Clinical Utility of a Targeted Next-Generation Sequencing Panel for Inherited Platelet Disorders in Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Next-Generation Sequencing Analysis
2.2. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Variants Detected by Targeted NGS
3.3. Patients with Macrothrombocytopenia
3.4. Patients with Normothrombocytopenia
3.5. Patients with Refractory ITP and Chronic ITP
3.6. Patients with Specific Platelet Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aPTT | Activated Partial Thromboplastin Time |
AD | Autosomal Dominant |
AR | Autosomal Recessive |
BSS | Bernard–Soulier Syndrome |
CHD | Congenital Heart Disease |
G6PDH | Glucose-6-Phosphate Dehydrogenase |
IPD | Inherited Platelet Disorder |
ISTH | International Society on Thrombosis and Haemostasis |
IVIG | Intravenous Immunoglobulin |
ITP | Immune Thrombocytopenia |
LP | Likely Pathogenic |
LTA | Light Transmission Aggregometry |
MPV | Mean Platelet Volume |
NGS | Next Generation Sequencing |
PBS | Peripheral Blood Smear |
PFA-100 | Platelet Function Analyzer-100 |
PT | Prothrombin Time |
SPENCD | Spondyloenchondrodysplasia |
TPO-RA | Thrombopoietin Receptor Agonist |
TTP | Thrombotic Thrombocytopenic Purpura |
VUS | Variants of Uncertain Significance |
WAS | Wiskott–Aldrich Syndrome |
WES | Whole-Exome Sequencing |
References
- Kim, B. Diagnostic workup of inherited platelet disorders. Blood Res. 2022, 57, 11–19. [Google Scholar] [CrossRef]
- Oved, J.H.; Lambert, M.P.; Kowalska, M.A.; Poncz, M.; Karczewski, K.J. Population based frequency of naturally occurring loss-of-function variants in genes associated with platelet disorders. J. Thromb. Haemost. 2021, 19, 248–254. [Google Scholar] [CrossRef]
- Bourguignon, A.; Tasneem, S.; Hayward, C.P. Screening and diagnosis of inherited platelet disorders. Crit. Rev. Clin. Lab. Sci. 2022, 59, 405–444. [Google Scholar] [CrossRef]
- Palma-Barqueros, V.; Revilla, N.; Sánchez, A.; Cánovas, A.Z.; Rodriguez-Alén, A.; Marín-Quílez, A.; González-Porras, J.R.; Vicente, V.; Lozano, M.L.; Bastida, J.M.; et al. Inherited Platelet Disorders: An Updated Overview. Int. J. Mol. Sci. 2021, 22, 4521. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.A.; Grimes, A.B.; Klaassen, R.J.; Lambert, M.P.; Neunert, C.; Rothman, J.A.; Shimano, K.A.; Amend, C.; Askew, M.; Badawy, S.M.; et al. What is in a name: Defining pediatric refractory ITP. Blood Adv. 2024, 8, 5112–5117. [Google Scholar] [CrossRef] [PubMed]
- Gold Variants: Defining a High-Quality Set of Clinically Relevant DNA Variants with, and for, the Thrombosis and Hemostasis Community—Gene List. Available online: https://www.isth.org/page/GinTh_GeneLists (accessed on 23 July 2025).
- Manohar, S.; Gofin, Y.; Streff, H.; Vossaert, L.; Camacho, P.; Murali, C.N. A familial deletion of 10p12.1 associated with thrombocytopenia. Am. J. Med. Genet. Part A 2024, 194, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Bildik, H.N.; Cagdas, D.; Ozturk Kura, A.; Oskay Halacli, S.; Sanal, O.; Tezcan, I. Clinical, Laboratory Features and Clinical Courses of Patients with Wiskott Aldrich Syndrome and X–linked Thrombocytopenia–A single center study. Immunol. Investig. 2022, 51, 1272–1283. [Google Scholar] [CrossRef]
- van Dorland, H.A.; Taleghani, M.M.; Sakai, K.; Friedman, K.D.; George, J.N.; Hrachovinova, I.; Knöbl, P.N.; von Krogh, A.S.; Schneppenheim, R.; Aebi-Huber, I.; et al. The International Hereditary Thrombotic Thrombocytopenic Purpura Registry: Key findings at enrollment until 2017. Haematologica 2019, 104, 2107–2115. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, L. Clinical Features and Gene Mutation Analysis of Congenital Thrombotic Thrombocytopenic Purpura in Neonates. Front. Pediatr. 2020, 8, 546248. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Zhu, X.; Gu, N.; Dai, Y. Novel ADAMTS13 mutation in a family with three recurrent neonatal deaths: A case report and literature review. Transl. Pediatr. 2022, 11, 766–773. [Google Scholar] [CrossRef]
- Savoia, A.; Kunishima, S.; De Rocco, D.; Zieger, B.; Rand, M.L.; Pujol-Moix, N.; Caliskan, U.; Tokgoz, H.; Pecci, A.; Noris, P.; et al. Spectrum of the Mutations in Bernard-Soulier Syndrome. Hum. Mutat. 2014, 35, 1033–1045. [Google Scholar] [CrossRef]
- Motlagh, F.Z.; Fallah, M.S.; Bagherian, H.; Shirzadeh, T.; Ghasri, S.; Dabbagh, S.; Jamali, M.; Salehi, Z.; Abiri, M.; Zeinali, S. Molecular genetic diagnosis of Glanzmann syndrome in Iranian population; reporting novel and recurrent mutations. Orphanet J. Rare Dis. 2019, 14, 87. [Google Scholar] [CrossRef]
- Morais, S.; Oliveira, J.; Lau, C.; Pereira, M.; Gonçalves, M.; Monteiro, C.; Gonçalves, A.R.; Matos, R.; Sampaio, M.; Cruz, E.; et al. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: Expanding the mutational and clinical spectrum. PLoS ONE 2020, 15, e0235136. [Google Scholar] [CrossRef] [PubMed]
- Khoriaty, R.; Ozel, A.B.; Ramdas, S.; Ross, C.; Desch, K.; Shavit, J.A.; Everett, L.; Siemieniak, D.; Li, J.Z.; Ginsburg, D. Genome-wide linkage analysis and whole-exome sequencing identifies an ITGA2B mutation in a family with thrombocytopenia. Br. J. Haematol. 2019, 186, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Kunishima, S.; Kashiwagi, H.; Otsu, M.; Takayama, N.; Eto, K.; Onodera, M.; Miyajima, Y.; Takamatsu, Y.; Suzumiya, J.; Matsubara, K.; et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 2011, 117, 5479–5484. [Google Scholar] [CrossRef] [PubMed]
- Owaidah, T.; Saleh, M.; Baz, B.; Abdulaziz, B.; Alzahrani, H.; Tarawah, A.; Almusa, A.; AlNounou, R.; AbaAlkhail, H.; Al-Numair, N.; et al. Molecular yield of targeted sequencing for Glanzmann thrombasthenia patients. npj Genom. Med. 2019, 4, 4. [Google Scholar] [CrossRef]
- Vorholt, S.M.; Hamker, N.; Sparka, H.; Enczmann, J.; Zeiler, T.; Reimer, T.; Fischer, J.; Balz, V. High-Throughput Screening of Blood Donors for Twelve Human Platelet Antigen Systems Using Next-Generation Sequencing Reveals Detection of Rare Polymorphisms and Two Novel Protein-Changing Variants. Transfus. Med. Hemotherapy 2020, 47, 33–44. [Google Scholar] [CrossRef]
- Sandrock-Lang, K.; Oldenburg, J.; Wiegering, V.; Halimeh, S.; Santoso, S.; Kurnik, K.; Fischer, L.; Tsakiris, D.A.; Sigl-Kraetzig, M.; Brand, B.; et al. Characterisation of patients with Glanzmann thrombasthenia and identification of 17 novel mutations. Thromb. Haemost. 2015, 113, 782–791. [Google Scholar] [CrossRef]
- Natesirinilkul, R.; Sosothikul, D.; Komwilaisak, P.; Pongtanakul, B.; Narkbunnum, N.; Yudhasompop, N.; Mekjarusgool, P.; Niparuck, P.; Boonyawat, K.; Kunishima, S.; et al. MYH9 disorder: Identification and a novel mutation in patients with macrothrombocytopenia. Pediatr. Blood Cancer 2021, 68, e29055. [Google Scholar] [CrossRef]
- Wasano, K.; Matsunaga, T.; Ogawa, K.; Kunishima, S. Late onset and high-frequency dominant hearing loss in a family with MYH9 disorder. Eur. Arch. Otorhinolaryngol. 2016, 273, 3547–3552. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Chen, D.; Pruthi, R.K. Platelet genetic testing by next-generation sequencing: A practical update. Int. J. Lab. Hematol. 2023, 45, 630–642. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, L.; Sheng, G.; Shen, H.; Ling, J.; Xie, J.; Ma, Z.; Yin, J.; Wang, Z.; Yu, Z.; et al. Application of High-Throughput Sequencing in the Diagnosis of Inherited Thrombocytopenia. Clin. Appl. Thromb. 2018, 24, 94S–103S. [Google Scholar] [CrossRef]
- Romasko, E.J.; Devkota, B.; Biswas, S.; Jayaraman, V.; Rajagopalan, R.; Dulik, M.C.; Thom, C.S.; Choi, J.; Jairam, S.; Scarano, M.I.; et al. Utility and limitations of exome sequencing in the molecular diagnosis of pediatric inherited platelet disorders. Am. J. Hematol. 2018, 93, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kaya, Z. Bernard–Soulier Syndrome: A Review of Epidemiology, Molecular Pathology, Clinical Features, Laboratory Diagnosis, and Therapeutic Management. Semin. Thromb. Hemost. 2025, 51, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, N.; Onozawa, M.; Hayasaka, K.; Yamada, T.; Migita, O.; Hata, K.; Okada, K.; Goto, H.; Nakagawa, M.; Hashimoto, D.; et al. A novel heterozygous ITGB3 p.T720del inducing spontaneous activation of integrin αIIbβ3 in autosomal dominant macrothrombocytopenia with aggregation dysfunction. Ann. Hematol. 2018, 97, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Ghemlas, I.; Li, H.; Zlateska, B.; Klaassen, R.; Fernandez, C.V.; A Yanofsky, R.; Wu, J.; Pastore, Y.; Silva, M.; Lipton, J.H.; et al. Improving diagnostic precision, care and syndrome definitions using comprehensive next-generation sequencing for the inherited bone marrow failure syndromes. J. Med. Genet. 2015, 52, 575–584. [Google Scholar] [CrossRef]
- Xia, Y.; Duan, Y.; Zheng, W.; Liang, L.; Zhang, H.; Luo, X.; Gu, X.; Sun, Y.; Xiao, B.; Qiu, W. Clinical, genetic profile and therapy evaluation of 55 children and 5 adults with sitosterolemia. J. Clin. Lipidol. 2022, 16, 40–51. [Google Scholar] [CrossRef]
- Beyan, C.; Beyan, E. Pre-analytical standardization should be mandatory before reference ranges for mean platelet volume are determined. Scand. J. Clin. Lab. Investig. 2016, 76, 588. [Google Scholar] [CrossRef]
- Gulati, G.; Uppal, G.; Gong, J. Unreliable Automated Complete Blood Count Results: Causes, Recognition, and Resolution. Ann. Lab. Med. 2022, 42, 515–530. [Google Scholar] [CrossRef]
- Bhola, A.; Garg, R.; Sharma, A.; Gupta, N.; Kakkar, N. Macrothrombocytopenia: Role of Automated Platelet Data in Diagnosis. Indian J. Hematol. Blood Transfus. 2023, 39, 284–293. [Google Scholar] [CrossRef]
- Joshi, N.; Lango-Allen, H.; Downes, K.; Simeoni, I.; Vladescu, C.; Paul, D.; Hart, A.C.; Ademokun, C.; Cooper, N. The role of genetic sequencing in the diagnostic workup for chronic immune thrombocytopenia. Blood Adv. 2025, 9, 1497–1507. [Google Scholar] [CrossRef]
- Bastida, J.M.; Gonzalez-Porras, J.R.; Rivera, J.; Lozano, M.L. Role of Thrombopoietin Receptor Agonists in Inherited Thrombocytopenia. Int. J. Mol. Sci. 2021, 22, 4330. [Google Scholar] [CrossRef]
- Cuche, C.; Mastrogiovanni, M.; Juzans, M.; Laude, H.; Ungeheuer, M.-N.; Krentzel, D.; Gariboldi, M.I.; Scott-Algara, D.; Madec, M.; Goyard, S.; et al. T cell migration and effector function differences in familial adenomatous polyposis patients with APC gene mutations. Front. Immunol. 2023, 14, 1163466. [Google Scholar] [CrossRef]
Gene | Associated Disorders | Inheritance |
---|---|---|
RUNX1 | Familial platelet disorder with predisposition to acute myeloid leukemia | AD |
WAS | Wiskott–Aldrich syndrome | XLR |
ADAMTS13 | Thrombotic thrombocytopenic purpura | AR |
ANKRD26 | Autosomal dominant thrombocytopenia 2 | AD |
CYCS | Autosomal dominant thrombocytopenia 4 | AD |
GATA1 | X-linked thrombocytopenia with dyserythropoiesis | XLR |
GP1BA | Bernard–Soulier syndrome | AR |
Mild macrothrombocytopenia | AD | |
Platelet-type von Willebrand disease | AD | |
GP1BB | Bernard–Soulier syndrome | AR |
Mild macrothrombocytopenia | AD | |
GP9 | Bernard–Soulier syndrome | AR |
ITGA2B | Glanzmann thrombasthenia | AR |
Platelet-type bleeding disorder 16 | AD | |
ITGB3 | Glanzmann thrombasthenia | AR |
Platelet-type bleeding disorder 16 | AD | |
MASTL | Autosomal dominant thrombocytopenia 2 | AD |
MPL | Congenital amegakaryocytic thrombocytopenia | AR |
MYH9 | MYH9-related disorders | AD |
Macrothrombocytopenia | Normothrombocytopenia | Refractory ITP | Chronic ITP | Glanzman | Thrombocyte Function Disorder | Congenital TTP | |
---|---|---|---|---|---|---|---|
Patients, % | 33, 35.5% | 24, 25.8% | 14, 15.1% | 15, 16.1% | 3, 3.2% | 2, 2.2% | 2, 2.2% |
Diagnosis age, mean or median (range) | 7 (0–17) | 3.5 (0–17) | 7.2 ± 4.7 (0.5–17) | 7 ± 4.8 (0.5–16) | 0.5 ± 0.5 (0–1) | 5.8 ± 6 (1.5–10) | 0 |
Bleeding, % | 7, 21.4% 2 severe | 9, 37.5% | 14, 100% 2 severe | 12, 80% | 3, 100% 2 severe | 2, 100% | 1, 50% 1 severe |
Minimum platelet count (×109/L), mean or median (range) | 77 (3–127) | 71.2 ± 40.6 (3–110) | 4 (2–29) | 13 (2–31) | 246.7 ± 154.8 (102–410) | 307.5 ± 26.2 (289–326) | 23.5 ± 19 (10–37) |
Minimum MPV, mean or median (range) | 9.7 (6.2–16.9) | 8.1 ± 1.1 (6.5–10.5) | 6.6 (5.3–14.6) | 6.6 (4.8–8.1) | 7.9 ± 0.8 (7.4–8.8) | 7.3 ± 1.4 (6.3–8.3) | 5.5 ± 0.1 (5.5–5.6) |
Maximum MPV, mean or median (range) | 13.2 (10.5–20) | 10.3 ± 1.7 (7.4–13.3) | 14.4 ± 3 (9.1–20.5) | 12.4 ± 2 (9.1–15.8) | 10.2 ± 1.3 (9.3–11.7) | 8.1 ± 0.3 (7.9–8.3) | 12.4 ± 2.5 (10.6–14.1) |
Family history of thrombocytopenia, % | 12, 36.4% | 8, 33.4% | 1, 7.1% | 1, 6.7% | _ | _ | _ |
Consanguinity, % | 9, 27.3% | 6, 25% | 2, 14.3% | 2, 13.3% | 2, 66.7% | 1, 50% | 2, 100% |
Patients with variants, % | 13, 39.4% | 4, 16.6% | 5, 35.7% | 3, 20% | 2, 66.7% | 1, 50% | 2, 100% |
Variant per patient, average (range) | 0.48 (0–2) | 0.21 (0–2) | 0.36 (0–1) | 0.2 (0–1) | 1.3 (0–3) | 0.5 (0–1) | 1.5 (0–2) |
Case No. | Gene(s) | Variant (s) | Allelic State | Class. | Clinical Findings | Previously Reported Cases |
---|---|---|---|---|---|---|
1 | WAS | NM_000377.3: c.225del | Hemi | LP | Normothrombocytopenia, maternal uncle with WAS | Novel |
2 | WAS | NM_000377.3: c.280C>T | Hemi | VUS | Normothrombocytopenia, history of nephritis | A case series by Bildik et al. [8] reported an association of this variant with autoimmunity and microthrombocytopenia. |
3 | ADAMTS13 | NM_139027.6: c.3794A>T | Het | VUS | Macrothrombocytopenia | Reported in ClinVar; no published case reports are available. |
4 | ADAMTS13 | NM_139025.4: c.1310C>G | Het | VUS | Macrothrombocytopenia | Novel |
5 | ADAMTS13 | NM_139027.6: c.3178C>T | Het | P | Thrombocyte function disorder | It is one of the most common variants found in a homozygous or compound heterozygous state [9]. |
6 | ADAMTS13 | NM_139027.6: c.1187G>A | Hom | P | Congenital TTP | Reported in two separate case reports as being linked to a fatal neonatal TTP phenotype [10,11]. |
7 | ADAMTS13 | NM_139027.6: c.1778C>T | Hom | VUS | Congenital TTP | Novel |
ADAMTS13 | NM_139027.6: c.496G>A | Hom | VUS | Novel | ||
8 | ANKRD26 | NM_014915.3: c.3451G>T | Het | VUS | Refractory ITP | Novel |
9 | ANKRD26 | NM_014915.3: c.93G>A | Het | VUS | Refractory ITP, diagnosed as SPENCD | Reported in ClinVar; no published case reports are available. |
10 | ANKRD26 | NM_014915.3: c.4779G>C | Het | VUS | Macrothrombocytopenia | Reported in ClinVar; no published case reports are available. |
GP9 | NM_000174.5: c.139C>T | Hom | VUS | Described as a new variant in a large international study on Bernard–Soulier syndrome [12]. | ||
11 | ANKRD26 | NM_014915.3: c.2527G>A | Het | VUS | Glanzmann thrombasthenia | Novel |
ITGB3 | NM_000212.3: c.538G>A | Hom | LP | Reported in a patient with Glanzmann thrombasthenia in a compound heterozygous state with another ITGB3 variant [13]. | ||
MYH9 | NM_002473.6: c.575C>T | Het | VUS | Reported in ClinVar; no published case reports are available. | ||
12 | GATA1 | NM_002049.4: c.1202C>G | Het | VUS | Macrothrombocytopenia, epilepsy | Novel |
13 | GP1BA | NM_000173.7: c.1795C>T | Het | LP | Macrothrombocytopenia, G6PDH deficiency | Reported in ClinVar; no published case reports are available. |
14 | GP1BA | NM_000173.7: c.1252G>A | Het | VUS | Macrothrombocytopenia | Novel |
15 | GP1BA | NM_000173.7: c.1241_1297del | Het | LP | Normothrombocytopenia | Novel |
16 | GP1BA | NM_000173.7): c.1267A>C | Het | VUS | Refractory ITP | Novel |
17 | GP1BA | NM_000173.7: c.571G>A | Het | VUS | Refractory ITP | Reported in ClinVar; no published case reports are available. |
18 | GP1BA | NM_000173.7: c.176T>C | Het | VUS | Macrothrombocytopenia | Reported in ClinVar; no published case reports are available. |
ITGA2B | NM_000419.5: c.2704A>G | Het | VUS | Novel | ||
19 | GP1BB | NM_000407.5: c.175G>T | Het | LP | Macrothrombocytopenia | Novel |
ITGB3 | NM_000212.3: c.2278C>T | Het | LP | Reported in a family with autosomal dominant macrothrombocytopenia [14]. | ||
20 | ITGA2B | NM_000419.5: c.3076C>T | Het | LP | Macrothrombocytopenia | Heterozygous variants are observed in families with macrothrombocytopenia and normothrombocytopenia [15,16]. |
21 | ITGA2B | NM_000419.5: c.457G>A | Het | VUS | Macrothrombocytopenia | Reported in ClinVar; no published case reports are available. |
22 | ITGA2B | NM_000419.5: c.457G>A | Het | VUS | Chronic ITP | Reported in ClinVar; no published case reports are available. |
23 | ITGA2B | NM_000419.5: p.V359M | Het | LP | Refractory ITP | Novel |
24 | ITGB3 | NM_000212.3: c.1576G>C | Het | VUS | Macrothrombocytopenia | Reported in ClinVar; no published case reports are available. |
25 | ITGB3 | NM_000212.3: c.985A>G | Comp Het | VUS | Normothrombocytopenia | Reported in patients with Glanzmann thrombasthenia [17]. |
NM_000212.3: c.180C>T | VUS | Detected in blood donors as a silent nucleotide variation [18]. | ||||
26 | ITGB3 | NM_000212.3: c.1594T>C | Hom | LP | Glanzmann thrombasthenia | Reported in a patient with Glanzmann’s thrombasthenia in a compound heterozygous state with another ITGB3 variant [19]. |
27 | ITGB3 | NM_000212.3: c.985A>G | Het | LP | Chronic ITP | Reported in patients with Glanzmann thrombasthenia [17]. |
28 | MASTL | NM_001172303.3: c.1934C>T | Het | VUS | Macrothrombocytopenia, neurocognitive impairment, scoliosis | Novel |
29 | MYH9 | NM_002473.6: c.4270G>A | Het | P | Macrothrombocytopenia | Reported in patients with MYH9-RD and late-onset hearing loss [20,21]. |
30 | MYH9 | NM_002473.6: c.4624G>A | Het | VUS | Chronic ITP, hypogammaglobulinemia, heterozygous APC mutation | Novel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaçar, D.; Altan, M.; Bayhan, T.; Yıldırım, S.F.; Kurtipek, F.B.; Arman Bilir, Ö.; Özbek, N.Y.; Yaralı, N. Clinical Utility of a Targeted Next-Generation Sequencing Panel for Inherited Platelet Disorders in Children. Diagnostics 2025, 15, 2210. https://doi.org/10.3390/diagnostics15172210
Kaçar D, Altan M, Bayhan T, Yıldırım SF, Kurtipek FB, Arman Bilir Ö, Özbek NY, Yaralı N. Clinical Utility of a Targeted Next-Generation Sequencing Panel for Inherited Platelet Disorders in Children. Diagnostics. 2025; 15(17):2210. https://doi.org/10.3390/diagnostics15172210
Chicago/Turabian StyleKaçar, Dilek, Mustafa Altan, Turan Bayhan, Said Furkan Yıldırım, Fatma Burçin Kurtipek, Özlem Arman Bilir, Namık Yaşar Özbek, and Neşe Yaralı. 2025. "Clinical Utility of a Targeted Next-Generation Sequencing Panel for Inherited Platelet Disorders in Children" Diagnostics 15, no. 17: 2210. https://doi.org/10.3390/diagnostics15172210
APA StyleKaçar, D., Altan, M., Bayhan, T., Yıldırım, S. F., Kurtipek, F. B., Arman Bilir, Ö., Özbek, N. Y., & Yaralı, N. (2025). Clinical Utility of a Targeted Next-Generation Sequencing Panel for Inherited Platelet Disorders in Children. Diagnostics, 15(17), 2210. https://doi.org/10.3390/diagnostics15172210