The Relationship Between OCT and VEP Parameters with Disability and Disease Duration in Relapsing–Remitting Multiple Sclerosis
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, B.; Zhang, X.; Hu, H.; Yang, H.; Wang, X.; Zhong, M.; Yang, F.; Hua, F. From diagnosis to treatment: Exploring the mechanisms underlying optic neuritis in multiple sclerosis. J. Transl. Med. 2025, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Fraser, C.L.; Abegg, M.; Alroughani, R.; Alshowaeir, D.; Alvarenga, R.; Andris, C.; Asgari, N.; Barnett, Y.; Battistella, R.; et al. Diagnosis and classification of optic neuritis. Lancet Neurol. 2022, 21, 1120–1134. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.L. Optic Neuritis. CONTINUUM Lifelong Learn. Neurol. 2019, 25, 1236–1264. [Google Scholar] [CrossRef]
- Pisa, M.; Pansieri, J.; Yee, S.; Ruiz, J.; Leite, M.I.; Palace, J.; Comi, G.; Esiri, M.M.; Leocani, L.; DeLuca, G.C. Anterior optic pathway pathology in CNS demyelinating diseases. Brain 2022, 145, 4308–4319. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef]
- Klotz, L.; Saraste, M.; Airas, L.; Kuhlmann, T. Multiple sclerosis: 2024 update. Free Neuropathol. 2025, 6, 14. [Google Scholar]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.; et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef]
- Guerrieri, S.; Comi, G.; Leocani, L. Optical Coherence Tomography and Visual Evoked Potentials as Prognostic and Monitoring Tools in Progressive Multiple Sclerosis. Front. Neurosci. 2021, 15, 692599. [Google Scholar] [CrossRef]
- Barton, J.L.; Garber, J.Y.; Klistorner, A.; Barnett, M.H. The electrophysiological assessment of visual function in Multiple Sclerosis. Clin. Neurophysiol. Pract. 2019, 4, 90–96. [Google Scholar] [CrossRef]
- Donica, V.C.; Alexa, A.I.; Pavel, I.A.; Danielescu, C.; Ciapă, M.A.; Donica, A.L.; Bogdănici, C.M. The Evolvement of OCT and OCT-A in Identifying Multiple Sclerosis Biomarkers. Biomedicines 2023, 11, 3031. [Google Scholar] [CrossRef] [PubMed]
- Filippatou, A.G.; Calabresi, P.A.; Saidha, S.; Murphy, O.C. Spotlight on Trans-Synaptic Degeneration in the Visual Pathway in Multiple Sclerosis. Eye Brain 2023, 15, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Pfister, A.; Tsagkas, C.; Gaetano, L.; Sellathurai, S.; D’Souza, M.; Cerdá-Fuertes, N.; Gugleta, K.; Descoteaux, M.; Chakravarty, M.M.; et al. Visual evoked potentials in multiple sclerosis: P100 latency and visual pathway damage including the lateral geniculate nucleus. Clin. Neurophysiol. 2024, 161, 122–132. [Google Scholar] [CrossRef]
- Behbehani, R.; Ali, A.; Al-Omairah, H.; Rousseff, R.T. Optimization of spectral domain optical coherence tomography and visual evoked potentials to identify unilateral optic neuritis. Mult. Scler. Relat. Disord. 2020, 41, 101988. [Google Scholar] [CrossRef]
- Vidal-Jordana, A.; Rovira, A.; Calderon, W.; Arrambide, G.; Castilló, J.; Moncho, D.; Rahnama, K.; Collorone, S.; Toosy, A.T.; Ciccarelli, O.; et al. Adding the Optic Nerve in Multiple Sclerosis Diagnostic Criteria: A Longitudinal, Prospective, Multicenter Study. Neurology 2024, 102, e200805. [Google Scholar] [CrossRef]
- Donica, V.C.; Danielescu, C.; Alexa, A.I.; Pavel, I.A.; Donica, A.L.; Grosu, C.; Sandu, C.A.; Bogdănici, C.M. Evaluating Fundoscopy as a Screening Tool for Optic Nerve Atrophy in Multiple Sclerosis: An Optical Coherence Tomography (OCT) Comparative Study. J. Clin. Med. 2025, 14, 2166. [Google Scholar] [CrossRef] [PubMed]
- Grecescu, M. Optical coherence tomography versus visual evoked potentials in detecting subclinical visual impairment in multiple sclerosis. J. Med. Life 2014, 7, 538–541. [Google Scholar]
- Di Maggio, G.; Santangelo, R.; Guerrieri, S.; Bianco, M.; Ferrari, L.; Medaglini, S.; Rodegher, M.; Colombo, B.; Moiola, L.; Chieffo, R.; et al. Optical coherence tomography and visual evoked potentials: Which is more sensitive in multiple sclerosis? Mult. Scler. J. 2014, 20, 1342–1347. [Google Scholar] [CrossRef]
- Ciapă, M.A.; Donica, V.C.; Costea, C.F.; Bogdănici, C.M. Longitudinal Analysis of P100 Wave Amplitude and Latency in Multiple Sclerosis: A 19-Year Retrospective VEP Study. Diagnostics 2025, 15, 1189. [Google Scholar] [CrossRef]
- Behbehani, R.; Ahmed, S.; Al-Hashel, J.; Rousseff, R.T.; Alroughani, R. Sensitivity of visual evoked potentials and spectral domain optical coherence tomography in early relapsing remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2017, 12, 15–19. [Google Scholar] [CrossRef]
- Chilińska, A.; Ejma, M.; Turno-Kręcicka, A.; Guranski, K.; Misiuk-Hojlo, M. Analysis of retinal nerve fibre layer, visual evoked potentials and relative afferent pupillary defect in multiple sclerosis patients. Clin. Neurophysiol. 2016, 127, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Piedrabuena, R.; Bittar, M. Optical coherence tomography and visual evoked potential and its relationship with neurological disability in patients with relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 57, 103420. [Google Scholar] [CrossRef]
- Carcelén-Gadea, M.; Quintanilla-Bordás, C.; Gracia-García, A.; García-Villanueva, C.; Jannone-Pedro, N.; Álvarez-Sánchez, L.; Vilaplana-Domínguez, L.; Blanco-Hernández, T.; Pons-Amate, J.M.; Cervelló-Donderis, A. Functional and structural changes in the visual pathway in multiple sclerosis. Brain Behav. 2019, 9, e01467. [Google Scholar] [CrossRef]
- El Ayoubi, N.K.; Ismail, A.; Sader, G.; Abi Chakra, N.; El Ahdab, J.; Abboud, J.; Khoury, S.J. Retinal Optical Coherence Tomography Longitudinal Measures as Prognostic Biomarkers in Multiple Sclerosis: Systematic Review and Meta-Analysis. Neurol. Neuroimmunol. Neuroinflamm. 2025, 12, e200416. [Google Scholar] [CrossRef]
- Balk, L.J.; Cruz-Herranz, A.; Albrecht, P.; Arnow, S.; Gelfand, J.M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.J.; Petzold, A.; Green, A.J. Timing of retinal neuronal and axonal loss in MS: A longitudinal OCT study. J. Neurol. 2016, 263, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Bsteh, G.; Hegen, H.; Altmann, P.; Auer, M.; Berek, K.; Di Pauli, F.; Leutmezer, F.; Rommer, P.; Wurth, S.; Zinganell, A.; et al. Retinal layer thinning predicts treatment failure in relapsing multiple sclerosis. Eur. J. Neurol. 2021, 28, 2037–2045. [Google Scholar] [CrossRef]
- Bsteh, G.; Hegen, H.; Krajnc, N.; Föttinger, F.; Altmann, P.; Auer, M.; Berek, K.; Kornek, B.; Leutmezer, F.; Macher, S.; et al. Retinal layer thinning for monitoring disease-modifying treatment in relapsing multiple sclerosis—Evidence for applying a rebaselining concept. Mult. Scler. J. 2024, 30, 1128–1138. [Google Scholar] [CrossRef]
- Saidha, S.; Al-Louzi, O.; Ratchford, J.N.; Bhargava, P.; Oh, J.; Newsome, S.D.; Prince, J.L.; Pham, D.; Roy, S.; van Zijl, P.; et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann. Neurol. 2015, 78, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Paul, F.; Calabresi, P.A.; Barkhof, F.; Green, A.J.; Kardon, R.; Sastre-Garriga, J.; Schippling, S.; Vermersch, P.; Saidha, S.; Gerendas, B.S.; et al. Optical coherence tomography in multiple sclerosis: A 3-year prospective multicenter study. Ann. Clin. Transl. Neurol. 2021, 8, 2235–2251. [Google Scholar] [CrossRef]
- Oertel, F.C.; Krämer, J.; Motamedi, S.; Keihani, A.; Zimmermann, H.G.; Dimitriou, N.G.; Condor-Montes, S.; Bereuter, C.; Cordano, C.; Abdelhak, A.; et al. Visually Evoked Potential as Prognostic Biomarker for Neuroaxonal Damage in Multiple Sclerosis from a Multicenter Longitudinal Cohort. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200092. [Google Scholar] [CrossRef]
- Pihl-Jensen, G.; Wanscher, B.; Frederiksen, J.L. Predictive value of optical coherence tomography, multifocal visual evoked potentials, and full-field visual evoked potentials of the fellow, non-symptomatic eye for subsequent multiple sclerosis development in patients with acute optic neuritis. Mult. Scler. J. 2020, 27, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Eklund, A.; Huang-Link, Y.; Kovácsovics, B.; Dahle, C.; Vrethem, M.; Lind, J. OCT and VEP correlate to disability in secondary progressive multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 68, 104255. [Google Scholar] [CrossRef]
- Ciapă, M.A.; Șalaru, D.L.; Stătescu, C.; Sascău, R.A.; Bogdănici, C.M. Optic Neuritis in Multiple Sclerosis—A Review of Molecular Mechanisms Involved in the Degenerative Process. Curr. Issues Mol. Biol. 2022, 44, 3959–3979. [Google Scholar] [CrossRef]
- Bogdănici, S.T.; Costin, D.; Bogdănici, C.M. Quality of life for amblyopic children and their parents. Rev. Med. Chir. Soc. Med. Nat. Iasi 2015, 119, 214–220. [Google Scholar]
- Waldman, A.T.; Liu, G.T.; Lavery, A.M.; Liu, G.; Gaetz, W.; Aleman, T.S.; Banwell, B.L. Optical coherence tomography and visual evoked potentials in pediatric MS. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e356. [Google Scholar] [CrossRef] [PubMed]
- Kothari, R.; Srivastava, S.; Sheikh, A.; Gomashe, A.; Murkhe, A.; Nallathambi, N.; Vrindavanam, S.; Wankhede, P.; Murkhe Sr, A. Study of Visual Evoked Potentials in Schoolchildren: A Promising Aid to Pediatric Ophthalmology. Cureus 2024, 16, e67813. [Google Scholar] [CrossRef]
- Nikolic, B.; Zaletel, I.; Ivancevic, N.; Rovcanin, B.; Pepic, A.; Samardzic, J.; Jancic, J. The usefulness of visual evoked potentials in the assessment of the pediatric multiple sclerosis. Eur. J. Paediatr. Neurol. 2022, 36, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Donica, V.C.; Donica, A.L.; Pavel, I.A.; Danielescu, C.; Alexa, A.I.; Bogdănici, C.M. Variabilities in Retinal Hemodynamics Across the Menstrual Cycle in Healthy Women Identified Using Optical Coherence Tomography Angiography. Life 2024, 15, 22. [Google Scholar] [CrossRef]
- Keyif, B.; Sezer, T.; Çolak, K.; Gündogdu, Z.B.; Meydan, B. Beyond pelvic pathology: Retinal microvascular rarefaction as a systemic marker in endometriosis. BMC Women’s Health 2025, 25, 343. [Google Scholar] [CrossRef]
- Ozbek, M.; Ozcaliskan, S.; Asri, S.; Korkmaz, A.; Pehlivanoglu, S.; Artunay, O. OCTA-based assessment of macular and peripapillary vessel changes during the menstrual cycle. BMC Ophthalmol. 2025, 25, 384. [Google Scholar] [CrossRef]
- Modrego, P.J.; Urrea, M.A.; de Cerio, L.D. The effects of pregnancy on relapse rates, disability and peripartum outcomes in women with multiple sclerosis: A systematic review and meta-analysis. J. Comp. Eff. Res. 2021, 10, 175–186. [Google Scholar] [CrossRef]
- Wang, X.; Bao, L. Comparison of ocular changes in multiple sclerosis and neuromyelitis optica spectrum disorder patients. Front. Neurol. 2024, 15, 1417814. [Google Scholar] [CrossRef]
- Vabanesi, M.; Pisa, M.; Guerrieri, S.; Moiola, L.; Radaelli, M.; Medaglini, S.; Martinelli, V.; Comi, G.; Leocani, L. In vivo structural and functional assessment of optic nerve damage in neuromyelitis optica spectrum disorders and multiple sclerosis. Sci Rep. 2019, 9, 10371. [Google Scholar] [CrossRef]
- Roca-Fernández, A.; Camera, V.; Loncarevic-Whitaker, G.; Messina, S.; Mariano, R.; Vincent, A.; Sharma, S.; Leite, M.I.; Palace, J. The use of OCT in good visual acuity MOGAD and AQP4-NMOSD patients; with and without optic neuritis. Mult. Scler. J.-Exp. Transl. Clin. 2021, 7, 20552173211066446. [Google Scholar] [CrossRef]
- Filgueiras, T.G.; Oyamada, M.K.; Hokazono, K.; Cunha, L.P.; Apóstolos-Pereira, S.L.; Callegaro, D.; Monteiro, M.L.R. Comparison of Visual Evoked Potentials in Patients Affected by Optic Neuritis from Multiple Sclerosis or Neuromyelitis Optica Spectrum Disorder. J. Neuro-Ophthalmol. 2021, 42, e32–e39. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, J.L.; Petrera, J. Serial Visual Evoked Potentials in 90 Untreated Patients with Acute Optic Neuritis. Surv. Ophthalmol. 1999, 44, S54–S62. [Google Scholar] [CrossRef] [PubMed]
- Ava, S.; Tamam, Y.; Hazar, L.; Karahan, M.; Erdem, S.; Dursun, M.E.; Keklikçi, U. Relationship between optical coherence tomography angiography and visual evoked potential in patients with multiple sclerosis. Indian J. Ophthalmol. 2022, 70, 873–878. [Google Scholar] [CrossRef] [PubMed]
Parameters | NON Mean ± SD | NON Median ± SD | ON Mean ± SD | ON Median ± SD |
---|---|---|---|---|
pRNFL T | 104.24 ± 15.84 µm | 108.5 ± 15.84 µm | 85.98 ± 21.21 µm | 83.63 ± 17.61 µm |
pRNFL Temporal T | 67.95 ± 17.61 µm | 73.5 ± 17.61 µm | 52.25 ± 21.15 µm | 47 ± 21.15 µm |
Parafoveal GCIPL T | 102.69 ± 19.29 µm | 107.88 ± 19.29 µm | 89.85 ± 19.03 µm | 88 ± 19.03 µm |
Foveal GCIPL T | 45.86 ± 13.54 µm | 42 ± 13.54 µm | 39.97 ± 10.75 µm | 37 ± 10.75 µm |
p100 Latency | 128.75 ± 44.68 ms | 112.25 ± 44.68 ms | 145.69 ± 32.09 ms | 136.5 ± 32.09 ms |
p100 Amplitude | 4.33 ± 1.7 mV | 4.7 ± 1.7 mV | 4.12 ± 2.1 mV | 4.2 ± 2.1 mV |
Parameters | Mean Difference ± SD | p |
---|---|---|
pRNFL T | 18.27 ± 5.33 µm | 0.001 |
pRNFL Temporal T | 15.71 ± 5.49 µm | 0.006 |
Parafoveal GCIPL T | 12.85 ± 5.3 µm | 0.019 |
Foveal GCIPL T | 5.9 ± 3.31 µm | 0.081 |
p100 Latency | −16.93 ± 10.44 ms | 0.111 |
p100 Amplitude | 0.21 ± 0.53 mV | 0.693 |
Parameters | pRNFL T | pRNFL Temporal T | Parafoveal GCIPL T | Foveal GCIPL T | p100 Latency | p100 Amplitude | EDSS | Disease Duration | |
---|---|---|---|---|---|---|---|---|---|
pRNFL T | r | 1.000 | 0.805 ** | 0.890 ** | 0.635 ** | −0.699 ** | 0.222 | −0.496 * | −0.537 * |
p | . | 0.000 | 0.000 | 0.002 | 0.000 | 0.322 | 0.019 | 0.010 | |
pRNFL Temporal T | r | 0.805 ** | 1.000 | 0.795 ** | 0.687 ** | −0.671 ** | 0.118 | −0.556 ** | −0.577 ** |
p | 0.000 | . | 0.000 | 0.000 | 0.001 | 0.601 | 0.007 | 0.005 | |
Parafoveal GCIPL T | r | 0.890 ** | 0.795 ** | 1.000 | 0.574 ** | −0.622 ** | −0.086 | −0.587 ** | −0.518 * |
p | 0.000 | 0.000 | . | 0.005 | 0.002 | 0.702 | 0.004 | 0.014 | |
Foveal GCIPL T | r | 0.635 ** | 0.687 ** | 0.574 ** | 1.000 | −0.502 * | 0.061 | −0.594 ** | −0.577 ** |
p | 0.002 | 0.000 | 0.005 | . | 0.017 | 0.788 | 0.004 | 0.005 | |
p100 Latency | r | −0.699 ** | −0.671 ** | −0.622 ** | −0.502 * | 1.000 | −0.155 | 0.553 ** | 0.491 * |
p | 0.000 | 0.001 | 0.002 | 0.017 | . | 0.492 | 0.008 | 0.020 | |
p100 Amplitude | r | 0.222 | 0.118 | −0.086 | 0.061 | −0.155 | 1.000 | 0.324 | 0.035 |
p | 0.322 | 0.601 | 0.702 | 0.788 | 0.492 | . | 0.141 | 0.878 | |
EDSS | r | −0.496 * | −0.556 ** | −0.587 ** | −0.594 ** | 0.553 ** | 0.324 | 1.000 | 0.753 ** |
p | 0.019 | 0.007 | 0.004 | 0.004 | 0.008 | 0.141 | . | 0.000 | |
Disease Duration | r | −0.537 * | −0.577 ** | −0.518 * | −0.577 ** | 0.491 * | 0.035 | 0.753 ** | 1.000 |
p | 0.010 | 0.005 | 0.014 | 0.005 | 0.020 | 0.878 | 0.000 | . |
Parameters | pRNFL T | pRNFL Temporal T | Parafoveal GCIPL T | Foveal GCIPL T | p100 Latency | p100 Amplitude | EDSS | Disease Duration | |
---|---|---|---|---|---|---|---|---|---|
pRNFL T | r | 1.000 | 0.903 ** | 0.891 ** | 0.646 ** | −0.583 ** | 0.351 * | −0.410 * | −0.430 * |
p | . | 0.000 | 0.000 | 0.000 | 0.000 | 0.049 | 0.020 | 0.014 | |
pRNFL Temporal T | r | 0.903 ** | 1.000 | 0.955 ** | 0.732 ** | −0.600 ** | 0.341 | −0.330 | −0.398 * |
p | 0.000 | . | 0.000 | 0.000 | 0.000 | 0.056 | 0.065 | 0.024 | |
Parafoveal GCIPL T | r | 0.891 ** | 0.955 ** | 1.000 | 0.744 ** | −0.601 ** | 0.326 | −0.423 * | −0.398 * |
p | 0.000 | 0.000 | . | 0.000 | 0.000 | 0.068 | 0.016 | 0.024 | |
Foveal GCIPL T | r | 0.646 ** | 0.732 ** | 0.744 ** | 1.000 | −0.406 * | 0.047 | −0.378 * | −0.149 |
p | 0.000 | 0.000 | 0.000 | . | 0.021 | 0.799 | 0.033 | 0.415 | |
p100 Latency | r | −0.583 ** | −0.600 ** | −0.601 ** | −0.406 * | 1.000 | −0.188 | 0.297 | 0.446 * |
p | 0.000 | 0.000 | 0.000 | 0.021 | . | 0.303 | 0.099 | 0.010 | |
p100 Amplitude | r | 0.351 * | 0.341 | 0.326 | 0.047 | −0.188 | 1.000 | −0.217 | 0.131 |
p | 0.049 | 0.056 | 0.068 | 0.799 | 0.303 | . | 0.234 | 0.473 | |
EDSS | r | −0.410 * | −0.330 | −0.423 * | −0.378 * | 0.297 | −0.217 | 1.000 | 0.294 |
p | 0.020 | 0.065 | 0.016 | 0.033 | 0.099 | 0.234 | . | 0.103 | |
Disease Duration | r | −0.430 * | −0.398 * | −0.398 * | −0.149 | 0.446 * | 0.131 | 0.294 | 1.000 |
p | 0.014 | 0.024 | 0.024 | 0.415 | 0.010 | 0.473 | 0.103 | . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciapă, M.A.; Donica, V.C.; Costea, C.F.; Alexa, A.I.; Donica, A.L.; Bogdănici, C.M. The Relationship Between OCT and VEP Parameters with Disability and Disease Duration in Relapsing–Remitting Multiple Sclerosis. Diagnostics 2025, 15, 2181. https://doi.org/10.3390/diagnostics15172181
Ciapă MA, Donica VC, Costea CF, Alexa AI, Donica AL, Bogdănici CM. The Relationship Between OCT and VEP Parameters with Disability and Disease Duration in Relapsing–Remitting Multiple Sclerosis. Diagnostics. 2025; 15(17):2181. https://doi.org/10.3390/diagnostics15172181
Chicago/Turabian StyleCiapă, Manuela Andreea, Vlad Constantin Donica, Claudia Florida Costea, Anisia Iuliana Alexa, Alexandra Lori Donica, and Camelia Margareta Bogdănici. 2025. "The Relationship Between OCT and VEP Parameters with Disability and Disease Duration in Relapsing–Remitting Multiple Sclerosis" Diagnostics 15, no. 17: 2181. https://doi.org/10.3390/diagnostics15172181
APA StyleCiapă, M. A., Donica, V. C., Costea, C. F., Alexa, A. I., Donica, A. L., & Bogdănici, C. M. (2025). The Relationship Between OCT and VEP Parameters with Disability and Disease Duration in Relapsing–Remitting Multiple Sclerosis. Diagnostics, 15(17), 2181. https://doi.org/10.3390/diagnostics15172181