New Insights in Assessing AKI 3 Risk Factors and Predictors Associated with On-Pump Surgical Aortic Valve Replacement
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Data Presentation
3.2. The Binary Logistic Regression Analysis
3.3. ROC Analysis (AKI 3 Endpoint)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scurt, F.G.; Bose, K.; Mertens, P.R.; Chatzikyrkou, C.; Herzog, C. Cardiac Surgery-Associated Acute Kidney Injury. Kidney360 2024, 5, 909–926. [Google Scholar] [CrossRef]
- Yu, Y.; Li, C.; Zhu, S.; Jin, L.; Hu, Y.; Ling, X.; Miao, C.; Guo, K. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: A narrative review. Eur. J. Med. Res. 2023, 28, 45. [Google Scholar] [CrossRef] [PubMed]
- Drăgan, A.; Drăgan, A.Ş. The Preventive Role of Glutamine Supplementation in Cardiac Surgery-Associated Kidney Injury from Experimental Research to Clinical Practice: A Narrative Review. Medicina 2024, 60, 761. [Google Scholar] [CrossRef] [PubMed]
- Grayson, A.D.; Khater, M.; Jackson, M.; Fox, M.A. Valvular heart operation is an independent risk factor for acute renal failure. Ann. Thorac. Surg. 2003, 75, 1829–1835. [Google Scholar] [CrossRef]
- Hu, J.; Chen, R.; Liu, S.; Yu, X.; Zou, J.; Ding, X. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: A systematic review and meta-analysis. J. Cardiothorac. Vasc. Anesth. 2016, 30, 82–89. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.K.; Kim, S.O.; Han, Y.; Kang, P.; Kim, J.B. Acute kidney injury after heart valve surgery: Incidence and impact on mortality based on serum creatinine and urine output criteria. JTCVS Open 2025, 25, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wen, Z.; Wang, J.; Zhang, P.; Gong, Q.; Ge, S.; Duan, J. Prediction of Short-Term Mortality With Renal Replacement Therapy in Patients With Cardiac Surgery-Associated Acute Kidney Injury. Front. Cardiovasc. Med. 2021, 8, 738947. [Google Scholar] [CrossRef] [PubMed]
- Skarupskienė, I.; Adukauskienė, D.; Kuzminskienė, J.; Rimkutė, L.; Balčiuvienė, V.; Žiginskienė, E.; Kuzminskis, V.; Adukauskaitė, A.; Pentiokinienė, D.; Bumblytė, I.A. Mortality prediction in patients with acute kidney injury requiring renal replacement therapy after cardiac surgery. Medicina 2017, 53, 217–223. [Google Scholar] [CrossRef]
- Najjar, M.; Yerebakan, H.; Sorabella, R.A.; Donovan, D.J.; Kossar, A.P.; Sreekanth, S.; Kurlansky, P.; Borger, M.A.; Argenziano, M.; Smith, C.R.; et al. Acute kidney injury following surgical aortic valve replacement. J. Card. Surg. 2015, 30, 631–639. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Chu, R.; Li, C.; Wang, S.; Zou, W.; Liu, G.; Yang, L. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin. J. Am. Soc. Nephrol. 2014, 9, 1175–1182. [Google Scholar] [CrossRef]
- Lu, R.; Dismorr, M.; Hertzberg, D.; Glaser, N.; Sartipy, U. Early Creatinine Changes After Aortic Valve Replacement and Late Survival, Heart Failure, and Chronic Kidney Disease in a National Registry. Ann. Thorac. Surg. 2025, 119, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.; Cass, A.; Bellomo, R.; Finfer, S.; Gattas, D.; Lee, J.; Lo, S.; McGuinness, S.; Myburgh, J.; Parke, R.; et al. Long-term survival and dialysis dependency following acute kidney injury in intensive care: Extended follow-up of a randomized controlled trial. PLoS Med. 2014, 11, e1001601. [Google Scholar] [CrossRef]
- Kamla, C.E.; Meersch-Dini, M.; Palma, L.M.P. Kidney Injury Following Cardiac Surgery: A Review of Our Current Understanding. Am. J. Cardiovasc. Drugs 2025, 25, 337–348. [Google Scholar] [CrossRef]
- Soranno, D.E.; Awdishu, L.; Bagshaw, S.M.; Basile, D.; Bell, S.; Bihorac, A.; Bonventre, J.; Brendolan, A.; Claure-Del Granado, R.; Collister, D.; et al. The role of sex and gender in acute kidney injury-consensus statements from the 33rd Acute Disease Quality Initiative. Kidney Int. 2025, 107, 606–616. [Google Scholar] [CrossRef]
- Thakar, C.V.; Arrigain, S.; Worley, S.; Yared, J.P.; Paganini, E.P. A clinical score to predict acute renal failure after cardiac surgery. J. Am. Soc. Nephrol. 2005, 16, 162–168. [Google Scholar] [CrossRef]
- Zarbock, A.; Weiss, R.; Albert, F.; Rutledge, K.; Kellum, J.A.; Bellomo, R.; Grigoryev, E.; Candela-Toha, A.M.; Demir, Z.A.; Legros, V.; et al. Epidemiology of surgery associated acute kidney injury (EPIS-AKI): A prospective international observational multi-center clinical study. Intensive Care Med. 2023, 49, 1441–1455. [Google Scholar] [CrossRef]
- Pölkki, A.; Pekkarinen, P.T.; Lahtinen, P.; Koponen, T.; Reinikainen, M. Vasoactive Inotropic Score compared to the sequential organ failure assessment cardiovascular score in intensive care. Acta Anaesthesiol. Scand. 2023, 67, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Chen, Q.; Zhu, X.; Shen, X.; Zou, L.; Mu, X.; Sun, X. Correlation Between Vasoactive-Inotropic Score and Postoperative Acute Kidney Injury after Cardiovascular Surgery. Heart Surg. Forum 2021, 24, E282–E292. [Google Scholar] [CrossRef]
- Sun, Y.T.; Wu, W.; Yao, Y.T. The association of vasoactive-inotropic score and surgical patients’ outcomes: A systematic review and meta-analysis. Syst. Rev. 2024, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Wahba, A.; Kunst, G.; De Somer, F.; Agerup Kildahl, H.; Milne, B.; Kjellberg, G.; Bauer, A.; Beyersdorf, F.; Berg Ravn, H.; Debeuckelaere, G.; et al. 2024 EACTS/EACTAIC/EBCP Guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur. J. Cardio-Thorac. Surg. 2025, 67, ezae354. [Google Scholar] [CrossRef]
- Oddi, F.M.; Orellana, B.; Fresilli, M.; Morosetti, D.; Ippoliti, A. Recovery of baseline renal function after treatment for prolonged in-stent artery thrombosis, in a COVID-19 positive patient: A case report. Heart Vessels Transplant. 2023, 7. [Google Scholar] [CrossRef]
- de la Hoz, M.A.; Rangasamy, V.; Bastos, A.B.; Xu, X.; Novack, V.; Saugel, B.; Subramaniam, B. Intraoperative Hypotension and Acute Kidney Injury, Stroke, and Mortality during and outside Cardiopulmonary Bypass: A Retrospective Observational Cohort Study. Anesthesiology 2022, 136, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Drăgan, A.; Sinescu, I. AKI3-Risk Predictors and Scores in Radical Nephrectomy with High Thrombectomy under Extracorporeal Circulation for Renal Cell Carcinoma with Supradiaphragmatic Inferior Vena Cava/Right Atrial Thrombus: A Single-Centre Retrospective Study. Medicina 2023, 59, 386. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Cotza, M.; Di Dedda, U. The Conundrum of Systemic Arterial Pressure Management on Cardiopulmonary Bypass. J. Clin. Med. 2023, 12, 806. [Google Scholar] [CrossRef]
- Smith, A.; Turoczi, Z.; Al-Subaie, N.; Zilahi, G. Postoperative Hypotension After Cardiac Surgery Is Associated With Acute Kidney Injury. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1683–1688. [Google Scholar] [CrossRef]
- He, L.; Liang, S.; Liang, Y.; Fang, M.; Li, J.; Deng, J.; Fang, H.; Li, Y.; Jiang, X.; Chen, C. Defining a postoperative mean arterial pressure threshold in association with acute kidney injury after cardiac surgery: A prospective observational study. Intern. Emerg. Med. 2023, 18, 439–448. [Google Scholar] [CrossRef]
- Ruel, M.; Chan, V.; Boodhwani, M.; McDonald, B.; Ni, X.; Gill, G.; Lam, K.; Hendry, P.; Masters, R.; Mesana, T. How detrimental is reexploration for bleeding after cardiac surgery? J. Thorac. Cardiovasc. Surg. 2017, 154, 927–935. [Google Scholar] [CrossRef]
- Vlasov, H.E.; Petäjä, L.M.; Wilkman, E.M.; Talvasto, A.T.; Ilmakunnas, M.K.; Raivio, P.M.; Hiippala, S.T.; Suojaranta, R.T.; Juvonen, T.S.; Pesonen, E.J. Perioperative Bleeding Is Not an Independent Risk Factor for Acute Kidney Injury in On-pump Cardiac Surgery-A Post-hoc Analysis of a Randomized Clinical Trial. J. Cardiothorac. Vasc. Anesth. 2025, 39, 1696–1705. [Google Scholar] [CrossRef]
- Salenger, R.; Arora, R.C.; Bracey, A.; D’Oria, M.; Engelman, D.T.; Evans, C.; Grant, M.C.; Gunaydin, S.; Morton, V.; Ozawa, S.; et al. Cardiac Surgical Bleeding, Transfusion, and Quality Metrics: Joint Consensus Statement by the Enhanced Recovery After Surgery Cardiac Society and Society for the Advancement of Patient Blood Management. Ann. Thorac. Surg. 2025, 119, 280–295. [Google Scholar] [CrossRef]
- Shi, S.S.; Shi, C.C.; Zhao, Z.Y.; Shen, H.Q.; Fang, X.M.; Tan, L.H.; Zhang, X.H.; Shi, Z.; Lin, R.; Shu, Q. Effect of Open Heart Surgery with Cardiopulmonary Bypass on Peripheral Blood Lymphocyte Apoptosis in Children. Pediatr. Cardiol. 2009, 30, 153–159. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, R.; Sánchez-Zauco, N.; Tiburcio-Felix, R.; López, J.Z.; Solano-Gutiérrez, A.; Riera, C.; Reyes-Maldonado, E.; Maldonado-Bernal, C. Effects of cardiopulmonary bypass on the development of lymphopenia and sepsis after cardiac surgery in children with congenital cardiopathy. Exp. Ther. Med. 2020, 19, 435–442. [Google Scholar]
- Xia, Y.; Xia, C.; Wu, L.; Li, Z.; Li, H.; Zhang, J. Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. J. Clin. Med. 2023, 12, 1128. [Google Scholar] [CrossRef]
- Li, W.J.; Peng, Y.X.; Zhao, L.Q.; Wang, H.Y.; Liu, W.; Bai, K.; Chen, S.; Lu, Y.N.; Huang, J.H. T-cell lymphopenia is associated with an increased infecting risk in children after cardiopulmonary bypass. Pediatr. Res. 2024, 95, 227–232. [Google Scholar] [CrossRef]
- Guo, X.L.; Lu, C.X.; Luo, Y.; Wang, P.P.; Su, W.S.; Yang, S.J.; Zhan, L.H. Circulating T-lymphocyte subsets as promising biomarkers for the identification of sepsis-induced acute kidney injury. J. Chin. Med. Assoc. 2024, 87, 1068–1077. [Google Scholar] [CrossRef]
- Cao, C.; Yao, Y.; Zeng, R. Lymphocytes: Versatile Participants in Acute Kidney Injury and Progression to Chronic Kidney Disease. Front. Physiol. 2021, 12, 729084. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, J.; Liu, Z.; Loth, J.; Plummer, M.P.; Penny-Dimri, J.C.; Segal, R.; Smith, J.; Perry, L.A. The prognostic value of elevated neutrophil-lymphocyte ratio for cardiac surgery-associated acute kidney injury: A systematic review and meta-analysis. Acta Anaesthesiol. Scand. 2023, 67, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Guangqing, Z.; Liwei, C.; Fei, L.; Jianshe, Z.; Guang, Z.; Yan, Z.; Jianjun, C.; Ming, T.; Hao, C.; Wei, L. Predictive value of neutrophil to lymphocyte ratio on acute kidney injury after on-pump coronary artery bypass: A retrospective, single-center study. Gen. Thorac. Cardiovasc. Surg. 2022, 70, 624–633. [Google Scholar] [CrossRef]
- Parlar, H.; Arıkan, A.A.; Önmez, A. Dynamic Changes in Perioperative Cellular Inflammation and Acute Kidney Injury after Coronary Artery Bypass Grafting. Braz. J. Cardiovasc. Surg. 2021, 36, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Griffin, B.R.; Bronsert, M.; Reece, T.B.; Pal, J.D.; Cleveland, J.C.; Fullerton, D.A.; Gist, K.M.; Jovanovich, A.; Jalal, D.; Faubel, S.; et al. Thrombocytopenia After Cardiopulmonary Bypass Is Associated With Increased Morbidity and Mortality. Ann. Thorac. Surg. 2020, 110, 50–57. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Zhou, H. Elevated postoperative systemic immune-inflammation index associates with acute kidney injury after cardiac surgery: A large-scale cohort study. Front. Cardiovasc. Med. 2024, 11, 1430776. [Google Scholar] [CrossRef]
- Jia, L.; Li, C.; Bi, X.; Wei, F.; Meng, J.; Sun, G.; Yu, H.; Dong, H.; Li, B.; Cao, Y.; et al. Prognostic Value of Systemic Immune-Inflammation Index among Critically Ill Patients with Acute Kidney Injury: A Retrospective Cohort Study. J. Clin. Med. 2022, 11, 3978. [Google Scholar] [CrossRef]
- Aykut, A.; Zengin, E.N.; Akkaya, B.B.; Salman, N. Systemic Immune-inflammation Index Predicts Acute Kidney Injury after Cardiac Surgery: A Retrospective Observational Study. Göğüs-Kalp-Damar Anestezi ve Yoğun Bakım Derneği Dergisi 2023, 29, 7–14. [Google Scholar]
- Duthie, F.A.; McGeehan, P.; Hill, S.; Phelps, R.; Kluth, D.C.; Zamvar, V.; Hughes, J.; Ferenbach, D.A. The Utility of the Additive EuroSCORE, RIFLE and AKIN Staging Scores in the Prediction and Diagnosis of Acute Kidney Injury after Cardiac Surgery. Nephron Clin. Pract. 2014, 128, 29–38. [Google Scholar] [CrossRef]
- Toumpoulis, I.K.; Anagnostopoulos, C.E.; Swistel, D.G.; DeRose, J.J. Does EuroSCORE predict length of stay and specific postoperative complications after cardiac surgery? Eur. J. Cardio-Thorac. Surg. 2005, 27, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; McIlroy, D.R.; Bollen, B.A.; Billings, F.T.; Zarbock, A.; Popescu, W.M.; Fox, A.A.; Shore-Lesserson, L.; Zhou, S.; Geube, M.A.; et al. Society of Cardiovascular Anesthesiologists Clinical Practice Update for Management of Acute Kidney Injury Associated with Cardiac Surgery. Anesth. Analg. 2022, 135, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Shvartz, V.; Sokolskaya, M.; Ispiryan, A.; Basieva, M.; Kazanova, P.; Shvartz, E.; Talibova, S.; Petrosyan, A.; Kanametov, T.; Donakanyan, S.; et al. The Role of «Novel» Biomarkers of Systemic Inflammation in the Development of Early Hospital Events after Aortic Valve Replacement in Patients with Aortic Stenosis. Life 2023, 13, 1395. [Google Scholar] [CrossRef] [PubMed]
- Squiccimarro, E.; Lorusso, R.; Margari, V.; Labriola, C.; Whitlock, R.; Paparella, D. Sex-related differences in systemic inflammatory response and outcomes after cardiac surgery and cardiopulmonary bypass. Interdiscip. Cardiovasc. Thorac. Surg. 2025, 40, ivaf066. [Google Scholar] [CrossRef]
- Mahmood, E.; Robitaille, M.; Bu, Y.; Khan, A.; Poulin, M.F.; Mahmood, F.; Bose, R.; Khabbaz, K.R.; Robson, S.C.; Matyal, R. Targeting the CD39/CD73 pathway: New insights into cardiac fibrosis and inflammation in female cardiac surgery patients. J. Mol. Cell. Cardiol. Plus 2025, 12, 100294. [Google Scholar] [CrossRef]
Variable | AKI 3_Absent (n = 395) | AKI 3_Present (n = 27) | p 1 |
---|---|---|---|
Age (years) 2 | 66 [58–70] | 64 [57–69] | 0.904 |
Male sex 3 | 247 (62.53%) | 16 (59.25%) | 0.838 |
Severe aortic stenosis 3 | 331 (83.79%) | 21 (84%) | 0.423 |
Preop AF 3 | 37 (9.36%) | 4 (14.81%) | 0.318 |
Hemostasis reintervention 3 | 30 (7.59%) | 13 (48.14%) | 0.001 |
Bicuspid aortic valve 3 | 118 (29.87%) | 8 (29.62%) | 1 |
Complex surgery 3 | 188 (47.59%) | 20 (74.07%) | 0.009 |
Bioprosthetic valve 3 | 264 (66.83%) | 18 (66.67%) | 1 |
CBP_time (min) 2 | 95 [80–118] | 162 [99–181] | 0.001 |
ACC_time (min) 2 | 72 [60–90] | 120 [74–132] | 0.001 |
Clear_preop_creat (mL/min) 2 | 87 [69–112.08] | 79.33 [52.94–98] | 0.007 |
BMI (kg/m2) 2 | 28 [24.34–32.11] | 29.5 [22.3–33.1] | 0.462 |
VIS 2 | 4 [0–8.4] | 22 [9.5–30] | 0.001 |
EuroSCORE 3 | 6 [4–7] | 7 [5–9] | 0.008 |
EuroSCORE II 3 | 1.5 [1.07–2.42] | 3.13 [2.2–4.15] | 0.001 |
Hb_preop (g/dL) 2 | 13.5 [12.4–14.6] | 13.2 [11.3–14.2] | 0.153 |
Thakar score 3 | 2 [2–3] | 3 [2–4] | 0.001 |
RDW-SD_Preop (fL) 2 | 42.7 [40.5–45.10] | 43.4 [41.60–45.80] | 0.220 |
PDW_Preop (fL) 2 | 12.90 [11.70–14.40] | 13.3 [12.10–14.40] | 0.556 |
MPV_Preop (fL) 2 | 10.8 [10.2–11.5] | 10.9 [10.3–11.60] | 0.466 |
L_Preop (*103/μL) 2 | 7.40 [6.31–8.82] | 8.84 [6.91–9.87] | 0.013 |
N_Preop (*103/μL) 2 | 4.59 [3.72–5.77] | 5.78 [4.45–6.53] | 0.005 |
M_Preop (*103/μL) 2 | 0.58 [0.47–0.73] | 0.61 [0.47–0.83] | 0.311 |
P_Preop (*103/μL) 2 | 226 [193–271] | 234 [195–291] | 0.659 |
Lf_Preop (*103/μL) 2 | 1.92 [1.48–2.39] | 1.99 [1.45–2.59] | 0.718 |
RDW-SD_0 (fL) 2 | 42.3 [39.8–44.6] | 44.4 [41.9–46.8] | 0.002 |
PDW_0 (fL) 2 | 12.5 [11.2–14.10] | 12.80 [11.5–13.9] | 0.539 |
MPV_0 (fL) 2 | 10.9 [10.2–11.5] | 10.9 [10.3–11.7] | 0.606 |
L_0 (*103/μL) 2 | 12.62 [9.71–15.84] | 15.90 [11.72–22.04] | 0.006 |
N_0 (*103/μL) 2 | 10.62 [7.81–13.53] | 12.92 [9.7–18.05] | 0.014 |
M_0 (*103/μL) 2 | 0.77 [0.51–1.05] | 0.89 [0.51–1.16] | 0.540 |
P_0 (*103/μL) 2 | 138 [112–172] | 124 [99–135] | 0.040 |
Lf_0 (*103/μL) 2 | 1.13 [0.83–1.58] | 1.68 [1.02–2.55] | 0.004 |
SIRI_Preop 2 | 1.37 [0.92–1.95] | 1.61 [1.17–2.79] | 0.048 |
AISI_Preop 2 | 301.04 [207.72–473.30] | 435.70 [272.43–545.30] | 0.042 |
SII_Preop 2 | 568.08 [383.33–775.84] | 761.38 [427.54–992.79] | 0.092 |
NLR_Preop 2 | 2.32 [1.75–3.37] | 3.10 [2.18–3.95] | 0.073 |
MLR_Preop 2 | 0.29 [0.23–0.36] | 0.31 [0.21–0.48 | 0.461 |
PLR_Preop 2 | 120.65 [93.71–156.48] | 120.27 [87.22–159.89] | 0.964 |
SIRI_0 2 | 7.10 [3.72–11.22] | 6.57 [4.42–13.63] | 0.972 |
AISI_0 2 | 989.26 [518.90–1613.20] | 768.77 [399.36–1608.91] | 0.599 |
SII_0 2 | 1266.23 [875.86–1853.29] | 1016.67 [736.72–1572] | 0.080 |
NLR_0 2 | 9.07 [6.72–12.81] | 8.54 [6–10.05] | 0.328 |
MLR_0 2 | 0.65 [0.42–0.97] | 0.50 [0.31–0.87] | 0.212 |
PLR_0 2 | 122.98 [86.67–166.37] | 72.67 [57.44–128.43] | 0.001 |
SIRI_ Preop-SIRI_0 2 | 8.62 [5.04–13.08] | 8.67 [5.92–15.47] | 0.756 |
AISI _0-AISI_Preop 2 | 524.61 [38.93–1297] | 655.92 [−130.71–1740.53] | 0.516 |
SII_ Preop -SII_0 2 | 525.95 [339.93–726.37] | 715.38 [380.74–942.39] | 0.096 |
NLR_0-NLR_Preop 2 | 6.72 [4.25–10.15] | 5.20 [3.72–7.36] | 0.099 |
PLR_0-PLR_Preop 2 | 3.49 [−30.06–36.93] | −28.72 [−63.71–11.05] | 0.003 |
MLR_0-MLR_Preop 2 | 0.33 [0.11–0.65] | 0.12 [−0.04–0.60] | 0.112 |
Intraop_time (hours) 2 | 5 [4–5] | 6 [5–7] | 0.001 |
Death 3 | 0 (0%) | 17 (62.96%) | 0.001 |
Variable | AKI 3_Absent (p) 1 | AKI 3_Present (p) 1 |
---|---|---|
SII | 0.001 | 0.001 |
SIRI | 0.001 | 0.001 |
AISI | 0.001 | 0.001 |
NLR | 0.001 | 0.001 |
MLR | 0.001 | 0.001 |
PLR | 0.011 | 0.277 |
Variable | Study Population (p 1) (n = 422) | AKI 3_Absent (p 1) (n = 395) | AKI 3_Present (p 1) (n = 27) |
---|---|---|---|
SIRI_Preop | 0.001 | 0.001 | 1 |
AISI_Preop | 0.004 | 0.001 | 0.544 |
SII_Preop | 0.756 | 0.948 | 0.481 |
NLR_Preop | 0.551 | 0.507 | 0.827 |
MLR_Preop | 0.001 | 0.001 | 1 |
PLR_Preop | 0.053 | 0.074 | 0.422 |
SIRI_0 | 0.001 | 0.001 | 0.645 |
AISI_0 | 0.001 | 0.001 | 0.342 |
SII_0 | 0.080 | 0.103 | 0.512 |
NLR_0 | 0.441 | 0.464 | 0.680 |
MLR_0 | 0.001 | 0.001 | 0.318 |
PLR_0 | 0.085 | 0.148 | 0.318 |
SIRI_Preop-SIRI_0 | 0.001 | 0.001 | 0.512 |
AISI_Preop-SIRI_0 | 0.771 | 0.899 | 0.577 |
SII_Preop-SII_0 | 0.759 | 0.946 | 0.481 |
NLR_Preop-NLR_0 | 0.490 | 0.559 | 0.716 |
MLR_Preop-MLR_0 | 0.001 | 0.001 | 0.512 |
PLR_Preop-PLR_0 | 0.001 | 0.003 | 0.050 |
Variable | Univariable | Multivariable | |||
---|---|---|---|---|---|
Exp(B) | OR (CI 95%) | p | OR (CI 95%) | p | |
Age (years) | 0.670 | ||||
Sex | 0.734 | ||||
Prothesis type | 0.986 | ||||
Hemostasis reintervention | 11.297 | 11.297 (4.869–26.214) | 0.001 | 9.76 (3.565–26.716) | 0.001 |
Preop AF | 0.360 | ||||
Bicuspid AV | 0.979 | ||||
Complex surgery | 3.146 | 3.146 (1.301–7.608) | 0.011 | 0.906 | |
CBP_time (min) | 1.026 | 1.026 (1.017–1.036) | 0.001 | ||
ACC_time (min) | 1.029 | 1.029 (1.017–1.040) | 0.001 | ||
Clear_preop_creat (mL/min) | 0.070 | ||||
BMI (kg/m2) | 0.412 | ||||
VIS | 1.065 | 1.065 (1.040–1.091) | 0.001 | 1.049 (1.013–1.086) | 0.007 |
EuroSCORE II | 1.576 | 1.576 (1.285–1.933) | 0.001 | 0.511 | |
Hb_preop (g/dL) | 0.087 | ||||
RDW-SD_Preop (fL) | 0.220 | ||||
PDW_Preop (fL) | 0.538 | ||||
MPV_Preop (fL) | 0.464 | ||||
L_Preop (*103/μL) | 1.200 | 1.200 (1.015–1.419) | 0.033 | ||
N_Preop (*103/μL) | 1.268 | 1.269 (1.039–1.551) | 0.020 | ||
M_Preop (*103/μL) | 0.427 | ||||
P_Preop (*103/μL) | 0.101 | ||||
Lf_Preop (*103/μL) | 0.689 | ||||
RDW-SD_0 (fL) | 1.089 | 1.089 (1.014–1.170) | 0.019 | 0.772 | |
PDW_0 (fL) | 0.635 | ||||
MPV_0 (fL) | 0.616 | ||||
L_0 (*103/μL) | 1.094 | 1.094 (1.030–1.161) | 0.003 | ||
N_0 (*103/μL) | 1.090 | 1.090 (1.021–1.164) | 0.009 | ||
M_0 (*103/μL) | 0.206 | ||||
P_0 (*103/μL) | 0.144 | ||||
Lf_0 (*103/μL) | 2.313 | 2.313 (1.444–3.704) | 0.001 | 2.252 (1.224–4.144) | 0.009 |
SIRI_Preop | 0.248 | ||||
AISI_Preop | 0.057 | ||||
SII_Preop | 1.001 | 1.001 (1–1.002) | 0.027 | ||
NLR_Preop | 0.100 | ||||
MLR_Preop | 0.716 | ||||
PLR_Preop | 0.221 | ||||
SIRI_0 | 0.512 | ||||
AISI_0 | 0.870 | ||||
SII_0 | 0.888 | ||||
NLR_0 | 0.421 | ||||
MLR_0 | 0.880 | ||||
PLR_0 | 0.348 | ||||
SIRI_0-SIRI_Preop | 0.434 | ||||
AISI _0-AISI_Preop | 0.062 | ||||
NLR_0-NLR_Preop | 0.601 | ||||
PLR_ 0-PLR_ Preop | 0.994 | 1.006 (1–1.011) | 0.043 | 0.710 | |
MLR_0-MLR_Preop | 0.767 | ||||
SII_0-SII_Preop | 0.999 | 1.001 (1–1.002) | 0.028 | 1.001 (1–1.001) | 0.018 |
Intraop_time (hours) | 2.246 | 2.246 (1.662–3.085) | 0.001 |
Variable | ROC | Cut Off | ||||
---|---|---|---|---|---|---|
AUC | p | CI 95% | Value | Ss (%) | Sp (%) | |
VIS | 0.861 | 0.001 | 0.794–0.928 | 7.9 | 88.9 | 72.2 |
Intraop_time (hours) | 0.778 | 0.001 | 0.684–0.872 | 5.5 | 70.4 | 75.9 |
EuroSCORE II | 0.758 | 0.001 | 0.662–0.854 | 2.19 | 77.8 | 70.6 |
CBP_time (min) | 0.752 | 0.001 | 0.632–0.872 | 158.5 | 59.3 | 91.9 |
ACC_time (min) | 0.728 | 0.001 | 0.608–0.848 | 109.5 | 63 | 86.3 |
PLR_0 | 0.689 | 0.003 | 0.566–0.812 | 72.9 | 85.8 | 51.9 |
Thakar score | 0.678 | 0.001 | 0.578–0.778 | 2.5 | 74.1 | 53.7 |
RDW-SD_0 (fL) | 0.675 | 0.001 | 0.583–0.767 | 44.15 | 59.3 | 71.1 |
PLR_0-PLR_Preop | 0.668 | 0.003 | 0.559–0.777 | 22.33 | 63 | 70.6 |
Lf_0 (*103/μL) | 0.664 | 0.007 | 0.545–0.784 | 1.63 | 55.6 | 77 |
N_Preop (*103/μL) | 0.663 | 0.002 | 0.562–0.765 | 5.56 | 55.6 | 72.7 |
L_0 (*103/μL) | 0.658 | 0.007 | 0.542–0.774 | 14.71 | 63 | 66.1 |
EuroSCORE | 0.649 | 0.001 | 0.540–0.759 | 6.5 | 55.6 | 67.6 |
L_Preop (*103/μL) | 0.643 | 0.013 | 0.530–0.755 | 8.77 | 59.3 | 73.9 |
N_0 (*103/μL) | 0.641 | 0.020 | 0.522–0.760 | 12.23 | 66.7 | 64.3 |
P_0 (*103/μL) | 0.618 | 0.037 | 0.507–0.729 | 135.5 | 53.7 | 77.8 |
AISI_Preop | 0.617 | 0.043 | 0.504–0.730 | 500.59 | 44.8 | 78.5 |
SIRI_Preop | 0.614 | 0.043 | 0.504–0.724 | 2.36 | 37 | 84.1 |
Age (years) | 0.903 | |||||
Clear_preop_creat (mL/min) | 0.129 | |||||
BMI (kg/m2) | 0.512 | |||||
Hb_preop (g/dL) | 0.179 | |||||
RDW-SD_Preop (fL) | 0.188 | |||||
PDW_Preop (fL) | 0.524 | |||||
MPV_Preop (fL) | 0.422 | |||||
M_Preop (*103/μL) | 0.327 | |||||
P_Preop (*103/μL) | 0.688 | |||||
Lf_Preop (*103/μL) | 0.728 | |||||
PDW_0 (fL) | 0.482 | |||||
MPV_0 (fL) | 0.575 | |||||
M_0 (*103/μL) | 0.556 | |||||
SII_Preop | 0.122 | |||||
NLR_Preop | 0.063 | |||||
MLR_Preop | 0.515 | |||||
PLR_Preop | 0.968 | |||||
SIRI_0 | 0.974 | |||||
SII_0 | 0.094 | |||||
AISI_0 | 0.621 | |||||
NLR_0 | 0.295 | |||||
MLR_0 | 0.254 | |||||
SIRI_0-SIRI_Preop | 0.762 | |||||
AISI _0-AISI_Preop | 0.547 | |||||
NLR_0-NLR_Preop | 0.072 | |||||
MLR_0-MLR_Preop | 0.151 | |||||
SII_0-SII_Preop | 0.128 |
Variable | Female Sex Patients | Male Sex Patients | ||||
---|---|---|---|---|---|---|
AUC | p | CI 95% | AUC | p | CI 95% | |
VIS | 0.860 | 0.001 | 0.755–0.965 | 0.859 | 0.001 | 0.770–0.948 |
Intraop_time (hours) | 0.852 | 0.001 | 0.747–0.957 | 0.727 | 0.001 | 0.588–0.865 |
EuroSCORE II | 0.841 | 0.001 | 0.732–0.951 | 0.708 | 0.001 | 0.571–0.845 |
CBP_time | 0.777 | 0.001 | 0.612–0.941 | 0.744 | 0.001 | 0.578–0.909 |
PLR_0 | 0.759 | 0.001 | 0.610–0.909 | 0.119 | ||
PLR_PreopPLR_0 | 0.752 | 0.001 | 0.621–0.883 | 0.153 | ||
ACC_time | 0.724 | 0.008 | 0.559–0.889 | 0.741 | 0.004 | 0.579–0.902 |
AISI_Preop | 0.712 | 0.011 | 0.548–0.875 | 0.488 | ||
SIRI_Preop | 0.700 | 0.019 | 0.533–0.867 | 0.425 | ||
EuroSCORE | 0.692 | 0.011 | 0.544–0.841 | 0.118 | ||
Thakar score | 0.141 | 0.704 | 0.001 | 0.583–0.825 | ||
SII_Preop | 0.090 | 0.499 | ||||
NLR_Preop | 0.393 | 0.522 | ||||
MLR_Preop | 0.399 | 0.835 | ||||
PLR_Preop | 0.847 | 0.767 | ||||
SIRI_0 | 0.818 | 0.921 | ||||
AISI_0 | 0.744 | 0.807 | ||||
SII_0 | 0.182 | 0.327 | ||||
NLR_0 | 0.393 | 0.522 | ||||
MLR_0 | 0.503 | 0.445 | ||||
SIRI_Preop-SIRI_0 | 0.557 | 0.978 | ||||
AISI_Preop-SIRI_0 | 0.434 | 0.886 | ||||
SII_Preop-SII_0 | 0.093 | 0.504 | ||||
NLR_Preop-NLR_0 | 0.119 | 0.267 | ||||
MLR_Preop-MLR_0 | 0.181 | 0.468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drăgan, A.; Drăgan, A.Ş. New Insights in Assessing AKI 3 Risk Factors and Predictors Associated with On-Pump Surgical Aortic Valve Replacement. Diagnostics 2025, 15, 2211. https://doi.org/10.3390/diagnostics15172211
Drăgan A, Drăgan AŞ. New Insights in Assessing AKI 3 Risk Factors and Predictors Associated with On-Pump Surgical Aortic Valve Replacement. Diagnostics. 2025; 15(17):2211. https://doi.org/10.3390/diagnostics15172211
Chicago/Turabian StyleDrăgan, Anca, and Adrian Ştefan Drăgan. 2025. "New Insights in Assessing AKI 3 Risk Factors and Predictors Associated with On-Pump Surgical Aortic Valve Replacement" Diagnostics 15, no. 17: 2211. https://doi.org/10.3390/diagnostics15172211
APA StyleDrăgan, A., & Drăgan, A. Ş. (2025). New Insights in Assessing AKI 3 Risk Factors and Predictors Associated with On-Pump Surgical Aortic Valve Replacement. Diagnostics, 15(17), 2211. https://doi.org/10.3390/diagnostics15172211