Development of SNP-LAMP Combined with Lateral Flow Dipstick to Detect the S531L rpoB Gene Mutation in Rifampicin-Resistant Mycobacterium tuberculosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Mycobacterium Specimens
2.3. Primer Design and LAMP Amplification
2.4. LFD Assay
2.5. Sensitivity and Specificity of LAMP-LFD
2.6. Application of Sample Analysis
3. Results
3.1. Optimum Temperature for the LAMP Reaction
3.2. Optimum Concentration of MgSO4 for the LAMP Reaction
3.3. dNTP Concentration in the LAMP Reaction
3.4. Sensitivity and Specificity Test
3.5. Performance of the LAMP-Combined Dipstick Assay for MDR-TB Diagnosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organzition. Global Tuberculosis Report 2024. Available online: https://www.who.int/publications/i/item/9789240101531 (accessed on 26 July 2025).
- World Health Organzition. Global Tuberculosis Report, Geneva 2023. Available online: https://www.who.int/publications/i/item/9789240083851 (accessed on 26 July 2025).
- Jose Vadakunnel, M.; Nehru, V.J.; Brammacharry, U.; Ramachandra, V.; Palavesam, S.; Muthukumar, A.; Mani, B.R.; Sriramkumar, S.R.; Pradhabane, G.; Vn, A.D.; et al. Impact of rpoB gene mutations and Rifampicin-resistance levels on treatment outcomes in Rifampicin-resistant tuberculosis. BMC Infect. Dis. 2025, 25, 284. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Moganeradj, K.; Mahmood, N.; McHugh, T.D.; Chaudhry, M.N.; Arnold, C. Sequence analysis of the rifampicin resistance determining region (RRDR) of rpoB gene in multidrug resistance confirmed and newly diagnosed tuberculosis patients of Punjab, Pakistan. PLoS ONE 2017, 12, e0183363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinha, P.; Srivastava, G.N.; Tripathi, R.; Mishra, M.N.; Anupurba, S. Detection of mutations in the rpoB gene of rifampicin-resistant Mycobacterium tuberculosis strains inhibiting wild type probe hybridization in the MTBDR plus assay by DNA sequencing directly from clinical specimens. BMC Microbiol. 2020, 20, 284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lönnroth, K.; Castro, K.G.; Chakaya, J.M.; Chauhan, L.S.; Floyd, K.; Glaziou, P.; Raviglione, M.C. Tuberculosis control and elimination 2010-50: Cure, care, and social development. Lancet 2010, 375, 1814–1829. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Lu, J.J.; Chang, C.Y.; Chou, W.P.; Hsieh, J.C.H.; Lin, C.R.; Wu, M.H. Development of a high sensitivity TaqMan-based PCR assay for the specific detection of Mycobacterium tuberculosis complex in both pulmonary and extrapulmonary specimens. Sci. Rep. 2019, 9, 113. [Google Scholar] [CrossRef]
- Rozales, F.P.; Machado, A.B.; De Paris, F.; Zavascki, A.P.; Barth, A.L. PCR to detect Mycobacterium tuberculosis in respiratory tract samples: Evaluation of clinical data. Epidemiol. Infect. 2014, 142, 1517–1523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaewphinit, T.; Arunrut, N.; Kiatpathomchai, W.; Santiwatanakul, S.; Jaratsing, P.; Chansiri, K. Detection of Mycobacterium tuberculosis by using loop-mediated isothermal amplification combined with a lateral flow dipstick in clinical samples. Biomed. Res. Int. 2013, 2013, 926230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ckumdee, J.; Kaewphinit, T.; Chansiri, K.; Santiwatanakul, S. Development of Au-nanoprobes combined with loop-mediated isothermal amplification for detection of isoniazid resistance in Mycobacterium tuberculosis. J. Chem. 2016, 2016, 3474396. [Google Scholar] [CrossRef]
- Steingart, K.R.; Schiller, I.; Horne, D.J.; Pai, M.; Boehme, C.C.; Dendukuri, N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 2014, 2014, CD009593, Update in Cochrane Database Syst. Rev. 2019, 6, CD009593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bobba, S.; Khader, S.A. Rifampicin drug resistance and host immunity in tuberculosis: More than meets the eye. Trends Immunol. 2023, 44, 712–723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singpanomchai, N.; Akeda, Y.; Tomono, K.; Tamaru, A.; Santanirand, P.; Ratthawongjirakul, P. Rapid detection of multidrug-resistant tuberculosis based on allele-specific recombinase polymerase amplification and colorimetric detection. PLoS ONE 2021, 16, e0253235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jirakittiwut, N.; Sathianpitayakul, P.; Santanirand, P.; Akeda, Y.; Vilaivan, T.; Ratthawongjirakul, P. Peptide nucleic acid-immobilised paper combined with multiplex recombinase polymerase amplification for the ultrasensitive and rapid detection of rifampicin-resistant tuberculosis. Sci. Rep. 2025, 15, 2603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, G.; Qiu, Y.; Long, K.; Ma, Y.; Luo, H.; Yang, M.; Hou, J.; Huo, D.; Hou, C. Rapid and Ultrasensitive Approach for the Simultaneous Detection of Multilocus Mutations to Distinguish Rifampicin-Resistant Mycobacterium tuberculosis. Anal. Chem. 2022, 94, 17653–17661. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Liu, H.; Xu, H.; Shi, H.; Liu, D.; Ou, M.; Liu, P.; Zhang, G. Direct detection from sputum for drug-resistant Mycobacterium tuberculosis using a CRISPR-Cas14a-based approach. BMC Microbiol. 2025, 25, 188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varona, M.; Anderson, J.L. Visual Detection of Single-Nucleotide Polymorphisms Using Molecular Beacon Loop-Mediated Isothermal Amplification with Centrifuge-Free DNA Extraction. Anal. Chem. 2019, 91, 6991–6995. [Google Scholar] [CrossRef] [PubMed]
- Varona, M.; Anderson, J.L. Advances in Mutation Detection Using Loop-Mediated Isothermal Amplification. ACS Omega 2021, 6, 3463–3469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gill, P.; Hadian Amree, A. AS-LAMP: A New and Alternative Method for Genotyping. Avicenna J. Med. Biotechnol. 2020, 12, 2–8. [Google Scholar] [PubMed] [PubMed Central]
- Cierzniak, A.; Małodobra-Mazur, M.; Tokarski, M. A new approach for the detection of genetic alterations utilizing modified loop-mediated isothermal amplification reaction (LAMP). Sci. Rep. 2025, 15, 8071. [Google Scholar] [CrossRef]
- Horiuchi, S.; Saito, Y.; Matsui, A.; Takahashi, N.; Ikeya, T.; Hoshi, E.; Shimizu, Y.; Yasuda, M. A novel loop mediated isothermal amplification method for efficient and robust detection of EGFR mutations. Int. J. Oncol. 2020, 56, 743–749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Srividya, A.; Maiti, B.; Chakraborty, A.; Chakraborty, G. Loop Mediated Isothermal Amplification: A Promising Tool for Screening Genetic Mutations. Mol. Diagn. Ther. 2019, 23, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Hyman, L.B.; Christopher, C.R.; Romero, P.A. Competitive SNP-LAMP probes for rapid and robust single-nucleotide polymorphism detection. Cell Rep. Methods 2022, 2, 100242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nandu, N.; Miller, M.; Tong, Y.; Lu, Z.X. A novel dual probe-based method for mutation detection using isothermal amplification. PLoS ONE 2024, 19, e0309541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, X.; Zhan, D.; Huang, X.; Bi, J.; Li, J.; Meng, L.; Xie, L.; Li, T. Development of Vibrio parahaemolyticus sensitive and specific loop-mediated isothermal amplification combined with lateral flow device. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2025, 169. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chen, G.; Zhang, C.; Wang, Y.; Zhou, J. Development of loop-mediated isothermal amplification combined with a chromatographic lateral-flow dipstick for rapid detection of Chattonella marina. Harmful Algae 2019, 89, 101666. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, S.; Ahmed, M.Z.; Bhardwaj, N.; Singh, J.; Kumari, S.; Savargaonkar, D.; Anvikar, A.R.; Das, J. Advanced Multiplex Loop Mediated Isothermal Amplification (mLAMP) Combined with Lateral Flow Detection (LFD) for Rapid Detection of Two Prevalent Malaria Species in India and Melting Curve Analysis. Diagnostics 2022, 12, 32. [Google Scholar] [CrossRef]
- Yongkiettrakul, S.; Kolié, F.R.; Kongkasuriyachai, D.; Sattabongkot, J.; Nguitragool, W.; Nawattanapaibool, N.; Suansomjit, C.; Warit, S.; Kangwanrangsan, N.; Buates, S. Validation of PfSNP-LAMP-Lateral Flow Dipstick for Detection of Single Nu-cleotide Polymorphism Associated with Pyrimethamine Resistance in Plasmodium falciparum. Diagnostics 2020, 10, 948. [Google Scholar] [CrossRef]
- Zasada, A.A.; Wiatrzyk, A.; Czajka, U.; Brodzik, K.; Formińska, K.; Mosiej, E.; Prygiel, M.; Krysztopa-Grzybowska, K.; Wdowiak, K. Application of loop-mediated isothermal amplification combined with colorimetric and lateral flow dipstick visualization as the potential point-of-care testing for Corynebacterium diphtheriae. BMC Infect. Dis. 2020, 20, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, J.; Zhu, M.; Xu, M.; Shi, F. Loop-mediated isothermal amplification-lateral-flow dipstick (LAMP-LFD) to detect Mycoplasma ovipneumoniae. World J. Microbiol. Biotechnol. 2019, 35, 31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Chen, G.; Zhang, C.; Wang, Y.; Sun, R. Application of loop-mediated isothermal amplification combined with lateral flow dipstick to rapid and sensitive detection of Alexandrium catenella. Environ. Sci. Pollut. Res. Int. 2020, 27, 4246–4257. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Q.; Huang, X.H.; Guo, L.Q.; Shen, Z.C.; Lv, L.X.; Li, F.X.; Zhou, Z.H.; Zhang, D.F. Rapid and Visual Detection of Vibrio parahaemolyticus in Aquatic Foods Using blaCARB-17 Gene-Based Loop-Mediated Isothermal Amplification with Lateral Flow Dipstick (LAMP-LFD). J. Microbiol. Biotechnol. 2021, 31, 1672–1683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Primer | Sequence |
---|---|
F3 | 5′-CCGCAGACGTTGATCAACAT-3′ |
B3 | 5′-CCCCTCAGGGGTTTCGA-3′ |
FIP | 5′-GTGCCGAAGAACTCCTTGATTTTTCGGCCGGTGGTCGCCG-3′ |
BIP-bio | 5′-biotin-CAACCCGCTGTCGGGGTTTTTTGCCGGGCCCCAGCGTCA-3′ |
LB-fit-C | 5′-fitC-ACCGACAAGCGCCGACTG-3′ |
DST */DNA Sequencing | LAMP Dipstick | ||
---|---|---|---|
Positive | Negative | Total | |
rpoB resistance (6) | 6 | 0 | 6 |
rpoB susceptible (4) | 0 | 4 | 4 |
Total (10) | 6 | 4 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ckumdee, J.; Chamnanphom, M.; Wiwattanakul, S.; Santiwatanakul, S.; Onruang, K.; Kaewphinit, T. Development of SNP-LAMP Combined with Lateral Flow Dipstick to Detect the S531L rpoB Gene Mutation in Rifampicin-Resistant Mycobacterium tuberculosis. Diagnostics 2025, 15, 2183. https://doi.org/10.3390/diagnostics15172183
Ckumdee J, Chamnanphom M, Wiwattanakul S, Santiwatanakul S, Onruang K, Kaewphinit T. Development of SNP-LAMP Combined with Lateral Flow Dipstick to Detect the S531L rpoB Gene Mutation in Rifampicin-Resistant Mycobacterium tuberculosis. Diagnostics. 2025; 15(17):2183. https://doi.org/10.3390/diagnostics15172183
Chicago/Turabian StyleCkumdee, Jutturong, Monpat Chamnanphom, Supaporn Wiwattanakul, Somchai Santiwatanakul, Kwanchai Onruang, and Thongchai Kaewphinit. 2025. "Development of SNP-LAMP Combined with Lateral Flow Dipstick to Detect the S531L rpoB Gene Mutation in Rifampicin-Resistant Mycobacterium tuberculosis" Diagnostics 15, no. 17: 2183. https://doi.org/10.3390/diagnostics15172183
APA StyleCkumdee, J., Chamnanphom, M., Wiwattanakul, S., Santiwatanakul, S., Onruang, K., & Kaewphinit, T. (2025). Development of SNP-LAMP Combined with Lateral Flow Dipstick to Detect the S531L rpoB Gene Mutation in Rifampicin-Resistant Mycobacterium tuberculosis. Diagnostics, 15(17), 2183. https://doi.org/10.3390/diagnostics15172183