resistance Management
4. Enhancing Antimicrobial Stewardship Through Diagnostics
5. Barriers and Limitations
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Al-Harbi, A.I.; Ahmed, E.A.; Battah, B.; Abd Ellah, N.H.; Zanetti, S.; Donadu, M.G. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Vincent, J.L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef]
- Hetta, H.F.; Alanazi, F.E.; Ali, M.A.S.; Alatawi, A.D.; Aljohani, H.M.; Ahmed, R.; Alansari, N.A.; Alkhathami, F.M.; Albogmi, A.; Alharbi, B.M.; et al. Hypervirulent Klebsiella pneumoniae: Insights into Virulence, Antibiotic Resistance, and Fight Strategies Against a Superbug. Pharmaceuticals 2025, 18, 724. [Google Scholar] [CrossRef] [PubMed]
- Hetta, H.F.; Ramadan, Y.N.; Al-Kadmy, I.M.S. Editorial for Special Issue “Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance”. Biomedicines 2025, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Fouda, A.; Niedbała, G.; Hassan, S.E.-D.; Salem, S.S.; Abdo, A.M.; Hetta, H.F.; Shaheen, T.I. Endophytic Streptomyces laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics 2020, 9, 641. [Google Scholar] [CrossRef]
- Crawford, A.M.; Shiferaw, A.A.; Ntambwe, P.; Milan, A.O.; Khalid, K.; Rubio, R.; Nizeyimana, F.; Ariza, F.; Mohammed, A.D.; Baker, T.; et al. Global critical care: A call to action. Crit. Care 2023, 27, 28. [Google Scholar] [CrossRef]
- Elkalawy, H.; Sekhar, P.; Abosena, W. Early detection and assessment of intensive care unit-acquired weakness: A comprehensive review. Acute Crit. Care 2023, 38, 409–424. [Google Scholar] [CrossRef]
- Liborio, M.P.; Harris, P.N.A.; Ravi, C.; Irwin, A.D. Getting Up to Speed: Rapid Pathogen and Antimicrobial Resistance Diagnostics in Sepsis. Microorganisms 2024, 12, 1824. [Google Scholar] [CrossRef]
- Bell, P.T.; Baird, T.; Goddard, J.; Olagoke, O.S.; Burke, A.; Subedi, S.; Davey, T.R.; Anderson, J.; Sarovich, D.S.; Price, E.P. Evaluating the feasibility, sensitivity, and specificity of next-generation molecular methods for pleural infection diagnosis. Microbiol. Spectr. 2025, 13, e01960-24. [Google Scholar] [CrossRef]
- Yamin, D.; Uskoković, V.; Wakil, A.M.; Goni, M.D.; Shamsuddin, S.H.; Mustafa, F.H.; Alfouzan, W.A.; Alissa, M.; Alshengeti, A.; Almaghrabi, R.H.; et al. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics 2023, 13, 3246. [Google Scholar] [CrossRef]
- Bouzid, D.; Zanella, M.C.; Kerneis, S.; Visseaux, B.; May, L.; Schrenzel, J.; Cattoir, V. Rapid diagnostic tests for infectious diseases in the emergency department. Clin. Microbiol. Infect. 2021, 27, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Peri, A.M.; Chatfield, M.D.; Ling, W.; Furuya-Kanamori, L.; Harris, P.N.A.; Paterson, D.L. Rapid Diagnostic Tests and Antimicrobial Stewardship Programs for the Management of Bloodstream Infection: What Is Their Relative Contribution to Improving Clinical Outcomes? A Systematic Review and Network Meta-analysis. Clin. Infect. Dis. 2024, 79, 502–515. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Al-Kadmy, I.M.S.; Al-Saryi, N.A.; Salman, I.M.A.; Garallah, E.T.; Aziz, S.N.; Al-Jubori, S.S.; Naji, E.N.; Alhomaidi, E.; Alsharari, S.S.; Ramadan, Y.N.; et al. Multidrug-resistant Serratia marcescens: A growing threat in Iraqi intensive care units. Gene Rep. 2025, 39, 102197. [Google Scholar] [CrossRef]
- Hetta, H.F.; Rashed, Z.I.; Ramadan, Y.N.; Al-Kadmy, I.M.S.; Kassem, S.M.; Ata, H.S.; Nageeb, W.M. Phage Therapy, a Salvage Treatment for Multidrug-Resistant Bacteria Causing Infective Endocarditis. Biomedicines 2023, 11, 2860. [Google Scholar] [CrossRef] [PubMed]
- Hetta, H.F.; Sirag, N.; Alsharif, S.M.; Alharbi, A.A.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Ramadan, Y.N.; Rashed, Z.I.; Alanazi, F.E. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals 2024, 17, 1555. [Google Scholar] [CrossRef] [PubMed]
- Elkhawaga, A.A.; Hetta, H.F.; Osman, N.S.; Hosni, A.; El-Mokhtar, M.A. Emergence of Cronobacter sakazakii in Cases of Neonatal Sepsis in Upper Egypt: First Report in North Africa. Front. Microbiol. 2020, 11, 2020. [Google Scholar] [CrossRef]
- Chang, C.-M.; Hsieh, M.-S.; Yang, C.-J.; How, C.-K.; Chen, P.-C.; Meng, Y.-H. Effects of empiric antibiotic treatment based on hospital cumulative antibiograms in patients with bacteraemic sepsis: A retrospective cohort study. Clin. Microbiol. Infect. 2023, 29, 765–771. [Google Scholar] [CrossRef]
- Roberts, J.A.; Bellomo, R.; Cotta, M.O.; Koch, B.C.P.; Lyster, H.; Ostermann, M.; Roger, C.; Shekar, K.; Watt, K.; Abdul-Aziz, M.H. Machines that help machines to help patients: Optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software. Intensive Care Med. 2022, 48, 1338–1351. [Google Scholar] [CrossRef]
- Boscolo, A.; Bruni, A.; Giani, M.; Garofalo, E.; Sella, N.; Pettenuzzo, T.; Bombino, M.; Palcani, M.; Rezoagli, E.; Pozzi, M.; et al. Retrospective ANalysis of multi-drug resistant Gram-nEgative bacteRia on veno-venous extracorporeal membrane oxygenation. The multicenter RANGER STUDY. Crit. Care 2024, 28, 279. [Google Scholar] [CrossRef]
- Iwashyna, T.J.; Kramer, A.A.; Kahn, J.M. Intensive care unit occupancy and patient outcomes. Crit. Care Med. 2009, 37, 1545–1557. [Google Scholar] [CrossRef]
- Timsit, J.F.; Ruppé, E.; Barbier, F.; Tabah, A.; Bassetti, M. Bloodstream infections in critically ill patients: An expert statement. Intensive Care Med. 2020, 46, 266–284. [Google Scholar] [CrossRef]
- Koukoubani, T.; Makris, D.; Daniil, Z.; Paraforou, T.; Tsolaki, V.; Zakynthinos, E.; Papanikolaou, J. The role of antimicrobial resistance on long-term mortality and quality of life in critically ill patients: A prospective longitudinal 2-year study. Health Qual. Life Outcomes 2021, 19, 72. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Management of Highly Resistant Gram-Negative Infections in the Intensive Care Unit in the Era of Novel Antibiotics. Infect. Dis. Clin. N. Am. 2022, 36, 791–823. [Google Scholar] [CrossRef]
- Makharita, R.R.; El-kholy, I.; Hetta, H.F.; Abdelaziz, M.H.; Hagagy, F.I.; Ahmed, A.A.; Algammal, A.M. Antibiogram and Genetic Characterization of Carbapenem-Resistant Gram-Negative Pathogens Incriminated in Healthcare-Associated Infections. Infect. Drug Resist. 2020, 13, 3991–4002. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Baky, R.M.; Masoud, S.M.; Mohamed, D.S.; Waly, N.G.F.M.; Shafik, E.A.; Mohareb, D.A.; Elkady, A.; Elbadr, M.M.; Hetta, H.F. Prevalence and Some Possible Mechanisms of Colistin Resistance Among Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 323–332. [Google Scholar] [CrossRef]
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Teng, C.B.; Cunningham, S.A.; Ihde, S.M.; Steckelberg, J.M.; Moriarty, J.P.; Shah, N.D.; Mandrekar, J.N.; Patel, R. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction-Based Blood Culture Identification and Susceptibility Testing. Clin. Infect. Dis. 2015, 61, 1071–1080. [Google Scholar] [CrossRef]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef]
- Timsit, J.F.; Bassetti, M.; Cremer, O.; Daikos, G.; de Waele, J.; Kallil, A.; Kipnis, E.; Kollef, M.; Laupland, K.; Paiva, J.A.; et al. Rationalizing antimicrobial therapy in the ICU: A narrative review. Intensive Care Med. 2019, 45, 172–189. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- El-Mokhtar, M.A.; Hetta, H.F. Ambulance vehicles as a source of multidrug-resistant infections: A multicenter study in Assiut City, Egypt. Infect. Drug Resist. 2018, 11, 587–594. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Rashed, Z.I.; Alharbi, A.A.; Alsharef, S.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Battah, B.; Donadu, M.G. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024, 29, 3466. [Google Scholar] [CrossRef]
- Widyasari, K.; Lee, S.; Cho, O.H.; Hong, S.I.; Ryu, B.H.; Kim, S. The Significance of FilmArray Blood Culture Identification Panel (FA-BCID) for Managing Patients with Positive Blood Cultures. Diagnostics 2023, 13, 3335. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Yun, S.G.; Cho, Y.; Lee, C.K.; Nam, M.H. Rapid Direct Identification of Microbial Pathogens and Antimicrobial Resistance Genes in Positive Blood Cultures Using a Fully Automated Multiplex PCR Assay. J. Korean Med. Sci. 2024, 39, e157. [Google Scholar] [CrossRef]
- Calderaro, A.; Chezzi, C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024, 12, 322. [Google Scholar] [CrossRef] [PubMed]
- Czeszewska-Rosiak, G.; Adamczyk, I.; Ludwiczak, A.; Fijałkowski, P.; Fijałkowski, P.; Twarużek, M.; Złoch, M.; Gabryś, D.; Miśta, W.; Tretyn, A.; et al. Analysis of the efficacy of MALDI-TOF MS technology in identifying microorganisms in cancer patients and oncology hospital environment. Heliyon 2025, 11, e42015. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-S.; Jeong, Y.-S.; Choi, S.-K. Current Scenario and Challenges in the Direct Identification of Microorganisms Using MALDI TOF MS. Microorganisms 2021, 9, 1917. [Google Scholar] [CrossRef]
- Haider, A.; Ringer, M.; Kotroczó, Z.; Mohácsi-Farkas, C.; Kocsis, T. The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations. Microbiol. Res. 2023, 14, 80–90. [Google Scholar] [CrossRef]
- Li, D.; Yi, J.; Han, G.; Qiao, L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Meas. Sci. Au 2022, 2, 385–404. [Google Scholar] [CrossRef]
- Bar-Meir, M.; Berliner, E.; Kashat, L.; Zeevi, D.A.; Assous, M.V. The utility of MALDI-TOF MS for outbreak investigation in the neonatal intensive care unit. Eur. J. Pediatr. 2020, 179, 1843–1849. [Google Scholar] [CrossRef]
- Campos, A.F.; Arantes, T.; Cambiais, A.M.V.B.; Cury, A.P.; Tiroli, C.G.; Rossi, F.; Malbouisson, L.M.S.; Costa, S.F.; Guimarães, T. Impact of an Antimicrobial Stewardship Program Intervention Associated with the Rapid Identification of Microorganisms by MALDI-TOF and Detection of Resistance Genes in ICU Patients with Gram-Negative Bacteremia. Antibiotics 2022, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Weng, T.-P.; Lo, C.-L.; Lin, W.-L.; Lee, J.-C.; Li, M.-C.; Ko, W.-C.; Lee, N.-Y. Integration of antimicrobial stewardship intervention with rapid organism identification improve outcomes in adult patients with bloodstream infections. J. Microbiol. Immunol. Infect. 2023, 56, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, A.; Aldubaib, M.; Abalkhail, A.; Marzouk, E.; Albeloushi, A.; Moussa, I.; Ibrahem, M.; Albazie, H.; Alqarni, A.; Anagreyyah, S.; et al. How MALDI-TOF Mass Spectrometry Technology Contributes to Microbial Infection Control in Healthcare Settings. Vaccines 2022, 10, 1881. [Google Scholar] [CrossRef]
- Rychert, J. Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. J. Infect. Epidemiol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Hosoda, T.; Suzuki, M.; Matsuno, T.; Matsui, K.; Ohyama, K.; Doi, Y. Limitations of MALDI-TOF MS in identifying anaerobic bacteremia: Challenges in polymicrobial infections and the role of whole-genome sequencing. Microbiol. Spectr. 2025, 13, e0101425. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Fakhraei, M.; Jahanban-Esfahlan, A.; Hejazi, M.; Oroojalian, F.; Baradaran, B.; Tohidast, M.; Guardia, M.d.l.; Mokhtarzadeh, A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022, 243, 123330. [Google Scholar] [CrossRef]
- Haghayegh, F.; Norouziazad, A.; Haghani, E.; Feygin, A.A.; Rahimi, R.H.; Ghavamabadi, H.A.; Sadighbayan, D.; Madhoun, F.; Papagelis, M.; Felfeli, T.; et al. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. Adv. Sci. 2024, 11, 2400595. [Google Scholar] [CrossRef]
- Han, G.-R.; Goncharov, A.; Eryilmaz, M.; Ye, S.; Palanisamy, B.; Ghosh, R.; Lisi, F.; Rogers, E.; Guzman, D.; Yigci, D.; et al. Machine learning in point-of-care testing: Innovations, challenges, and opportunities. Nat. Commun. 2025, 16, 3165. [Google Scholar] [CrossRef] [PubMed]
- Vealan, K.; Joseph, N.; Alimat, S.; Karumbati, A.S.; Thilakavathy, K. Lateral flow assay: A promising rapid point-of-care testing tool for infections and non-communicable diseases. Asian Biomed. Res. Rev. News 2023, 17, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, S.; Gupta, P.; Singh Yadav, S.P.; Raj, D.; Singh, G.; Chauhan, S.; Mishra, M.K.; Martín-Ortega, E.; Chiussi, S.; Kant, K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater. Today Bio 2024, 28, 101188. [Google Scholar] [CrossRef]
- Wong, A.Y.W.; Johnsson, A.T.A.; Iversen, A.; Athlin, S.; Özenci, V. Evaluation of Four Lateral Flow Assays for the Detection of Legionella Urinary Antigen. Microorganisms 2021, 9, 493. [Google Scholar] [CrossRef]
- Ince, B.; Sezgintürk, M.K. Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. Trends Anal. Chem. 2022, 157, 116725. [Google Scholar] [CrossRef]
- Lakshmanan, K.; Liu, B.M. Impact of Point-of-Care Testing on Diagnosis, Treatment, and Surveillance of Vaccine-Preventable Viral Infections. Diagnostics 2025, 15, 123. [Google Scholar] [CrossRef]
- Lamprou, E.; Kalligosfyri, P.M.; Kalogianni, D.P. Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. Biosensors 2025, 15, 68. [Google Scholar] [CrossRef]
- Mansouri, S. Nanozymes-Mediated Lateral Flow Assays for the Detection of Pathogenic Microorganisms and Toxins: A Review from Synthesis to Application. Crit. Rev. Anal. Chem. 2025, 1–20. [Google Scholar] [CrossRef]
- Siavashy, S.; Soltani, M.; Rahimi, S.; Hosseinali, M.; Guilandokht, Z.; Raahemifar, K. Recent advancements in microfluidic-based biosensors for detection of genes and proteins: Applications and techniques. Biosens. Bioelectron. X 2024, 19, 100489. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef]
- Janik-Karpinska, E.; Ceremuga, M.; Niemcewicz, M.; Podogrocki, M.; Stela, M.; Cichon, N.; Bijak, M. Immunosensors-The Future of Pathogen Real-Time Detection. Sensors 2022, 22, 9757. [Google Scholar] [CrossRef]
- Azimzadeh, M.; Khashayar, P.; Mousazadeh, M.; Daneshpour, M.; Rostami, M.; Goodlett, D.R.; Manji, K.; Fardindoost, S.; Akbari, M.; Hoorfar, M. Volatile organic compounds (VOCs) detection for the identification of bacterial infections in clinical wound samples. Talanta 2025, 292, 127991. [Google Scholar] [CrossRef]
- Żuchowska, K.; Filipiak, W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. J. Pharm. Anal. 2024, 14, 100898. [Google Scholar] [CrossRef] [PubMed]
- Nagata, M.; Wilson, E.D.; Ikebukuro, K.; Sode, K. Challenges in realizing therapeutic antibody biosensing. Trends Biotechnol. 2025, S0167-7799(25)00264-1. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, C.; Wang, Y.; Xiong, Y.; Wei, Z.; Wang, Y.; Xie, Y.; Chen, P. Smartphone and handheld fluorometer enable rapid point of care testing of Escherichia coli in urinary tract infections via specific proteolytic cleavage and cascade amplifications. Sens. Actuators B Chem. 2024, 406, 135414. [Google Scholar] [CrossRef]
- Yin, P.; Wang, J.; Li, T.; Pan, Q.; Zhu, L.; Yu, F.; Zhao, Y.-Z.; Liu, H.-B. A smartphone-based fluorescent sensor for rapid detection of multiple pathogenic bacteria. Biosens. Bioelectron. 2023, 242, 115744. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xue, Y.; Lin, X.; Duan, M.; Hong, W.; Geng, L.; Zhou, J.; Fan, Y. Smartphone-based polydiacetylene colorimetric sensor for point-of-care diagnosis of bacterial infections. Smart Mater. Med. 2024, 5, 140–152. [Google Scholar] [CrossRef]
- Pawar, A.A.; Patwardhan, S.B.; Barage, S.; Raut, R.; Lakkakula, J.; Roy, A.; Sharma, R.; Anand, J. Smartphone-based diagnostics for biosensing infectious human pathogens. Prog. Biophys. Mol. Biol. 2023, 180–181, 120–130. [Google Scholar] [CrossRef]
- University of California San Francisco. Biofire Blood Culture Identification (BCID) Panel—BCH Oakland. Available online: https://idmp.ucsf.edu/content/biofire-blood-culture-identification-bcid-panel-bch-oakland (accessed on 13 April 2025).
- Cai, Z.; Tao, J.; Jia, T.; Fu, H.; Zhang, X.; Zhao, M.; Du, H.; Yu, H.; Shan, B.; Huang, B.; et al. Multicenter Evaluation of the Xpert Carba-R Assay for Detection and Identification of Carbapenemase Genes in Sputum Specimens. J. Clin. Microbiol. 2020, 58, e00644-20. [Google Scholar] [CrossRef]
- Xu, Y.; Song, W.; Huang, P.; Mei, Y.; Zhang, Y.; Xu, T. A Rapid Carbapenemase Genes Detection Method with Xpert Carba-R from Positive Blood Cultures Compared with NG-Test Carba 5 and Sequencing. Infect. Drug Resist. 2022, 15, 7719–7725. [Google Scholar] [CrossRef]
- Reddy, K.; Whitelaw, A. Can the Xpert MRSA/SA BC assay be used as an antimicrobial stewardship tool? A prospective assay validation and descriptive impact assessment study in a South African setting. BMC Infect. Dis. 2021, 21, 177. [Google Scholar] [CrossRef]
- Lewinski, M.A.; Alby, K.; Babady, N.E.; Butler-Wu, S.M.; Bard, J.D.; Greninger, A.L.; Hanson, K.; Naccache, S.N.; Newton, D.; Temple-Smolkin, R.L.; et al. Exploring the Utility of Multiplex Infectious Disease Panel Testing for Diagnosis of Infection in Different Body Sites: A Joint Report of the Association for Molecular Pathology, American Society for Microbiology, Infectious Diseases Society of America, and Pan American Society for Clinical Virology. J. Mol. Diagn. 2023, 25, 857–875. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Z.; Huang, H.; Lou, C.; Sun, Z.; Liu, X.; Pang, J.; Ge, S.; Wang, Z.; Zhou, W.; et al. Biosensor-Based Microfluidic Platforms for Rapid Clinical Detection of Pathogenic Bacteria. Adv. Funct. Mater. 2025, 35, 2411484. [Google Scholar] [CrossRef]
- Hu, S.; Wang, B.; Luo, Q.; Zeng, R.; Zhang, J.; Cheng, J. Advances in Droplet-Based Microfluidic High-Throughput Screening of Engineered Strains and Enzymes Based on Ultraviolet, Visible, and Fluorescent Spectroscopy. Fermentation 2024, 10, 33. [Google Scholar] [CrossRef]
- Song, Y.; Yin, J.; Huang, W.E.; Li, B.; Yin, H. Emerging single-cell microfluidic technology for microbiology. TrAC Trends Anal. Chem. 2024, 170, 117444. [Google Scholar] [CrossRef]
- Ardila, C.M.; Zuluaga-Gómez, M.; Vivares-Builes, A.M. Applications of Lab on a Chip in Antimicrobial Susceptibility of Staphylococcus aureus: A Systematic Review. Medicina 2023, 59, 1719. [Google Scholar] [CrossRef] [PubMed]
- Kozel, T.R.; Burnham-Marusich, A.R. Point-of-Care Testing for Infectious Diseases: Past, Present, and Future. J. Clin. Microbiol. 2017, 55, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab. A Chip 2012, 12, 2118–2134. [Google Scholar] [CrossRef]
- Banerjee, R.; Humphries, R. Rapid Antimicrobial Susceptibility Testing Methods for Blood Cultures and Their Clinical Impact. Front. Med. 2021, 8, 635831. [Google Scholar] [CrossRef]
- MacVane, S.H.; Dwivedi, H.P. Evaluating the impact of rapid antimicrobial susceptibility testing for bloodstream infections: A review of actionability, antibiotic use and patient outcome metrics. J. Antimicrob. Chemother. 2024, 79, i13–i25. [Google Scholar] [CrossRef]
- Anton-Vazquez, V.; Adjepong, S.; Suarez, C.; Planche, T. Evaluation of a new Rapid Antimicrobial Susceptibility system for Gram-negative and Gram-positive bloodstream infections: Speed and accuracy of Alfred 60AST. BMC Microbiol. 2019, 19, 268. [Google Scholar] [CrossRef] [PubMed]
- Silva-Dias, A.; Pérez-Viso, B.; Martins-Oliveira, I.; Gomes, R.; Rodrigues, A.G.; Cantón, R.; Pina-Vaz, C. Evaluation of FASTinov ultrarapid flow cytometry antimicrobial susceptibility testing directly from positive blood cultures. J. Clin. Microbiol. 2021, 59, 10-1128. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Silva-Dias, A.; Martins-Oliveira, I.; Gomes, R.; Perez-Viso, B.; Cruz, S.; Rodrigues, A.; Sarmento, A.; Cantón, R. A multisite validation of a two hours antibiotic susceptibility flow cytometry assay directly from positive blood cultures. BMC Microbiol. 2024, 24, 187. [Google Scholar] [CrossRef]
- Martins-Oliveira, I.; Pérez-Viso, B.; Silva-Dias, A.; Gomes, R.; Peixe, L.; Novais, Â.; Cantón, R.; Pina-Vaz, C. Rapid detection of plasmid AmpC beta-lactamases by a flow cytometry assay. Antibiotics 2022, 11, 1130. [Google Scholar] [CrossRef]
- Snyder, J.W.; Chaudhry, N.; Hoffmann, W. Performance of the LifeScale automated rapid phenotypic antimicrobial susceptibility testing on Gram-negative rods directly from positive blood cultures. J. Clin. Microbiol. 2024, 62, e00922-24. [Google Scholar] [CrossRef]
- Fitzpatrick, K.J.; Rohlf, H.J.; Sutherland, T.D.; Koo, K.M.; Beckett, S.; Okelo, W.O.; Keyburn, A.L.; Morgan, B.S.; Drigo, B.; Trau, M. Progressing antimicrobial resistance sensing technologies across human, animal, and environmental health domains. ACS Sens. 2021, 6, 4283–4296. [Google Scholar] [CrossRef]
- Oudiane, L.; Benyahia, M.; Salipante, F.; Dubois, A.; Muller, L.; Lavigne, J.-P.; Pantel, A.; Roger, C. Clinical impact of the BCID2 and rapid AST VITEK® REVEALTM on antibiotic optimisation in critically ill patients with Gram-negative bloodstream infections: A quasi-experimental pre/post interventional study. J. Antimicrob. Chemother. 2025. [Google Scholar] [CrossRef] [PubMed]
- Menchinelli, G.; Squitieri, D.; Magrì, C.; De Maio, F.; D’Inzeo, T.; Cacaci, M.; De Angelis, G.; Sanguinetti, M.; Posteraro, B. Verification of the Vitek Reveal system for direct antimicrobial susceptibility testing in Gram-negative positive blood cultures. Antibiotics 2024, 13, 1058. [Google Scholar] [CrossRef]
- Esse, J.; Träger, J.; Valenza, G.; Bogdan, C.; Held, J. Rapid phenotypic antimicrobial susceptibility testing of Gram-negative rods directly from positive blood cultures using the novel Q-linea ASTar system. J. Clin. Microbiol. 2023, 61, e00549-23. [Google Scholar] [CrossRef] [PubMed]
- Rosselin, M.; Prod’hom, G.; Greub, G.; Croxatto, A. Performance evaluation of the Quantamatrix QMAC-dRAST system for rapid antibiotic susceptibility testing directly from blood cultures. Microorganisms 2022, 10, 1212. [Google Scholar] [CrossRef]
- Choi, H.; Kim, D.; Kwon, M.; Byun, J.-H.; Jin, B.; Hong, K.-H.; Lee, H.; Yong, D. Clinical usefulness of the QMAC-dRAST system for AmpC β-lactamase-producing Enterobacterales in Korea. Ann. Clin. Microbiol. 2022, 25, 109–118. [Google Scholar] [CrossRef]
- Althubyani, A.; Holger, D. Rapid Diagnostic Testing: Changing the Game for Antimicrobial Stewardship. IDSE Infect. Dis. Spec. Ed. 2023, 2023, 58–71. [Google Scholar]
- Stern, E.; Flentie, K.; Spears, B.; Chen, F.; DaPonte, K.; Baker, K.; Esmurria, A.; Floyd, F.; Liu, J.; Pasangulapati, V. 2159. Accurate Carbapenem Susceptibility Testing Within 5–6 Hours. Open Forum Infect. Dis. 2019, 6, S732–S733. [Google Scholar] [CrossRef]
- Wolfe, K.H.; Pierce, V.M.; Humphries, R.M. How new regulation of laboratory-developed antimicrobial susceptibility tests will affect infectious diseases clinical practice. Clin. Infect. Dis. 2024, 78, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Zhu, Y.; Liu, J.; He, D. Smartphone-based surface plasmon resonance sensing platform for rapid detection of bacteria. RSC Adv. 2022, 12, 13045–13051. [Google Scholar] [CrossRef] [PubMed]
- Mobed, A.; Darvishi, M.; Tahavvori, A.; Alipourfard, I.; Kohansal, F.; Ghazi, F.; Alivirdiloo, V. Nanobiosensors for procalcitonin (PCT) analysis. J. Clin. Lab. Anal. 2024, 38, e25006. [Google Scholar] [CrossRef] [PubMed]
- Akbari Nakhjavani, S.; Mirzajani, H.; Carrara, S.; Onbaşlı, M.C. Advances in biosensor technologies for infectious diseases detection. TrAC Trends Anal. Chem. 2024, 180, 117979. [Google Scholar] [CrossRef]
- De Corte, T.; Van Hoecke, S.; De Waele, J. Artificial Intelligence in Infection Management in the ICU. Crit. Care 2022, 26, 79. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, H.; Qi, S.; Cheng, K. Artificial Intelligence in Intensive Care Medicine: Toward a ChatGPT/GPT-4 Way? Ann. Biomed. Eng. 2023, 51, 1898–1903. [Google Scholar] [CrossRef]
- Yang, J.; Hao, S.; Huang, J.; Chen, T.; Liu, R.; Zhang, P.; Feng, M.; He, Y.; Xiao, W.; Hong, Y.; et al. The application of artificial intelligence in the management of sepsis. Med. Rev. 2023, 3, 369–380. [Google Scholar] [CrossRef]
- Liang, Q.; Ding, S.; Chen, J.; Chen, X.; Xu, Y.; Xu, Z.; Huang, M. Prediction of carbapenem-resistant gram-negative bacterial bloodstream infection in intensive care unit based on machine learning. BMC Med. Inf. Decis. Mak. 2024, 24, 123. [Google Scholar] [CrossRef] [PubMed]
- Mengsiri, P.; Ungcharoen, R.; Gertphol, S. A machine learning and neural network approach for classifying multidrug-resistant bacterial infections. Healthc. Anal. 2025, 7, 100388. [Google Scholar] [CrossRef]
- Ferrari, D.; Arina, P.; Edgeworth, J.; Curcin, V.; Guidetti, V.; Mandreoli, F.; Wang, Y. Using interpretable machine learning to predict bloodstream infection and antimicrobial resistance in patients admitted to ICU: Early alert predictors based on EHR data to guide antimicrobial stewardship. PLOS Digit. Health 2024, 3, e0000641. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Wang, M.; Wang, L.; Wu, Y.; Fang, Y.; Zhao, Y.; Fan, Y.; Liu, X.; Liang, H.; et al. Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data. Antimicrob. Resist. Infect. Control 2024, 13, 74. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, F.; Pinto, A.; Ricciardi, G.E.; Signorelli, C.; Gianfredi, V. Artificial intelligence in antimicrobial stewardship: A systematic review and meta-analysis of predictive performance and diagnostic accuracy. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 463–513. [Google Scholar] [CrossRef]
- Düvel, J.A.; Lampe, D.; Kirchner, M.; Elkenkamp, S.; Cimiano, P.; Düsing, C.; Marchi, H.; Schmiegel, S.; Fuchs, C.; Claßen, S.; et al. An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis. JMIR Hum. Factors 2025, 12, e66699. [Google Scholar] [CrossRef]
- Tokgöz, P.; Krayter, S.; Hafner, J.; Dockweiler, C. Decision support systems for antibiotic prescription in hospitals: A survey with hospital managers on factors for implementation. BMC Med. Inf. Decis. Mak. 2024, 24, 96. [Google Scholar] [CrossRef]
- De la Lastra, J.M.P.; Wardell, S.J.T.; Pal, T.; de la Fuente-Nunez, C.; Pletzer, D. From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance—A Comprehensive Review. J. Med. Syst. 2024, 48, 71. [Google Scholar] [CrossRef]
- Cross, J.L.; Choma, M.A.; Onofrey, J.A. Bias in medical AI: Implications for clinical decision-making. PLOS Digit. Health 2024, 3, e0000651. [Google Scholar] [CrossRef]
- Ueda, D.; Kakinuma, T.; Fujita, S.; Kamagata, K.; Fushimi, Y.; Ito, R.; Matsui, Y.; Nozaki, T.; Nakaura, T.; Fujima, N.; et al. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn. J. Radiol. 2024, 42, 3–15. [Google Scholar] [CrossRef]
- Harishbhai Tilala, M.; Kumar Chenchala, P.; Choppadandi, A.; Kaur, J.; Naguri, S.; Saoji, R.; Devaguptapu, B. Ethical Considerations in the Use of Artificial Intelligence and Machine Learning in Health Care: A Comprehensive Review. Cureus 2024, 16, e62443. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef]
- Mondal, H.; Mondal, S. Chapter Thirteen—Ethical and social issues related to AI in healthcare. In Methods in Microbiology; Srivastava, A., Mishra, V., Eds.; Academic Press: Cambridge, MA, USA, 2024; Volume 55, pp. 247–281. [Google Scholar]
- Vidal, M.-E.; Chudasama, Y.; Huang, H.; Purohit, D.; Torrente, M. Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine. J. Web Semant. 2025, 84, 100856. [Google Scholar] [CrossRef]
- Talukder, M.A.; Talaat, A.S.; Kazi, M. HXAI-ML: A hybrid explainable artificial intelligence based machine learning model for cardiovascular heart disease detection. Results Eng. 2025, 25, 104370. [Google Scholar] [CrossRef]
- Ali, T.; Ahmed, S.; Aslam, M. Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics 2023, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Zakhour, J.; Haddad, S.F.; Kerbage, A.; Wertheim, H.; Tattevin, P.; Voss, A.; Ünal, S.; Ouedraogo, A.S.; Kanj, S.S. Diagnostic stewardship in infectious diseases: A continuum of antimicrobial stewardship in the fight against antimicrobial resistance. Int. J. Antimicrob. Agents 2023, 62, 106816. [Google Scholar] [CrossRef] [PubMed]
- Donà, D.; Barbieri, E.; Brigadoi, G.; Liberati, C.; Bosis, S.; Castagnola, E.; Colomba, C.; Galli, L.; Lancella, L.; Lo Vecchio, A.; et al. State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting. Antibiotics 2025, 14, 132. [Google Scholar] [CrossRef]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef]
- Perez, K.K.; Olsen, R.J.; Musick, W.L.; Cernoch, P.L.; Davis, J.R.; Land, G.A.; Peterson, L.E.; Musser, J.M. Integrating Rapid Pathogen Identification and Antimicrobial Stewardship Significantly Decreases Hospital Costs. Arch. Pathol. Lab. Med. 2012, 137, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Schram, L.; Novak-Weekley, S.; Chen, Q.; Han, P. Impact of a Rapid Respiratory Pathogen Panel on Antibiotic and Chest Radiography Usage and Hospital Length of Stay in the Pediatric Inpatient Setting. Perm. J. 2022, 26, 83–89. [Google Scholar] [CrossRef]
- Messacar, K.; Palmer, C.; Gregoire, L.; Elliott, A.; Ackley, E.; Perraillon, M.C.; Tyler, K.L.; Dominguez, S.R. Clinical and Financial Impact of a Diagnostic Stewardship Program for Children with Suspected Central Nervous System Infection. J. Pediatr. 2022, 244, 161–168. [Google Scholar] [CrossRef]
- Abd El-Baky, R.M.; Farhan, S.M.; Ibrahim, R.A.; Mahran, K.M.; Hetta, H.F. Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt. Alex. J. Med. 2020, 56, 4–13. [Google Scholar] [CrossRef]
- Bay, P.; Fihman, V.; Woerther, P.-L.; Peiffer, B.; Gendreau, S.; Arrestier, R.; Labedade, P.; Moncomble, E.; Gaillet, A.; Carteaux, G.; et al. Performance and impact of rapid multiplex PCR on diagnosis and treatment of ventilated hospital-acquired pneumonia in patients with extended-spectrum β-lactamase-producing Enterobacterales rectal carriage. Ann. Intensive Care 2024, 14, 118. [Google Scholar] [CrossRef]
- CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Available online: https://www.cdc.gov/antibiotic-use/hcp/core-elements/hospital.html (accessed on 16 April 2025).
- Peiffer-Smadja, N.; Bouadma, L.; Mathy, V.; Allouche, K.; Patrier, J.; Reboul, M.; Montravers, P.; Timsit, J.F.; Armand-Lefevre, L. Performance and impact of a multiplex PCR in ICU patients with ventilator-associated pneumonia or ventilated hospital-acquired pneumonia. Crit. Care 2020, 24, 366. [Google Scholar] [CrossRef]
- Darie, A.M.; Khanna, N.; Jahn, K.; Osthoff, M.; Bassetti, S.; Osthoff, M.; Schumann, D.M.; Albrich, W.C.; Hirsch, H.; Brutsche, M.; et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): A multicentre, randomised controlled trial. Lancet Respir. Med. 2022, 10, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Dudoignon, E.; Coutrot, M.; Camelena, F.; Leone, M.; Dépret, F. Multiplex bacterial PCR for antibiotic stewardship in pneumonia. Lancet Respir. Med. 2022, 10, e78. [Google Scholar] [CrossRef]
- Rodriguez-Manzano, J.; Subramaniam, S.; Uchea, C.; Szostak-Lipowicz, K.M.; Freeman, J.; Rauch, M.; Tinto, H.; Zar, H.J.; D’Alessandro, U.; Holmes, A.H.; et al. Innovative diagnostic technologies: Navigating regulatory frameworks through advances, challenges, and future prospects. Lancet Digit. Health 2024, 6, e934–e943. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, H.; Riaz, M.H.; Wajid, H.; Saqib, M.; Zeeshan, M.H.; Khan, S.E.; Chauhan, Y.R.; Sohail, H.; Vohra, L.I. Current challenges and potential solutions to the use of digital health technologies in evidence generation: A narrative review. Front. Digit. Health 2023, 5, 1203945. [Google Scholar] [CrossRef] [PubMed]
- Pickens, C.I.; Wunderink, R.G. Novel and Rapid Diagnostics for Common Infections in the Critically Ill Patient. Infect. Dis. Clin. N. Am. 2024, 38, 51–63. [Google Scholar] [CrossRef]
- Berner, E.S.; Graber, M.L. Overconfidence as a Cause of Diagnostic Error in Medicine. Am. J. Med. 2008, 121, S2–S23. [Google Scholar] [CrossRef]
- Jensen-Doss, A.; Hawley, K. Understanding Clinicians’ Diagnostic Practices: Attitudes Toward the Utility of Diagnosis and Standardized Diagnostic Tools. Adm. Policy Ment. Health 2011, 38, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Hueth, K.D.; Prinzi, A.M.; Timbrook, T.T. Diagnostic Stewardship as a Team Sport: Interdisciplinary Perspectives on Improved Implementation of Interventions and Effect Measurement. Antibiotics 2022, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Sick-Samuels, A.C.; Woods-Hill, C. Diagnostic Stewardship in the Pediatric Intensive Care Unit. Infect. Dis. Clin. N. Am. 2022, 36, 203–218. [Google Scholar] [CrossRef]
Technology | Primary Function | Readiness Level | Notes on Adoption/Limitations |
---|---|---|---|
BioFire® BCID panel | Pathogen + resistance gene detection | Established | Widely implemented in ICUs; rapid bloodstream infection diagnosis; higher cost offset by improved outcomes |
Cepheid GeneXpert® | Pathogen + resistance gene detection | Established | Routine ICU screening for MRSA, carbapenemase producers; rapid turnaround |
Lateral flow assays (LFAs) | Pathogen detection | Established | Common for C. difficile, Legionella, S. pneumoniae, influenza, SARS-CoV-2; lower sensitivity than molecular tests |
Multiplex LFAs with digital readers | Pathogen detection | Emerging | Undergoing multi-center trials; not yet standard ICU tools |
Biosensors for pathogen ID | Pathogen detection | Experimental | Prototype stage; limited clinical validation |
LOC platforms for AST | Resistance detection | Emerging | Early pilots; potential for rapid susceptibility testing |
Phenotypic biosensors for resistance | Resistance detection | Emerging | Limited ICU adoption; promising in validation studies |
Nucleic acid-based biosensors | Resistance detection | Experimental | Early-stage testing; limited integration |
AI-powered AMR predictive tools | Resistance prediction and surveillance | Experimental | Research and pilot settings; not standardized |
Smartphone-integrated diagnostics | Pathogen/resistance detection | Experimental | Mostly in research or limited pilot deployment |
Procalcitonin (PCT), CRP assays | Host biomarker detection | Established | Widely used for guiding antibiotic therapy duration |
Biosensor-based host biomarker platforms | Host biomarker detection | Emerging | Undergoing validation for ICU point-of-care use |
Technology | Primary Function | Typical Turnaround Time | Accuracy/Sensitivity | Cost Category * | Readiness Level | Potential Clinical Impact |
---|---|---|---|---|---|---|
Lateral flow assays (LFAs) | Rapid pathogen detection (antigens/toxins) | 10–30 min | Moderate (60–85%) | Low | Established | Enables early targeted therapy; reduces unnecessary antibiotics in high-prevalence settings |
Multiplex LFAs (enhanced sensitivity) | Simultaneous detection of multiple pathogens | 20–45 min | Moderate–High (75–95%) | Moderate | Emerging | Improves diagnostic yield for complex infections; still in validation |
Biosensors for pathogen ID | Direct detection of microbial antigens, VOCs, or nucleic acids | 15–60 min | High (>90%) in controlled settings | Moderate–High | Experimental | Potential for bedside, real-time diagnosis without lab infrastructure |
Lab-on-a-chip (LOC) for AST | Rapid phenotypic antimicrobial susceptibility testing | 1–4 h | High (>90%) | High | Emerging | Reduces time to targeted therapy; may improve sepsis outcomes |
Molecular panels (BioFire®, GeneXpert®) | Syndromic pathogen + resistance gene detection | ~1 h | Very high (>95%) | High | Established | Speeds targeted therapy; shortens ICU stays; supports infection control |
Phenotypic biosensors for resistance | Detects enzymatic resistance (e.g., carbapenemase activity) | <1 h | High (>90%) | Moderate | Emerging | Facilitates rapid stewardship decisions for MDR infections |
Nucleic acid-based biosensors | Detects genetic resistance markers | 30–90 min | High (>90%) | Moderate–High | Experimental | Enables point-of-care genotypic resistance detection |
Smartphone-based diagnostics | Portable detection + digital integration | 15–60 min | Moderate–High | Low–Moderate | Experimental | Promising for remote/low-resource ICUs; enables real-time data sharing |
Procalcitonin (PCT), CRP assays | Host biomarker detection for infection severity | <1 h | High (>90%) | Moderate | Established | Guides antibiotic initiation/de-escalation; reduces overuse |
Biosensor-based host biomarker platforms | Rapid bedside biomarker detection | 15–45 min | High (>90%) | Moderate–High | Emerging | Potential for real-time severity monitoring in ICU |
AI-powered predictive tools | AMR risk prediction and therapy optimization | Instant–few min (data-dependent) | Variable (depends on model) | Moderate | Experimental | Supports precision prescribing; enhances stewardship surveillance |
Study | Setting | Diagnostic Tool | Key Outcomes |
---|---|---|---|
Timbrook et al. [121] | ICU | Rapid molecular diagnostics + AMS | ↓ Time to therapy, ↑ antibiotic de-escalation |
Perez et al. [122] | General hospital | MALDI-TOF + real-time AMS | ↓ Time to optimal therapy, ↓ hospital length of stay (LOS), ↓ resource use |
Banerjee et al. [31] | Bloodstream infections | Rapid blood culture ID + AMS | ↓ Time to effective therapy (by 20 h), ↓ mortality |
Schram et al. [123] | Pediatric inpatient | Rapid respiratory panel | ↓ Unnecessary antibiotics, ↓ imaging, ↓ LOS |
Messacar et al. [124] | Pediatric CNS infection | Diagnostic AMS program | ↓ CSF testing, ↓ antibiotic exposure, ↓ hospital costs |
Bay et al. [125] | ICU, ventilator-associated pneumonia | Rapid multiplex PCR (ESBL carriers) | ↑ Timely therapy, ↓ empiric broad-spectrum antibiotic use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatawi, A.D.; Hetta, H.F.; Ali, M.A.S.; Ramadan, Y.N.; Alaqyli, A.B.; Alansari, W.K.; Aldhaheri, N.H.; Bin Selim, T.A.; Merdad, S.A.; Alharbi, M.O.; et al. Diagnostic Innovations to Combat Antibiotic Resistance in Critical Care: Tools for Targeted Therapy and Stewardship. Diagnostics 2025, 15, 2244. https://doi.org/10.3390/diagnostics15172244
Alatawi AD, Hetta HF, Ali MAS, Ramadan YN, Alaqyli AB, Alansari WK, Aldhaheri NH, Bin Selim TA, Merdad SA, Alharbi MO, et al. Diagnostic Innovations to Combat Antibiotic Resistance in Critical Care: Tools for Targeted Therapy and Stewardship. Diagnostics. 2025; 15(17):2244. https://doi.org/10.3390/diagnostics15172244
Chicago/Turabian StyleAlatawi, Ahmed D., Helal F. Hetta, Mostafa A. Sayed Ali, Yasmin N. Ramadan, Amirah B. Alaqyli, Wareef K. Alansari, Nada H. Aldhaheri, Talidah A. Bin Selim, Shahad A. Merdad, Maram O. Alharbi, and et al. 2025. "Diagnostic Innovations to Combat Antibiotic Resistance in Critical Care: Tools for Targeted Therapy and Stewardship" Diagnostics 15, no. 17: 2244. https://doi.org/10.3390/diagnostics15172244
APA StyleAlatawi, A. D., Hetta, H. F., Ali, M. A. S., Ramadan, Y. N., Alaqyli, A. B., Alansari, W. K., Aldhaheri, N. H., Bin Selim, T. A., Merdad, S. A., Alharbi, M. O., Alatawi, W. A. H., & Algammal, A. M. (2025). Diagnostic Innovations to Combat Antibiotic Resistance in Critical Care: Tools for Targeted Therapy and Stewardship. Diagnostics, 15(17), 2244. https://doi.org/10.3390/diagnostics15172244