Sella Turcica and Cranial Base Symmetry in Anterior Synostotic Plagiocephaly Patients: A Retrospective Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size Calculation
2.3. Patient Selection
- -
- Patients with anterior synostotic plagiocephaly;
- -
- Adult patients of Caucasian ethnicity between 20 and 40 years of age;
- -
- Patients with CT examinations of the facial massif.
- -
- Patients with a history of orthodontic treatment or orthognathic surgery;
- -
- Patients with a history of trauma and neoplasms in the craniofacial region;
- -
- Patients with a long-term history of drug use that may have affected bone development.
2.4. Protocol and Measurements for 2D Point-Based Quantitative Analysis
- -
- CT orientation: The CT scans were reoriented using the axial, coronal, and sagittal reference planes;
- -
- CT segmentation: The following software tools were used in the following order: “Thresholding” was used to identify a “mask” with the cranial base through manual selection of pixel intensity values; “Crop mask” allowed for outlining the region of interest; and “Calculate 3D” enabled the generation of a three-dimensional model from the contours of the previously segmented mask.
2.5. Two-Dimensional Point-Based Quantitative Analysis: Sella Turcica
- -
- Anterior clinoid distance: The distance between the right and left anterior clinoid processes (ACPs).
- -
- Posterior clinoid distance: The distance between the right and left posterior clinoid processes (PCPs).
- -
- Left sella length: The distance between the left (L) anterior and left posterior clinoid processes.
- -
- Right sella length: The distance between the right (R) anterior and right posterior clinoid processes.
- -
- Median sella length: The distance between the tuberculum sellae (TS) and the dorsum sellae (DS).
2.6. Two-Dimensional Point-Based Quantitative Analysis: Skull Base
- -
- The CSX angle for the anterior cranial fossa, between the crista galli (C), sella turcica (S), and xiphoid process of the lesser wing of the sphenoid (X);
- -
- The XSM angle for the middle cranial fossa, between the xiphoid process (X), sella turcica (S), and internal acoustic meatus (M);
- -
- The MSO angle for the posterior cranial fossa, between the internal acoustic meatus (M), sella turcica (S), and opisthion (O).
- -
- CX length for the anterior cranial fossa between the crista galli (C) and xiphoid process of the lesser wing of the sphenoid (X);
- -
- XM length for the middle cranial fossa between the xiphoid process (X) and the internal acoustic meatus (M);
- -
- MO length for the posterior cranial fossa between the internal acoustic meatus (M) and opisthion (O).
2.7. Qualitative 3D Surface-Based Analysis: Sella Turcica
- -
- Firstly, the “new sketch” tool was used to generate a cutting plane passing by a selection of three median landmarks (Figure 3): the tuberculum sellae (TS), the sella turcica floor (STF) (lowest point of the pituitary fossa of the sphenoid), and the dorsum sellae (DS);
- -
- Secondly, the “Cut” function was performed to split the sella turcica along the abovementioned plane into two hemi-portions: the “unhealthy side” (ipsilateral to the ASP) from the “healthy side” (contralateral to the ASP);
- -
- Thirdly, the “Mirror” function was used to create a mirror copy of the “unhealthy side”.
2.8. Statistical Analysis
Affected side)) × 100
3. Results
3.1. Two-Dimensional Asymmetry
- -
- Sella length (defined as the comparison between the right and left sella lengths), with asymmetry index values of 5.94 (study) vs. 1.62 (control);
- -
- The anterior cranial fossa length measurements (defined as the comparison between the right and left CX lengths) were 39.62 ± (4.89) for the ill side and 46.50 ± (5.56) for the healthy side in the study group vs. 41.98 ± (3.22) for the ill side and 41.96 ± (3.23) for the healthy side, with asymmetry index values of 7.96 (study) vs. 0.02 (control);
- -
- The anterior cranial fossa angle widths (defined as the comparison between the right and left CSX angles) were 48.23 ± (6.80) for the ill side and 58.25 ± (7.43) for the healthy side in the study group vs. 51.84 ± (2.42) for the ill side and the 52.43 ± (3.76) for healthy side, with asymmetry index values of 7.96 (study) vs. 0.02 (control) and asymmetry index values of 9.42 (study) vs. 0.51 (control).
3.2. Three-Dimensional Asymmetry
3.3. Reliability
4. Discussion
4.1. Discussion of the Results of the Two-Dimensional Point-Based Quantitative Analysis
4.2. Discussion of the Results of the Three-Dimensional Surface-Based Qualitative Analysis
4.3. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASP | Anterior Synostotic Plagiocephaly |
CT | Computed Tomography |
2D | Two-Dimensional |
3D | Three-Dimensional |
CBCT | Cone Beam Computed Tomography |
AI | Asymmetry Index |
IRCCS | Scientific Institute for Research Hospitalization and Healthcare |
ID | Identification Number |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
DICOM | Digital Imaging and Communications in Medicine |
ACP | Anterior Clinoid Process |
PCP | Posterior Clinoid Process |
TS | Tuberculum Sellae |
DS | Dorsum Sellae |
C | Crista Galli |
S | Sella Turcica |
O | Opisthion |
X | Xiphoid Process of the Lesser Wing of the Sphenoid |
M | Internal Acoustic Meatus |
CSO angle | Crista Galli Sella Opisthion Angle |
CSX angle | Crista Galli Sella Xiphoid Angle |
XSM angle | Xiphoid Sella Meatus Angle |
MSO angle | Meatus Sella Opisthion Angle |
CX length | Crista Galli Xiphoid Length |
XM length | Xiphoid Meatus Length |
MO length | Meatus Opisthion Length |
STF | Sella Turcica Floor |
STL | Standard Tessellation Language |
RMS | Root Mean Square |
p-value | Probability Value |
References
- Losee, J.E.; Mason, A.C. Deformational plagiocephaly: Diagnosis, prevention, and treatment. Clin. Plast. Surg. 2005, 32, 53–64. [Google Scholar] [CrossRef]
- Di Rocco, C.; Paternoster, G.; Caldarelli, M.; Massimi, L.; Tamburrini, G. Anterior plagiocephaly: Epidemiology, clinical findings, diagnosis, and classification. A review. Childs Nerv. Syst. 2012, 28, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, G.; Saponaro, G.; Moro, A.; De Angelis, P.; Pelo, S. Early surgical treatment in anterior synostotic plagiocephaly: Is. this the best choice? J. Craniofac. Surg. 2018, 29, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, A.; Vignudelli, E.; Napolitano, A.; Marchetti, C.; Corinaldesi, G. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial. Clin. Implant. Dent. Relat. Res. 2017, 19, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, G.; Saponaro, G.; Marianetti, T.M.; Tamburrini, G.; Moro, A.; Di Rocco, C.; Pelo, S. Mandibular alterations and facial lower third asymmetries in unicoronal synostosis. Childs Nerv. Syst. 2013, 29, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Corridore, D.; Saccucci, M.; Zumbo, G.; Fontana, E.; Lamazza, L.; Stamegna, C.; Di Carlo, G.; Vozza, I.; Guerra, F. Impact of Stress on Periodontal Health: Literature Revision. Healthcare 2023, 11, 1516. [Google Scholar] [CrossRef]
- Di Spirito, F.; Pisano, M.; Di Palo, M.P.; Franci, G.; Rupe, A.; Fiorino, A.; Rengo, C. Peri-Implantitis-Associated Microbiota before and after Peri-Implantitis Treatment, the Biofilm “Competitive Balancing” Effect: A Systematic Review of Randomized Controlled Trials. Microorganisms 2024, 12, 1965. [Google Scholar] [CrossRef]
- Di Carlo, G.; Gurani, S.F.; Pinholt, E.M.; Cattaneo, P.M. A new simple three-dimensional method to characterize upper airway in orthognathic surgery patient. Dentomaxillofac Radiol. 2017, 46, 20170042. [Google Scholar] [CrossRef]
- Saponaro, G.; Pelo, S.; Gasparini, G.; Torado, M.; Cerbelli, E.; Moro, A.; Doneddu, P. Approach to fronto-orbital sequelae in anterior synostotic plagiocephaly: Our flow chart based on Di Rocco classification. J. Craniofac Surg. 2021, 32, 1986–1989. [Google Scholar] [CrossRef]
- Kim, Y.H.; Sato, K.; Mitani, H.; Shimizu, Y.; Kikuchi, M. Asymmetry of the sphenoid bone and its suitability as a reference for analyzing craniofacial asymmetry. Am. J. Orthod. Dentofacial Orthop. 2003, 124, 656–662. [Google Scholar] [CrossRef]
- Azzi, L.; Moretto, P.; Vinci, R.; Croveri, F.; Boggio, A.; Silvestre-Rangil, J.; Tettamanti, L.; Tagliabue, A.; Passi, A. Human β2-defensin in oral lichen planus expresses the degree of inflammation. J. Biol. Regul. Homeost. Agents. 2017, 31 (Suppl. S1), 77–87. [Google Scholar] [PubMed]
- Pelo, S.; Tamburrini, G.; Marianetti, T.M.; Saponaro, G.; Moro, A.; Gasparini, G.; Di Rocco, C. Correlations between the abnormal development of the skull base and facial skeleton growth in anterior synostotic plagiocephaly: The predictive value of a classification based on CT scan examination. Childs Nerv. Syst. 2011, 27, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, V.; Mazur, M.; Guaragna, M.; Di Carlo, G.; Cotticelli, L.; Magliulo, G.; Marasca, B.; Pirro, V.; Di Giorgio, G.; Ndokaj, A.; et al. Correlations of Obstructive Sleep Apnea Syndrome and Daytime Sleepiness with the Risk of Car Accidents in Adult Working Population: A Systematic Review and Meta-Analysis with a Gender-Based Approach. J. Clin. Med. 2022, 11, 3971. [Google Scholar] [CrossRef]
- Blasi, A.; Nucera, R.; Ronsivalle, V.; Candida, E.; Grippaudo, C. Asymmetry Index for the photogrammetric assessment of facial asymmetry. Am. J. Orthod. Dentofacial. Orthop. 2022, 162, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Alqattan, M.; Djordjevic, J.; Zhurov, A.I.; Richmond, S. Comparison between landmark and surface-based three-dimensional analyses of facial asymmetry in adults. Eur. J. Orthod. 2015, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Calandrelli, R.; Pilato, F.; Massimi, L.; Panfili, M.; Di Rocco, C.; Colosimo, C. Quantitative analysis of cranial-orbital changes in infants with anterior synostotic plagiocephaly. Childs Nerv. Syst. 2018, 34, 1725–1733. [Google Scholar] [CrossRef]
- Ortiz, P.M.; Tabbaa, S.; Flores-Mir, C.; Al-Jewair, T. A CBCT investigation of the association between sella-turcica bridging and maxillary palatal canine impaction. Biomed. Res. Int. 2018, 2018, 4329050. [Google Scholar] [CrossRef]
- Ugurlu, M.; Bayrakdar, I.S.; Kahraman, F.; Oksayan, R.; Dagsuyu, I.M. Evaluation of the relationship between impacted canines and three-dimensional sella morphology. Surg. Radiol. Anat. 2020, 42, 23–29. [Google Scholar] [CrossRef]
- Yan, S.; Huang, S.; Wu, Z.; Liu, Y.; Men, Y.; Nie, X.; Guo, J. A CBCT investigation of the sella turcica dimension and sella turcica bridging in different vertical growth patterns. J. Clin. Med. 2023, 12, 1890. [Google Scholar] [CrossRef]
- Captier, G.; Leboucq, N.; Bigorre, M.; Canovas, F.; Bonnel, F.; Bonnafe, A.; Montoya, P. Plagiocephaly: Morphometry of skull base asymmetry. Surg. Radiol. Anat. 2003, 25, 226–233. [Google Scholar] [CrossRef]
- Springate, S.D. The effect of sample size and bias on the reliability of estimates of error: A comparative study of Dahlberg’s formula. Eur. J. Orthod. 2012, 34, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Türker, G.; Öztürk Yaşar, M. Evaluation of associations between condylar morphology, ramus height, and mandibular plane angle in various vertical skeletal patterns: A digital radiographic study. BMC Oral. Health. 2022, 22, 330. [Google Scholar] [CrossRef]
- Son, K.; Lee, W.S.; Lee, K.B. Effect of different software programs on the accuracy of dental scanner using three-dimensional analysis. Int. J. Environ. Res. Public. Health. 2021, 18, 8449. [Google Scholar] [CrossRef]
- Marsh, J.L.; Gado, M.H.; Vannier, M.W.; Stevens, W.G. Osseous anatomy of unilateral coronal synostosis. Cleft Palate J. 1986, 23, 87–95. [Google Scholar] [PubMed]
- Paduano, S.; Rongo, R.; Lucchese, A.; Aiello, D.; Michelotti, A.; Grippaudo, C. Late-Developing Supernumerary Premolars: Analysis of Different Therapeutic Approaches. Case Rep. Dent. 2016, 2016, 2020489. [Google Scholar] [CrossRef]
- Farmer, D.T.; Mlcochova, H.; Zhou, Y.; Koelling, N.; Wang, G.; Ashley, N.; Bugacov, H.; Chen, H.J.; Parvez, R.; Tseng, K.C.; et al. The developing mouse coronal suture at single-cell resolution. Nat. Commun. 2021, 12, 4797. [Google Scholar] [CrossRef] [PubMed]
Landmark | Sagittal Plane Description | Coronal Plane Description |
---|---|---|
ACP-R (anterior clinoid process—right side) | Most anterior and superior point of the right anterior clinoid process apex. | Most lateral and superior projection of the right anterior clinoid process. |
ACP-L (anterior clinoid process—left side) | Most anterior and superior point of the left anterior clinoid process apex. | Most lateral and superior projection of the left anterior clinoid process. |
PCP-R (posterior clinoid process—right side) | Most posterior and superior point of the right posterior clinoid process apex. | Most medial and superior projection of the right posterior clinoid process. |
PCP-L (left posterior clinoid process—left side) | Most posterior and superior point of the left posterior clinoid process apex. | Most medial and superior projection of the left posterior clinoid process. |
DS (Dorsum sellae point) | Most posterior and superior point on the midline of the dorsum sellae upper margin. | Central point on the upper margin of the dorsum sellae, equidistant from PCP-R and PCP-L. |
TS (Tuberculum sellae) | Most anterior and superior point on the midline of the tuberculum sellae margin. | Central point on the anterior margin of the sella turcica, equidistant from ACP-R and ACP-L. |
Linear Measurements | Study Group | Control Group | p-Value |
---|---|---|---|
Anterior Clinoid Distance | 23.20 ± (2.82) | 24.28 ± (2.67) | 0.41 |
Posterior Clinoid Distance | 13.88 ± (3.02) | 12.13 ± (2.44) | 0.19 |
Median sella Length | 9.29 ± (1.31) | 9.53 ± (1.35) | 0.71 |
Diseased-side sella length | 7.21 ± (1.68) | 7.57 ± (1.83) | 0.67 |
Healthy-side sella length | 8.16 ± (1.97) | 7.29 ± (1.64) | 0.33 |
A.I. Sella length | 5.94 | 1.62 | 0.02* |
Linear Measurements | Study Group | Control Group | p-Value |
---|---|---|---|
Ill-side anterior cranial fossa length | 39.62 ± (4.89) | 41.98 ± (3.22) | 0.24 |
Healthy-side anterior cranial fossa length | 46.50 ± (5.56) | 41.96 ± (3.23) | 0.05 |
A.I. anterior cranial fossa length | 7.96 | 0.02 | 0.01* |
Ill-side median cranial fossa length | 53.16 ± (3.46) | 56.89 ± (6.08) | 0.12 |
Healthy-side median cranial fossa length | 56.27 ± (3.22) | 56.23 ± (6.21) | 0.98 |
A.I. middle cranial fossa length | 2.86 | 0.62 | 0.00* |
Ill-side posterior cranial fossa length | 46.03 ± (4.39) | 44.32 ± (6.37) | 0.51 |
Healthy-side posterior cranial fossa length | 45.85 ± (5.02) | 44.16 ± (5.67) | 0.51 |
A.I. posterior cranial fossa length | 0.25 | 0.05 | 0.79 |
Angular Widths | Study Group | Control Group | p-Value |
---|---|---|---|
Ill-side anterior cranial fossa angle | 48.23 ± (6.80) | 51.84 ± (2.42) | 0.15 |
Healthy-side anterior cranial fossa angle | 58.25 ± (7.43) | 52.43 ± (3.76) | 0.05 |
A.I. anterior cranial fossa angle | 9.42 | 0.51 | 0.02 * |
Ill-side middle cranial fossa angle | 84.27 ± (4.52) | 87.82 ± (8.64) | 0.29 |
Healthy-side middle cranial fossa angle | 88.69 ± (3.87) | 89.00 ± (8.79) | 0.92 |
A.I. middle cranial fossa angle | 2.57 | 0.65 | 0.09 |
Ill-side posterior cranial fossa angle | 40.6 ± (2.57) | 40.48 ± (7.32) | 0.96 |
Healthy-side posterior cranial fossa angle | 40.05 ± (3.53) | 40.26 ± (6.78) | 0.93 |
A.I. posterior cranial fossa angle | 0.76 | 1.77 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staderini, E.; Guerrieri, D.; Tepedino, M.; Saponaro, G.; Moro, A.; Gasparini, G.; Gallenzi, P.; Cordaro, M. Sella Turcica and Cranial Base Symmetry in Anterior Synostotic Plagiocephaly Patients: A Retrospective Case–Control Study. Diagnostics 2025, 15, 2199. https://doi.org/10.3390/diagnostics15172199
Staderini E, Guerrieri D, Tepedino M, Saponaro G, Moro A, Gasparini G, Gallenzi P, Cordaro M. Sella Turcica and Cranial Base Symmetry in Anterior Synostotic Plagiocephaly Patients: A Retrospective Case–Control Study. Diagnostics. 2025; 15(17):2199. https://doi.org/10.3390/diagnostics15172199
Chicago/Turabian StyleStaderini, Edoardo, Davide Guerrieri, Michele Tepedino, Gianmarco Saponaro, Alessandro Moro, Giulio Gasparini, Patrizia Gallenzi, and Massimo Cordaro. 2025. "Sella Turcica and Cranial Base Symmetry in Anterior Synostotic Plagiocephaly Patients: A Retrospective Case–Control Study" Diagnostics 15, no. 17: 2199. https://doi.org/10.3390/diagnostics15172199
APA StyleStaderini, E., Guerrieri, D., Tepedino, M., Saponaro, G., Moro, A., Gasparini, G., Gallenzi, P., & Cordaro, M. (2025). Sella Turcica and Cranial Base Symmetry in Anterior Synostotic Plagiocephaly Patients: A Retrospective Case–Control Study. Diagnostics, 15(17), 2199. https://doi.org/10.3390/diagnostics15172199