Decision Tree Modeling to Predict Myopia Progression in Children Treated with Atropine: Toward Precision Ophthalmology
Abstract
1. Introduction
2. Methodology
2.1. Study Design and Population
2.2. Clinical Measurements
2.3. Machine Learning Methods
2.4. Modeling Scheme
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.-J.; Zaabaar, E.; French, A.N.; Tang, F.-Y.; Kam, K.-W.; Tham, C.C.; Chen, L.-J.; Pang, C.-P.; Yam, J.C. Advances in myopia control strategies for children. Br. J. Ophthalmol. 2025, 109, 165–176. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Wang, Y.; Du, W.; Yang, J. Trend of myopia through different interventions from 2010 to 2050: Findings from Eastern Chinese student surveillance study. Front. Med. 2023, 9, 1069649. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Ritchey, E.R.; Shah, S.; Leveziel, N.; Bourne, R.R.A.; Flitcroft, D.I. The risks and benefits of myopia control. Ophthalmology 2021, 128, 1561–1579. [Google Scholar] [CrossRef]
- Eppenberger, L.S.; Grzybowski, A.; Schmetterer, L.; Ang, M. Myopia Control: Are We Ready for an Evidence Based Approach? Ophthalmol. Ther. 2024, 13, 1453–1477. [Google Scholar] [CrossRef] [PubMed]
- Fricke, T.R.; Sankaridurg, P.; Naduvilath, T.; Resnikoff, S.; Tahhan, N.; He, M.; Frick, K.D. Establishing a method to estimate the effect of antimyopia management options on lifetime cost of myopia. Br. J. Ophthalmol. 2023, 107, 1043–1050. [Google Scholar] [CrossRef]
- Wei, X.-L.; Wu, T.; Dang, K.-R.; Hu, K.-K.; Lu, X.-T.; Gong, M.; Du, Y.-R.; Hui, Y.-N.; Tian, X.-M.; Du, H.-J. Efficacy and safety of atropine at different concentrations in prevention of myopia progression in Asian children: A systematic review and Meta-analysis of randomized clinical trials. Int. J. Ophthalmol. 2023, 16, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Wu, D.; Nie, Y.; Wei, H.; Liu, L.; Yang, G. Comparison of the efficacy and safety of different doses of atropine for myopic control in children: A meta-analysis. Front. Pharmacol. 2023, 14, 1227787. [Google Scholar] [CrossRef]
- Wang, J.-D.; Liu, M.-R.; Chen, C.-X.; Cao, K.; Zhang, Y.; Zhu, X.-H.; Wan, X.-H. Effects of atropine eyedrops at ten different concentrations for myopia control in children: A systematic review on meta-analysis. Eur. J. Ophthalmol. 2024, 34, 1355–1364. [Google Scholar] [CrossRef]
- Lanca, C.; Repka, M.X.; Grzybowski, A. Controversies in Myopia Control Treatment: What Does It Mean for Future Research? Am. J. Ophthalmol. 2025, 272, 79–86. [Google Scholar] [CrossRef]
- Wang, B.; Watt, K.; Chen, Z.; Kang, P. Predicting the child who will become myopic—Can we prevent onset? Clin. Exp. Optom. 2023, 106, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-W.; Chang, H.-C.; Chen, Y.-H.; Chien, K.-H. Classification-Based Approaches to Myopia Control in a Taiwanese Cohort. Front. Med. 2022, 9, 879210. [Google Scholar] [CrossRef] [PubMed]
- Wnękowicz-Augustyn, E.; Teper, S.; Wylęgała, E. Preventing the Progression of Myopia in Children-A Review of the Past Decade. Medicina 2023, 59, 1859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, M.; Liang, L.; Shi, B.; Gong, D.; Wu, Y.; Zhang, J.; Wang, M. The Guiding Significance of Ocular Biometry in Evaluating the Refractive Status of Preschool Children. Ophthalmic Res. 2023, 66, 1213–1221. [Google Scholar] [CrossRef]
- Gaya, F.; Medina, A. The equations of ametropia: Predicting myopia. J. Optom. 2022, 15, 238–246. [Google Scholar] [CrossRef]
- Du, L.; Ding, L.; Chen, J.; Wang, J.; Yang, J.; Liu, S.; Xu, X.; He, X.; Huang, J.; Zhu, M. Efficacy of weekly dose of 1% atropine for myopia control in Chinese children. Br. J. Ophthalmol. 2025, 109, 264–272. [Google Scholar] [CrossRef]
- Rose, L.V.T.; Schulz, A.M.; Graham, S.L. Use baseline axial length measurements in myopic patients to predict the control of myopia with and without atropine 0.01. PLoS ONE 2021, 16, e0254061. [Google Scholar] [CrossRef] [PubMed]
- Sankaridurg, P.; Berntsen, D.A.; Bullimore, M.A.; Cho, P.; Flitcroft, I.; Gawne, T.J.; Gifford, K.L.; Jong, M.; Kang, P.; Ostrin, L.A.; et al. IMI 2023 Digest. Investig. Ophthalmol. Vis. Sci. 2023, 64, 7. [Google Scholar] [CrossRef]
- Jonas, J.B.; Ang, M.; Cho, P.; Guggenheim, J.A.; He, M.G.; Jong, M.; Logan, N.S.; Liu, M.; Morgan, I.; Ohno-Matsui, K.; et al. IMI Prevention of Myopia and Its Progression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 6. [Google Scholar] [CrossRef]
- Jong, M.; Jonas, J.B.; Wolffsohn, J.S.; Berntsen, D.A.; Cho, P.; Clarkson-Townsend, D.; Flitcroft, D.I.; Gifford, K.L.; Haarman, A.E.G.; Pardue, M.T.; et al. IMI 2021 Yearly Digest. Investig. Ophthalmol. Vis. Sci. 2021, 62, 7. [Google Scholar] [CrossRef]
- Németh, J.; Tapasztó, B.; Aclimandos, W.A.; Kestelyn, P.; Jonas, J.B.; De Faber, J.H.N.; Januleviciene, I.; Grzybowski, A.; Nagy, Z.Z.; Pärssinen, O.; et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur. J. Ophthalmol. 2021, 31, 853–883. [Google Scholar] [CrossRef]
- Chen, J.-W.; Chen, H.-A.; Liu, T.-C.; Wu, T.-E.; Lu, C.-J. The Potential of SHAP and Machine Learning for Personalized Explanations of Influencing Factors in Myopic Treatment for Children. Medicina 2024, 61, 16. [Google Scholar] [CrossRef]
- Wu, T.-E.; Chen, J.-W.; Liu, T.-C.; Yu, C.-H.; Jhou, M.-J.; Lu, C.-J. Identifying and Exploring the Impact Factors for Intraocular Pressure Prediction in Myopic Children with Atropine Control Utilizing Multivariate Adaptive Regression Splines. J. Pers. Med. 2024, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Zhou, X.; Qu, X. Analysis of Factors That May Affect the Effect of Atropine 0.01% on Myopia Control. Front. Pharmacol. 2020, 11, 01081. [Google Scholar] [CrossRef]
- Srivastava, O.; Tennant, M.; Grewal, P.; Rubin, U.; Seamone, M. Artificial intelligence and machine learning in ophthalmology: A review. Indian J. Ophthalmol. 2023, 71, 11–17. [Google Scholar] [CrossRef]
- Oke, I.; VanderVeen, D. Machine Learning Applications in Pediatric Ophthalmology. Semin. Ophthalmol. 2021, 36, 210–217. [Google Scholar] [CrossRef]
- Wy, S.; Choe, S.; Lee, Y.-J.; Bak, E.; Jang, M.; Lee, S.-C.; Ha, A.; Jeoung, J.-W.; Park, K.-H.; Kim, Y.-K. Decision Tree Algorithm-Based Prediction of Vulnerability to Depressive and Anxiety Symptoms in Caregivers of Children With Glaucoma. Am. J. Ophthalmol. 2022, 239, 90–97. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 1984; pp. 216–266. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Tapasztó, B.; Flitcroft, D.I.; Aclimandos, W.A.; Jonas, J.B.; De Faber, J.H.N.; Nagy, Z.Z.; Kestelyn, P.G.; Januleviciene, I.; Grzybowski, A.; Vidinova, C.N.; et al. Myopia management algorithm. Annexe to the article titled Update and Guidance on Management of Myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur. J. Ophthalmol. 2024, 34, 952–966. [Google Scholar] [CrossRef] [PubMed]
- Rada, J.A.; Shelton, S.; Norton, T.T. The sclera and myopia. Exp. Eye Res. 2006, 82, 185–200. [Google Scholar] [CrossRef]
- McBrien, N.A.; Gentle, A. Role of the sclera in the development and pathological complications of myopia. Prog. Retin. Eye Res. 2003, 22, 307–338. [Google Scholar] [CrossRef] [PubMed]
- Sihota, R.; Tuli, D.; Dada, T.; Gupta, V.; Sachdeva, M.M. Distribution and determinants of intraocular pressure in a normal pediatric population. J. Pediatr. Ophthalmol. Strabismus 2006, 43, 14–37. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yip, M.; Ning, Y.; Chung, J.; Toh, A.; Leow, C.; Liu, N.; Ting, D.; Schmetterer, L.; Saw, S.-M.; et al. Topical atropine for childhood myopia control: The Atropine Treatment Long-Term Assessment Study. JAMA Ophthalmol. 2024, 142, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wong, D.; Sreng, S.; Chung, J.; Toh, A.; Yuan, H.; Eppenberger, L.S.; Leow, C.; Ting, D.; Liu, N. Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation. Asia Pac. J. Ophthalmol. 2024, 13, 100107. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (SD) |
---|---|
Target Variable | |
SE Difference | −0.46 (0.58) |
Numerical Variable | |
Base SE (Diopter) | −2.48 (1.57) |
Base IOP (mmHg) | 14.51 (2.69) |
IOP Difference (mmHg) | 0.57 (2.48) |
Age () | 10.53 (2.56) |
Total Duration (Month) | 20.02 (12.01) |
Total Cumulative Dosage (mg) | 118.72 (133.74) |
Total Average Dosage () | 6.43 (6.27) |
Categorical Variable | |
Gender | N (%) |
Male | 813 (53%) |
Female | 732 (47%) |
Model | MSE | RMSE | MAE | RAE | RSE |
---|---|---|---|---|---|
Lasso | 0.287 (0.033) | 0.535 (0.031) | 0.392 (0.016) | 0.917 (0.030) | 0.853 (0.044) |
CART | 0.296 (0.034) | 0.543 (0.031) | 0.398 (0.017) | 0.931 (0.036) | 0.882 (0.068) |
Rules | Combination of Condition | SE Prediction |
---|---|---|
1 | and months and mmHg | |
2 | and and | |
3 | and and mg/month | |
4 | and and | |
5 | and and | |
6 | and and | |
7 | and |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-W.; Lu, C.-J.; Yu, C.-H.; Liu, T.-C.; Wu, T.-E. Decision Tree Modeling to Predict Myopia Progression in Children Treated with Atropine: Toward Precision Ophthalmology. Diagnostics 2025, 15, 2096. https://doi.org/10.3390/diagnostics15162096
Chen J-W, Lu C-J, Yu C-H, Liu T-C, Wu T-E. Decision Tree Modeling to Predict Myopia Progression in Children Treated with Atropine: Toward Precision Ophthalmology. Diagnostics. 2025; 15(16):2096. https://doi.org/10.3390/diagnostics15162096
Chicago/Turabian StyleChen, Jun-Wei, Chi-Jie Lu, Chieh-Han Yu, Tzu-Chi Liu, and Tzu-En Wu. 2025. "Decision Tree Modeling to Predict Myopia Progression in Children Treated with Atropine: Toward Precision Ophthalmology" Diagnostics 15, no. 16: 2096. https://doi.org/10.3390/diagnostics15162096
APA StyleChen, J.-W., Lu, C.-J., Yu, C.-H., Liu, T.-C., & Wu, T.-E. (2025). Decision Tree Modeling to Predict Myopia Progression in Children Treated with Atropine: Toward Precision Ophthalmology. Diagnostics, 15(16), 2096. https://doi.org/10.3390/diagnostics15162096