Clinical Usefulness of Right Ventricular–Pulmonary Artery Coupling in Patients with Heart Failure
Abstract
1. Introduction
2. Invasive Assessment of Right Ventricular–Pulmonary Artery Coupling
3. Non-Invasive Assessment of Right Ventricular–Pulmonary Artery Coupling
3.1. Cardiac Magnetic Resonance Measurement
3.2. Echocardiography Measurement
4. Clinical Usefulness of RV-PA Coupling in Heart Failure
4.1. Heart Failure with Preserved Ejection Fraction (HFpEF)
4.2. Heart Failure with Mildly Reduced Ejection Fraction (HFmrEF)
4.3. Heart Failure with Reduced Ejection Fraction (HFrEF)
5. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARNI | angiotensin receptor neprilysin inhibitor |
Ea | effective arterial elastance |
Ees | end-systolic elastance |
HFmrEF | heart failure with mildly reduced ejection fraction |
HFpEF | heart failure with preserved ejection fraction |
HFrEF | heart failure with reduced ejection fraction |
pACT | pulmonary acceleration time |
PASP | pulmonary arterial systolic pressure |
PH | pulmonary hypertension |
RHC | right heart catheterization |
RVECR | right ventricular exercise contractile reserve |
RV-PA coupling | right ventricular-pulmonary artery coupling |
RVFWS | right ventricular free wall longitudinal strain |
RVGLS | right ventricular global longitudinal strain |
TRV | tricuspid regurgitation velocity |
References
- Yan, T.; Zhu, S.; Yin, X.; Xie, C.; Xue, J.; Zhu, M.; Weng, F.; Zhu, S.; Xiang, B.; Zhou, X.; et al. Burden, Trends, and Inequalities of Heart Failure Globally, 1990 to 2019: A Secondary Analysis Based on the Global Burden of Disease 2019 Study. J. Am. Heart Assoc. 2023, 12, e027852. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Inciardi, R.M.; Abanda, M.; Shah, A.M.; Cikes, M.; Claggett, B.; Skali, H.; Vaduganathan, M.; Prasad, N.; Litwin, S.; Merkely, B.; et al. Right Ventricular Function and Pulmonary Coupling in Patients With Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2023, 82, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Jakstaite, A.M.; Mueller-Leisse, J.; Hillmann, H.A.K.; Hohmann, S.; Eiringhaus, J.; Bavendiek, U.; Kempf, T.; Veltmann, C.; Bauersachs, J.; Duncker, D.; et al. Right Ventricular Dysfunction for Prediction of Long-Term Recovery in de Novo HFrEF: A PROLONG-II Substudy. ESC Heart Fail. 2025, 12, 2166–2176. [Google Scholar] [CrossRef]
- Ghio, S.; Guazzi, M.; Scardovi, A.B.; Klersy, C.; Clemenza, F.; Carluccio, E.; Temporelli, P.L.; Rossi, A.; Faggiano, P.; Traversi, E.; et al. Different Correlates but Similar Prognostic Implications for Right Ventricular Dysfunction in Heart Failure Patients with Reduced or Preserved Ejection Fraction. Eur. J. Heart Fail. 2017, 19, 873–879. [Google Scholar] [CrossRef]
- Girerd, N.; Seronde, M.-F.; Coiro, S.; Chouihed, T.; Bilbault, P.; Braun, F.; Kenizou, D.; Maillier, B.; Nazeyrollas, P.; Roul, G.; et al. Integrative Assessment of Congestion in Heart Failure Throughout the Patient Journey. JACC Heart Fail. 2018, 6, 273–285. [Google Scholar] [CrossRef]
- Vachiéry, J.-L.; Tedford, R.J.; Rosenkranz, S.; Palazzini, M.; Lang, I.; Guazzi, M.; Coghlan, G.; Chazova, I.; De Marco, T. Pulmonary Hypertension Due to Left Heart Disease. Eur. Respir. J. 2019, 53, 1801897. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Cartocci, A.; Pirrotta, F.; Vannuccini, F.; Campora, A.; Martini, L.; Dini, F.L.; Carluccio, E.; Ruocco, G. Different Right Ventricular Dysfunction and Pulmonary Coupling in Acute Heart Failure According to the Left Ventricular Ejection Fraction. Prog. Cardiovasc. Dis. 2023, 81, 89–97. [Google Scholar] [CrossRef]
- Houston, B.A.; Brittain, E.L.; Tedford, R.J. Right Ventricular Failure. N. Engl. J. Med. 2023, 388, 1111–1125. [Google Scholar] [CrossRef]
- Parasca, C.A.; Calin, A.; Cadil, D.; Mateescu, A.; Rosca, M.; Botezatu, S.B.; Enache, R.; Beladan, C.; Ginghina, C.; Deleanu, D.; et al. Right Ventricle to Pulmonary Artery Coupling after Transcatheter Aortic Valve Implantation-Determinant Factors and Prognostic Impact. Front. Cardiovasc. Med. 2023, 10, 1150039. [Google Scholar] [CrossRef] [PubMed]
- Kubba, S.; Davila, C.D.; Forfia, P.R. Methods for Evaluating Right Ventricular Function and Ventricular–Arterial Coupling. Prog. Cardiovasc. Dis. 2016, 59, 42–51. [Google Scholar] [CrossRef]
- Nochioka, K.; Querejeta Roca, G.; Claggett, B.; Biering-Sørensen, T.; Matsushita, K.; Hung, C.-L.; Solomon, S.D.; Kitzman, D.; Shah, A.M. Right Ventricular Function, Right Ventricular–Pulmonary Artery Coupling, and Heart Failure Risk in 4 US Communities: The Atherosclerosis Risk in Communities (ARIC) Study. JAMA Cardiol. 2018, 3, 939–948. [Google Scholar] [CrossRef]
- Suzuki, M.; Matsumoto, K.; Tanaka, Y.; Yamashita, K.; Shono, A.; Sumimoto, K.; Shibata, N.; Yokota, S.; Suto, M.; Dokuni, K.; et al. Preoperative Coupling between Right Ventricle and Pulmonary Vasculature Is an Important Determinant of Residual Symptoms after the Closure of Atrial Septal Defect. Int. J. Cardiovasc. Imaging 2021, 37, 2931–2941. [Google Scholar] [CrossRef]
- Sagawa, K. The End-Systolic Pressure-Volume Relation of the Ventricle: Definition, Modifications and Clinical Use. Circulation 1981, 63, 1223–1227. [Google Scholar] [CrossRef]
- Kelly, R.P.; Ting, C.T.; Yang, T.M.; Liu, C.P.; Maughan, W.L.; Chang, M.S.; Kass, D.A. Effective Arterial Elastance as Index of Arterial Vascular Load in Humans. Circulation 1992, 86, 513–521. [Google Scholar] [CrossRef]
- Inuzuka, R.; Hsu, S.; Tedford, R.J.; Senzaki, H. Single-Beat Estimation of Right Ventricular Contractility and Its Coupling to Pulmonary Arterial Load in Patients With Pulmonary Hypertension. J. Am. Heart Assoc. 2018, 7, e007929. [Google Scholar] [CrossRef]
- Richter, M.J.; Peters, D.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Sommer, N.; Gall, H.; Grimminger, F.; Seeger, W.; Tello, K. Evaluation and Prognostic Relevance of Right Ventricular–Arterial Coupling in Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2020, 201, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; García-Alvarez, A.; Fernández-Friera, L.; Nair, A.; Mirelis, J.G.; Sawit, S.T.; Pinney, S.; Fuster, V. Right Ventriculo-Arterial Coupling in Pulmonary Hypertension: A Magnetic Resonance Study. Heart 2012, 98, 238–243. [Google Scholar] [CrossRef]
- Vanderpool, R.R.; Rischard, F.; Naeije, R.; Hunter, K.; Simon, M.A. Simple Functional Imaging of the Right Ventricle in Pulmonary Hypertension: Can Right Ventricular Ejection Fraction Be Improved? Int. J. Cardiol. 2016, 223, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Naeije, R. Right Heart Phenotype in Heart Failure With Preserved Ejection Fraction. Circ. Heart Fail. 2021, 14, e007840. [Google Scholar] [CrossRef]
- Tello, K.; Dalmer, A.; Axmann, J.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Seeger, W.; Sommer, N.; Wilhelm, J.; et al. Reserve of Right Ventricular-Arterial Coupling in the Setting of Chronic Overload. Circ. Heart Fail. 2019, 12, e005512. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Rahaghi, F.N.; Naeije, R.; Oliveira, R.K.F.; Systrom, D.M.; Waxman, A.B. Right Ventricular-Arterial Uncoupling During Exercise in Heart Failure With Preserved Ejection Fraction: Role of Pulmonary Vascular Dysfunction. Chest 2019, 156, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Oliveira, R.K.F.; Heerdt, P.M.; Pari, R.; Systrom, D.M.; Waxman, A.B. Sex-Related Differences in Dynamic Right Ventricular-Pulmonary Vascular Coupling in Heart Failure With Preserved Ejection Fraction. Chest 2021, 159, 2402–2416. [Google Scholar] [CrossRef] [PubMed]
- Pagnamenta, A.; Dewachter, C.; McEntee, K.; Fesler, P.; Brimioulle, S.; Naeije, R. Early Right Ventriculo-Arterial Uncoupling in Borderline Pulmonary Hypertension on Experimental Heart Failure. J. Appl. Physiol. 2010, 109, 1080–1085. [Google Scholar] [CrossRef]
- Schmeißer, A.; Rauwolf, T.; Groscheck, T.; Fischbach, K.; Kropf, S.; Luani, B.; Tanev, I.; Hansen, M.; Meißler, S.; Schäfer, K.; et al. Predictors and Prognosis of Right Ventricular Function in Pulmonary Hypertension Due to Heart Failure with Reduced Ejection Fraction. ESC Heart Fail. 2021, 8, 2968–2981. [Google Scholar] [CrossRef]
- Kanagala, P.; Arnold, J.R.; Singh, A.; Khan, J.N.; Gulsin, G.S.; Gupta, P.; Squire, I.B.; Ng, L.L.; McCann, G.P. Prevalence of Right Ventricular Dysfunction and Prognostic Significance in Heart Failure with Preserved Ejection Fraction. Int. J. Cardiovasc. Imaging 2021, 37, 255–266. [Google Scholar] [CrossRef]
- Kanagala, P.; Cheng, A.S.H.; Singh, A.; Khan, J.N.; Gulsin, G.S.; Patel, P.; Gupta, P.; Arnold, J.R.; Squire, I.B.; Ng, L.L.; et al. Relationship Between Focal and Diffuse Fibrosis Assessed by CMR and Clinical Outcomes in Heart Failure With Preserved Ejection Fraction. JACC Cardiovasc. Imaging 2019, 12, 2291–2301. [Google Scholar] [CrossRef]
- van Wolferen, S.A.; Marcus, J.T.; Boonstra, A.; Marques, K.M.J.; Bronzwaer, J.G.F.; Spreeuwenberg, M.D.; Postmus, P.E.; Vonk-Noordegraaf, A. Prognostic Value of Right Ventricular Mass, Volume, and Function in Idiopathic Pulmonary Arterial Hypertension. Eur. Heart J. 2007, 28, 1250–1257. [Google Scholar] [CrossRef]
- Knight, D.S.; Kotecha, T.; Martinez-Naharro, A.; Brown, J.T.; Bertelli, M.; Fontana, M.; Muthurangu, V.; Coghlan, J.G. Cardiovascular Magnetic Resonance-Guided Right Heart Catheterization in a Conventional CMR Environment-Predictors of Procedure Success and Duration in Pulmonary Artery Hypertension. J. Cardiovasc. Magn. Reson. 2019, 21, 57. [Google Scholar] [CrossRef]
- Moledina, S.; Pandya, B.; Bartsota, M.; Mortensen, K.H.; McMillan, M.; Quyam, S.; Taylor, A.M.; Haworth, S.G.; Schulze-Neick, I.; Muthurangu, V. Prognostic Significance of Cardiac Magnetic Resonance Imaging in Children with Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2013, 6, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Swift, A.J.; Rajaram, S.; Campbell, M.J.; Hurdman, J.; Thomas, S.; Capener, D.; Elliot, C.; Condliffe, R.; Wild, J.M.; Kiely, D.G. Prognostic Value of Cardiovascular Magnetic Resonance Imaging Measurements Corrected for Age and Sex in Idiopathic Pulmonary Arterial Hypertension. Circ. Cardiovasc. Imaging 2014, 7, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Truong, U.; Patel, S.; Kheyfets, V.; Dunning, J.; Fonseca, B.; Barker, A.J.; Ivy, D.; Shandas, R.; Hunter, K. Non-Invasive Determination by Cardiovascular Magnetic Resonance of Right Ventricular-Vascular Coupling in Children and Adolescents with Pulmonary Hypertension. J. Cardiovasc. Magn. Reson. 2015, 17, 81. [Google Scholar] [CrossRef]
- Breeman, K.T.N.; Dufva, M.; Ploegstra, M.J.; Kheyfets, V.; Willems, T.P.; Wigger, J.; Hunter, K.S.; Ivy, D.D.; Berger, R.M.F.; Truong, U. Right Ventricular-Vascular Coupling Ratio in Pediatric Pulmonary Arterial Hypertension: A Comparison between Cardiac Magnetic Resonance and Right Heart Catheterization Measurements. Int. J. Cardiol. 2019, 293, 211–217. [Google Scholar] [CrossRef]
- Guazzi, M.; Bandera, F.; Pelissero, G.; Castelvecchio, S.; Menicanti, L.; Ghio, S.; Temporelli, P.L.; Arena, R. Tricuspid Annular Plane Systolic Excursion and Pulmonary Arterial Systolic Pressure Relationship in Heart Failure: An Index of Right Ventricular Contractile Function and Prognosis. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1373–H1381. [Google Scholar] [CrossRef]
- Tello, K.; Wan, J.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Mohajerani, E.; Seeger, W.; Herberg, U.; et al. Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e009047. [Google Scholar] [CrossRef]
- Brener, M.I.; Lurz, P.; Hausleiter, J.; Rodés-Cabau, J.; Fam, N.; Kodali, S.K.; Rommel, K.-P.; Muntané-Carol, G.; Gavazzoni, M.; Nazif, T.M.; et al. Right Ventricular-Pulmonary Arterial Coupling and Afterload Reserve in Patients Undergoing Transcatheter Tricuspid Valve Repair. J. Am. Coll. Cardiol. 2022, 79, 448–461. [Google Scholar] [CrossRef]
- Sandeep, B.; Huang, X.; Xu, F.; Su, P.; Wang, T.; Sun, X. Etiology of Right Ventricular Restrictive Physiology Early after Repair of Tetralogy of Fallot in Pediatric Patients. J. Cardiothorac. Surg. 2019, 14, 84. [Google Scholar] [CrossRef]
- Gorter, T.M.; van Veldhuisen, D.J.; Voors, A.A.; Hummel, Y.M.; Lam, C.S.P.; Berger, R.M.F.; van Melle, J.P.; Hoendermis, E.S. Right Ventricular-Vascular Coupling in Heart Failure with Preserved Ejection Fraction and Pre- vs. Post-Capillary Pulmonary Hypertension. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 425–432. [Google Scholar] [CrossRef]
- Fernández Ruiz, A.; Ruiz Ortiz, M.; Fernández-Avilés Irache, C.; Rodríguez Almodóvar, A.M.; Delgado Ortega, M.; Esteban Martínez, F.; Resúa Collazo, A.; Heredia Campos, G.; González Manzanares, R.; López Aguilera, J.; et al. Right Ventricular-Pulmonary Arterial Coupling as a Predictor of Death or Heart Failure Admission in Patients with Severe Tricuspid Regurgitation. Rev. Esp. Cardiol. (Engl. Ed.) 2025, in press. [Google Scholar] [CrossRef]
- Shechter, A.; Vaturi, M.; Kaewkes, D.; Koren, O.; Koseki, K.; Solanki, A.; Natanzon, S.S.; Patel, V.; Skaf, S.; Makar, M.; et al. Prognostic Value of Baseline Tricuspid Annular Plane Systolic Excursion to Pulmonary Artery Systolic Pressure Ratio in Mitral Transcatheter Edge-to-Edge Repair. J. Am. Soc. Echocardiogr. 2023, 36, 391–401.e19. [Google Scholar] [CrossRef]
- Brener, M.I.; Grayburn, P.; Lindenfeld, J.; Burkhoff, D.; Liu, M.; Zhou, Z.; Alu, M.C.; Medvedofsky, D.A.; Asch, F.M.; Weissman, N.J.; et al. Right Ventricular-Pulmonary Arterial Coupling in Patients With HF Secondary MR: Analysis From the COAPT Trial. JACC Cardiovasc. Interv. 2021, 14, 2231–2242. [Google Scholar] [CrossRef]
- Eleid, M.F.; Padang, R.; Pislaru, S.V.; Greason, K.L.; Crestanello, J.; Nkomo, V.T.; Pellikka, P.A.; Jentzer, J.C.; Gulati, R.; Sandhu, G.S.; et al. Effect of Transcatheter Aortic Valve Replacement on Right Ventricular–Pulmonary Artery Coupling. JACC Cardiovasc. Interv. 2019, 12, 2145–2154. [Google Scholar] [CrossRef]
- Egbe, A.C.; Kothapalli, S.; Miranda, W.R.; Pislaru, S.; Ammash, N.M.; Borlaug, B.A.; Pellikka, P.A.; Najam, M.; Connolly, H.M. Assessment of Right Ventricular-Pulmonary Arterial Coupling in Chronic Pulmonary Regurgitation. Can. J. Cardiol. 2019, 35, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Gavazzoni, M.; Badano, L.P.; Cascella, A.; Heilbron, F.; Tomaselli, M.; Caravita, S.; Baratto, C.; Perelli, F.; Radu, N.; Perger, E.; et al. Clinical Value of a Novel Three-Dimensional Echocardiography-Derived Index of Right Ventricle-Pulmonary Artery Coupling in Tricuspid Regurgitation. J. Am. Soc. Echocardiogr. 2023, 36, 1154–1166.e3. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, S.; Bézy, S.; Cvijic, M.; Duchenne, J.; Delcroix, M.; Voigt, J.-U. Right Ventricular Strain Related to Pulmonary Artery Pressure Predicts Clinical Outcome in Patients with Pulmonary Arterial Hypertension. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Jone, P.-N.; Schäfer, M.; Pan, Z.; Ivy, D.D. Right Ventricular-Arterial Coupling Ratio Derived From 3-Dimensional Echocardiography Predicts Outcomes in Pediatric Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e008176. [Google Scholar] [CrossRef]
- Kuwajima, K.; Ogawa, M.; Ruiz, I.; Yamane, T.; Hasegawa, H.; Yagi, N.; Rader, F.; Siegel, R.J.; Shiota, T. Comparison of Prognostic Value among Echocardiographic Surrogates of Right Ventricular-Pulmonary Arterial Coupling: A Three-Dimensional Echocardiographic Study. Echocardiography 2024, 41, e15717. [Google Scholar] [CrossRef]
- Mukherjee, M.; Rudski, L.G.; Addetia, K.; Afilalo, J.; D’Alto, M.; Freed, B.H.; Friend, L.B.; Gargani, L.; Grapsa, J.; Hassoun, P.M.; et al. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults and Special Considerations in Pulmonary Hypertension: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2025, 38, 141–186. [Google Scholar] [CrossRef]
- Redfield, M.M.; Borlaug, B.A. Heart Failure With Preserved Ejection Fraction: A Review. JAMA 2023, 329, 827–838. [Google Scholar] [CrossRef]
- Campbell, P.; Rutten, F.H.; Lee, M.M.; Hawkins, N.M.; Petrie, M.C. Heart Failure with Preserved Ejection Fraction: Everything the Clinician Needs to Know. Lancet 2024, 403, 1083–1092. [Google Scholar] [CrossRef]
- Singh, I.; Oliveira, R.K.F.; Naeije, R.; Rahaghi, F.N.; Oldham, W.M.; Systrom, D.M.; Waxman, A.B. Pulmonary Vascular Distensibility and Early Pulmonary Vascular Remodeling in Pulmonary Hypertension. Chest 2019, 156, 724–732. [Google Scholar] [CrossRef]
- Melenovsky, V.; Hwang, S.-J.; Lin, G.; Redfield, M.M.; Borlaug, B.A. Right Heart Dysfunction in Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2014, 35, 3452–3462. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.N.V.; Melenovsky, V.; Pislaru, S.; Borlaug, B.A. Deterioration in Right Ventricular Structure and Function over Time in Patients with Heart Failure and Preserved Ejection Fraction. Eur. Heart J. 2019, 40, 689–697. [Google Scholar] [CrossRef]
- Mohammed, S.F.; Hussain, I.; Ezzeddine, O.F.A.; Takahama, H.; Kwon, S.H.; Forfia, P.; Roger, V.L.; Redfield, M.M. Right Ventricular Function in Heart Failure with Preserved Ejection Fraction: A Community Based Study. Circulation 2014, 130, 2310–2320. [Google Scholar] [CrossRef] [PubMed]
- Hamo, C.E.; DeJong, C.; Hartshorne-Evans, N.; Lund, L.H.; Shah, S.J.; Solomon, S.; Lam, C.S.P. Heart Failure with Preserved Ejection Fraction. Nat. Rev. Dis. Primers 2024, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Omote, K.; Sorimachi, H.; Obokata, M.; Reddy, Y.N.V.; Verbrugge, F.H.; Omar, M.; DuBrock, H.M.; Redfield, M.M.; Borlaug, B.A. Pulmonary Vascular Disease in Pulmonary Hypertension Due to Left Heart Disease: Pathophysiologic Implications. Eur. Heart J. 2022, 43, 3417–3431. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Inciardi, R.M.; Abanda, M.; Shah, A.M.; Cikes, M.; Claggett, B.L.; Prasad, N.; Lam, C.S.P.; Redfield, M.; McMurray, J.J.V.; et al. Multiparametric Assessment of Right Ventricular Dysfunction in Heart Failure: An Analysis From PARAGON-HF. J. Am. Heart Assoc. 2025, 14, e037380. [Google Scholar] [CrossRef]
- Gorter, T.M.; Hoendermis, E.S.; van Veldhuisen, D.J.; Voors, A.A.; Lam, C.S.P.; Geelhoed, B.; Willems, T.P.; van Melle, J.P. Right Ventricular Dysfunction in Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Eur. J. Heart Fail. 2016, 18, 1472–1487. [Google Scholar] [CrossRef]
- Andersen, M.J.; Hwang, S.-J.; Kane, G.C.; Melenovsky, V.; Olson, T.P.; Fetterly, K.; Borlaug, B.A. Enhanced Pulmonary Vasodilator Reserve and Abnormal Right Ventricular: Pulmonary Artery Coupling in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2015, 8, 542–550. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Kane, G.C.; Melenovsky, V.; Olson, T.P. Abnormal Right Ventricular-Pulmonary Artery Coupling with Exercise in Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2016, 37, 3293–3302. [Google Scholar] [CrossRef]
- Hussain, I.; Mohammed, S.F.; Forfia, P.R.; Lewis, G.D.; Borlaug, B.A.; Gallup, D.S.; Redfield, M.M. Impaired Right Ventricular-Pulmonary Arterial Coupling and Effect of Sildenafil in Heart Failure With Preserved Ejection Fraction: An Ancillary Analysis From the Phosphodiesterase-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) Trial. Circ. Heart Fail. 2016, 9, e002729. [Google Scholar] [CrossRef]
- Guazzi, M.; Dixon, D.; Labate, V.; Beussink-Nelson, L.; Bandera, F.; Cuttica, M.J.; Shah, S.J. RV Contractile Function and Its Coupling to Pulmonary Circulation in Heart Failure With Preserved Ejection Fraction: Stratification of Clinical Phenotypes and Outcomes. JACC Cardiovasc. Imaging 2017, 10, 1211–1221. [Google Scholar] [CrossRef]
- Bosch, L.; Lam, C.S.P.; Gong, L.; Chan, S.P.; Sim, D.; Yeo, D.; Jaufeerally, F.; Leong, K.T.G.; Ong, H.Y.; Ng, T.P.; et al. Right Ventricular Dysfunction in Left-Sided Heart Failure with Preserved versus Reduced Ejection Fraction. Eur. J. Heart Fail. 2017, 19, 1664–1671. [Google Scholar] [CrossRef]
- Gorter, T.M.; van Melle, J.P.; Rienstra, M.; Borlaug, B.A.; Hummel, Y.M.; van Gelder, I.C.; Hoendermis, E.S.; Voors, A.A.; van Veldhuisen, D.J.; Lam, C.S.P. Right Heart Dysfunction in Heart Failure With Preserved Ejection Fraction: The Impact of Atrial Fibrillation. J. Card. Fail. 2018, 24, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Santas, E.; Palau, P.; Guazzi, M.; de la Espriella, R.; Miñana, G.; Sanchis, J.; Bayes-Genís, A.; Lupón, J.; Chorro, F.J.; Núñez, J. Usefulness of Right Ventricular to Pulmonary Circulation Coupling as an Indicator of Risk for Recurrent Admissions in Heart Failure With Preserved Ejection Fraction. Am. J. Cardiol. 2019, 124, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, A.; Yasumura, Y.; Yoshida, C.; Okumura, T.; Tateishi, J.; Yoshida, J.; Abe, H.; Tamaki, S.; Yano, M.; Hayashi, T.; et al. Prognostic Importance of Right Ventricular-Vascular Uncoupling in Acute Decompensated Heart Failure With Preserved Ejection Fraction. Circ. Cardiovasc. Imaging 2020, 13, e011430. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; Mazzola, M.; Madonna, R.; Gargani, L.; De Biase, N.; Dini, F.L.; Taddei, S.; De Caterina, R.; Masi, S. Exercise-Induced Pulmonary Hypertension in HFpEF and HFrEF: Different Pathophysiologic Mechanism behind Similar Functional Impairment. Vascul Pharmacol. 2022, 144, 106978. [Google Scholar] [CrossRef]
- Jia, H.; Liu, L.; Bi, X.; Li, X.; Cong, H. Right Ventricular-Arterial Uncoupling as an Independent Prognostic Factor in Acute Heart Failure with Preserved Ejection Fraction Accompanied with Coronary Artery Disease. Chin. Med. J. 2023, 136, 1198–1206. [Google Scholar] [CrossRef]
- Chen, Z.-W.; Chung, Y.-W.; Cheng, J.-F.; Huang, C.-Y.; Chen, S.-Y.; Lin, L.-Y.; Lai, H.-C.; Wu, C.-K. Right Ventricular-Vascular Uncoupling Predicts Pulmonary Hypertension in Clinically Diagnosed Heart Failure With Preserved Ejection Fraction. J. Am. Heart Assoc. 2024, 13, e030025. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Carter, R.E.; Sorimachi, H.; Omar, M.; Popovic, D.; Alogna, A.; Jensen, M.D.; Borlaug, B.A. Dapagliflozin and Right Ventricular–Pulmonary Vascular Interaction in Heart Failure With Preserved Ejection Fraction: A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 843–851. [Google Scholar] [CrossRef]
- Lechuga, C.G.; Raza, F.; Colebank, M.J.; Korcarz, C.E.; Broman, A.T.; Eickhoff, J.C.; Chesler, N.C. Characteristic Pulmonary Impedance With Exercise Detects Abnormal Pulmonary Vascular Response and Uncoupling in Pulmonary Hypertension Resulting From Heart Failure With Preserved Ejection Fraction. Chest 2025, 168, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Decotto, S.; Fernandez Villar, G.; Rossi, E.; Iroulart, J.M.; Bergier, M.; Del Castillo, S.; Perez de Arenaza, D.; Lillo, E.; Bluro, I.M.; Falconi, M.L.; et al. Prognostic Value of Right Ventricle–Pulmonary Artery Uncoupling in Elderly Patients Hospitalized for Heart Failure with Preserved Ejection Fraction. Curr. Probl. Cardiol. 2025, 50, 103126. [Google Scholar] [CrossRef] [PubMed]
- Segar, M.W.; Patel, K.V.; Ayers, C.; Basit, M.; Tang, W.H.W.; Willett, D.; Berry, J.; Grodin, J.L.; Pandey, A. Phenomapping of Patients with Heart Failure with Preserved Ejection Fraction Using Machine Learning-Based Unsupervised Cluster Analysis. Eur. J. Heart Fail. 2020, 22, 148–158. [Google Scholar] [CrossRef]
- Kyodo, A.; Kanaoka, K.; Keshi, A.; Nogi, M.; Nogi, K.; Ishihara, S.; Kamon, D.; Hashimoto, Y.; Nakada, Y.; Ueda, T.; et al. Heart Failure with Preserved Ejection Fraction Phenogroup Classification Using Machine Learning. ESC Heart Fail. 2023, 10, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Omae, Y.; Harada, T.; Sorimachi, H.; Yuasa, N.; Kagami, K.; Murakami, F.; Naito, A.; Tani, Y.; Kato, T.; et al. Exercise Stress Echocardiography-Based Phenotyping of Heart Failure With Preserved Ejection Fraction. J. Am. Soc. Echocardiogr. 2024, 37, 759–768. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Reddy, Y.N.V.; Braun, A.; Sorimachi, H.; Omar, M.; Popovic, D.; Alogna, A.; Jensen, M.D.; Carter, R. Cardiac and Metabolic Effects of Dapagliflozin in Heart Failure With Preserved Ejection Fraction: The CAMEO-DAPA Trial. Circulation 2023, 148, 834–844. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.-P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and One-Year Outcomes in Patients with Chronic Heart Failure and Preserved, Mid-Range and Reduced Ejection Fraction: An Analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Savarese, G.; Stolfo, D.; Sinagra, G.; Lund, L.H. Heart Failure with Mid-Range or Mildly Reduced Ejection Fraction. Nat. Rev. Cardiol. 2022, 19, 100–116. [Google Scholar] [CrossRef]
- Koh, A.S.; Tay, W.T.; Teng, T.H.K.; Vedin, O.; Benson, L.; Dahlstrom, U.; Savarese, G.; Lam, C.S.P.; Lund, L.H. A Comprehensive Population-Based Characterization of Heart Failure with Mid-Range Ejection Fraction. Eur. J. Heart Fail. 2017, 19, 1624–1634. [Google Scholar] [CrossRef]
- Rosa, G.M.; D’Agostino, A.; Giovinazzo, S.; La Malfa, G.; Fontanive, P.; Miccoli, M.; Dini, F.L. Echocardiography of Right Ventricular-Arterial Coupling Predicts Survival of Elderly Patients with Heart Failure and Reduced to Mid-Range Ejection Fraction. Monaldi Arch. Chest Dis. 2020, 90, 224–230. [Google Scholar] [CrossRef]
- Masarone, D.; Errigo, V.; Melillo, E.; Valente, F.; Gravino, R.; Verrengia, M.; Ammendola, E.; Vastarella, R.; Pacileo, G. Effects of Sacubitril/Valsartan on the Right Ventricular Arterial Coupling in Patients with Heart Failure with Reduced Ejection Fraction. J. Clin. Med. 2020, 9, 3159. [Google Scholar] [CrossRef]
- Guazzi, M.; Villani, S.; Generati, G.; Ferraro, O.E.; Pellegrino, M.; Alfonzetti, E.; Labate, V.; Gaeta, M.; Sugimoto, T.; Bandera, F. Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes. JACC Heart Fail. 2016, 4, 625–635. [Google Scholar] [CrossRef]
- Legris, V.; Thibault, B.; Dupuis, J.; White, M.; Asgar, A.W.; Fortier, A.; Pitre, C.; Bouabdallaoui, N.; Henri, C.; O’Meara, E.; et al. Right Ventricular Function and Its Coupling to Pulmonary Circulation Predicts Exercise Tolerance in Systolic Heart Failure. ESC Heart Fail. 2022, 9, 450–464. [Google Scholar] [CrossRef]
- Watson, W.D.; Burrage, M.K.; Ong, L.P.; Bhagra, S.; Garbi, M.; Pettit, S. Right Ventricular-Pulmonary Arterial Uncoupling and Ventricular-Secondary Mitral Regurgitation: Relationship with Outcomes in Advanced Heart Failure. JHLT Open 2024, 4, 100080. [Google Scholar] [CrossRef] [PubMed]
- Pestelli, G.; Fiorencis, A.; Trevisan, F.; Luisi, G.A.; Smarrazzo, V.; Mele, D. New Measures of Right Ventricle-Pulmonary Artery Coupling in Heart Failure: An All-Cause Mortality Echocardiographic Study. Int. J. Cardiol. 2021, 329, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Kim, M.; Park, J.J.; Park, J.-B.; Cho, G.-Y. Prognostic Role of RVGLS/PASP Ratio, a New Echocardiographic Parameter of the Right Ventricle-Pulmonary Artery Coupling, in Patients With Acute Heart Failure. Int. J. Heart Fail. 2024, 6, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Vîjîiac, A.; Onciul, S.; Deaconu, S.; Vătășescu, R.; Guzu, C.; Verinceanu, V.; Scărlătescu, A.; Zamfir, D.; Petre, I.; Scafa-Udriște, A.; et al. Three-Dimensional Right Ventriculo-Arterial Coupling as an Independent Determinant of Severe Heart Failure Symptoms in Patients with Dilated Cardiomyopathy. Echocardiography 2022, 39, 194–203. [Google Scholar] [CrossRef]
- Iacoviello, M.; Monitillo, F.; Citarelli, G.; Leone, M.; Grande, D.; Antoncecchi, V.; Rizzo, C.; Terlizzese, P.; Romito, R.; Caldarola, P.; et al. Right Ventriculo-Arterial Coupling Assessed by Two-Dimensional Strain: A New Parameter of Right Ventricular Function Independently Associated with Prognosis in Chronic Heart Failure Patients. Int. J. Cardiol. 2017, 241, 318–321. [Google Scholar] [CrossRef]
- Vîjîiac, A.; Bătăilă, V.; Onciul, S.; Verinceanu, V.; Guzu, C.; Deaconu, S.; Petre, I.; Scărlătescu, A.; Zamfir, D.; Dorobanţu, M. Non-Invasive Right Ventriculo-Arterial Coupling as a Rehospitalization Predictor in Dilated Cardiomyopathy: A Comparison of Five Different Methods. Kardiol. Pol. 2022, 80, 182–190. [Google Scholar] [CrossRef]
- Deaconu, S.; Deaconu, A.; Scarlatescu, A.; Petre, I.; Onciul, S.; Vijiac, A.; Onut, R.; Zamfir, D.; Marascu, G.; Iorgulescu, C.; et al. Right Ventricular-Arterial Coupling—A New Perspective for Right Ventricle Evaluation in Heart Failure Patients Undergoing Cardiac Resynchronization Therapy. Echocardiography 2021, 38, 1157–1164. [Google Scholar] [CrossRef]
- Schmeisser, A.; Rauwolf, T.; Groscheck, T.; Kropf, S.; Luani, B.; Tanev, I.; Hansen, M.; Meißler, S.; Steendijk, P.; Braun-Dullaeus, R.C. Pressure-Volume Loop Validation of TAPSE/PASP for Right Ventricular Arterial Coupling in Heart Failure with Pulmonary Hypertension. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 168–176. [Google Scholar] [CrossRef]
- Sciaccaluga, C.; D’Ascenzi, F.; Mandoli, G.E.; Rizzo, L.; Sisti, N.; Carrucola, C.; Cameli, P.; Bigio, E.; Mondillo, S.; Cameli, M. Traditional and Novel Imaging of Right Ventricular Function in Patients with Heart Failure and Reduced Ejection Fraction. Curr. Heart Fail. Rep. 2020, 17, 28–33. [Google Scholar] [CrossRef]
- Hădăreanu, C.-D.; Hădăreanu, D.-R.; Toader, D.-M.; Iovănescu, M.-L.; Florescu, C.; Raicea, V.-C.; Donoiu, I. Prognostic Value of the Ratio between Right Ventricular Free Wall Longitudinal Strain and Systolic Pulmonary Artery Pressure in Patients with Heart Failure with Reduced Ejection Fraction and Ventricular Secondary Mitral Regurgitation. Front. Cardiovasc. Med. 2025, 12, 1611772. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC)Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
Reference | Publication Year | Sample Size | RV-PA Coupling Indices | Median Follow-Up | Main Results |
---|---|---|---|---|---|
Melenovsky et al. [53] | 2014 | 142 | RV FAC/mPAP | 529 days | RV function was impaired in HFpEF using both load-dependent (RV FAC) and load-independent parameters (RV FAC/mPAP). |
Andersen et al. [60] | 2015 | 57 | S’/mPAP | - | Dobutamine improved RV ejection in HFpEF subjects through afterload reduction rather than increasing contractility confirmed by dynamic analysis of RV-PA coupling. |
Borlaug et al. [61] | 2016 | 74 | - | - | During exercise, RV reserve was impaired in HFpEF patients in association with high filling pressures and inadequate cardiac output responses. The relationship between PA pressure and flow was steeper, which indicated the RV afterload increased for any given cardiac output. |
Hussain et al. [62] | 2016 | 137 | TAPSE/PASP | 24 weeks | HFpEF with RV dysfunction and RV-PA uncoupling tended to experience more advanced HF, for whom treatment with sildenafil for 24 weeks did not increase RV-PA coupling, exercise capacity, or ventilatory efficiency. |
Guazzi et al. [63] | 2017 | 387 | TAPSE/PASP | 13.4 months | Tertile 1 with a TAPSE/PASP ratio < 0.35 mm/mmHg had a higher prevalence of atrial fibrillation and kidney dysfunction and experienced lower PA compliance and higher pulmonary vascular resistances. TAPSE/PASP was confirmed as an independent prognosis index and a novel parameter to help stratify HFpEF phenotypes at different level of risk. |
Bosch et al. [64] | 2017 | 657 | RVFWS/PASP, TAPSE/PASP | 715 days | Both RVFWS/PASP and TAPSE/PASP were correlated with all-cause mortality and HF hospitalization in HF patients regardless of LVEF. The cutoff values were TAPSE/PASP < 0.48 mm/mmHg and RVFWS/PASP ≥ −0.56%/mmHg. |
Gorter et al. [65] | 2017 | 91 | TAPSE/PASP | - | A lower index of TAPSE/PASP was found in HFpEF patients with current atrial fibrillation. Atrial fibrillation was associated with RV dysfunction independently from pulmonary pressures. |
Gorter et al. [39] | 2018 | 97 | TAPSE/PASP | 816 days | TAPSE/PASP < 0.36 mm/mmHg could identify HFpEF patients with additional pre-capillary PH. Worsening of TAPSE/PASP was a predictive factor of poor outcome. |
Singh et al. [23] | 2019 | 88 | Ees/Ea | - | RV-PA uncoupling caused by both RV contractility impairment and afterload mismatch was common in HFpEF patients. Resting and dynamic RV-PA uncoupling in HFpEF was driven by an increase in RV pulsatile rather than resistive afterload. However, RV-PA uncoupling deteriorated dynamically during exercise with the addiction effects of increased RV resistive afterload. |
Santas et al. [66] | 2019 | 760 | TAPSE/PASP | 2 years | TAPSE/PASP < 0.36 mm/mmHg was associated with a higher risk of HF rehospitalizations, patients with lowest index (TAPSE/PASP < 0.28 mm/mmHg) underwent highest risk of all-cause and HF-related recurrent admissions. RV-PA coupling was a strong predictor of rehospitalizations of HFpEF. |
Nakagawa et al. [67] | 2020 | 655 | TAPSE/PASP | 333 days | RV-PA uncoupling was associated with the composite endpoint and all-cause mortality. TAPSE/PASP < 0.48 mm/mmHg was significantly associated with clinical outcomes of acute decompensated patients with HFpEF and may suffer higher prevalence of renal dysfunction and worse exercise capacity. |
Singh et al. [24] | 2021 | 75 | Ees/Ea | - | Male patients tended to have more impaired RV-PA coupling with reduced peak VO2 compared with female patients driven by RV contractility impairment and afterload mismatch. On the contrary, female HFpEF patients showed better performance in peak exercise VO2 and preserved RV-PA coupling than male patients. |
Pugliese et al. [68] | 2022 | 220 | TAPSE/PASP | 25 months | Pronounced impairment in RV-PA coupling was found in HFpEF patients than HFrEF patients during exercise. HFpEF patients displayed a higher prevalence of systemic inflammation. |
Inciardi et al. [4] | 2023 | 528 | RVFWS/PASP | 2.8 years | Decreased absolute RVFWS and RVFWS/PASP ratios were both related to elevated NT-pro BNP and were found to be significantly associated with negative outcomes of HF hospitalizations and cardiovascular death in HFpEF patients. |
Jia et al. [69] | 2023 | 250 | TAPSE/PASP | 433 days | TAPSE/PASP ≤ 0.43 mm/mmHg was an independent prognostic factor of adverse outcomes for the primary endpoint, all-cause death, and recurrent HF hospitalization in acute HFpEF patients with coronary artery disease. |
Chen et al. [70] | 2024 | 113 | TAPSE/PASP S’/PASP | - | Patients with HFpEF with PH had lower RV-PA coupling than those without PH both at rest and during exercise. Decreased TAPSE/PASP and S’/PASP were related to with abnormal rest/exercise pulmonary hemodynamics in patients with HFpEF, and the two indexes could thus identify HFpEF patients with PH with cutoff values of ≤0.62 and ≤0.47, respectively. |
Reddy et al. [71] | 2024 | 37 | S’/mPAP | 24 weeks | Dapagliflozin treatment for 24 weeks could favorably improve RV-PA coupling and reduce PA loading during exercise among HFpEF patients, probably benefiting from the reduction pulmonary capillary wedge pressure. |
Lechuga et al. [72] | 2025 | 15 | Ees/Ea | - | In HFpEF patients with PH, a negative relation was found between characteristic pulmonary impedance and Ees/Ea index during exercise, which was not evident in precapillary PH. |
Decotto et al. [73] | 2025 | 142 | TAPSE/PASP | 1 year | In elderly patients aged ≥ 75 years with HFpEF, RV-PA uncoupling was in association with adverse outcome during 1-year follow-up. |
Reference | Publication Year | Sample Size | RV-PA Coupling Indices | RV-PA Uncoupling Cutoff | Median Follow-Up | Main Results |
---|---|---|---|---|---|---|
Masarone et al. [82] | 2020 | 163 | TAPSE/PASP | - | 2 years | Sacubitril/valsartan could improve the RV-PA coupling in patients with HFrEF. |
Guazzi et al. [83] | 2016 | 97 | TAPSE/PASP mPAP/CO slope | - | 16 months | Testing the degree of RVECR and RV-PA coupling during exercise could be useful and unmask various clinical phenotypes and different levels of risk even in the more advanced stages of HF. |
Legris et al. [84] | 2022 | 205 | TAPSE/PASP | TAPSE/PASP ≤ 0.45 mm/mmHg | - | RV function was closely associated with exercise capacity in ambulatory HFrEF patients, providing new evidence on the importance of RV function and RV-PA coupling (TAPSE/PASP) on exercise tolerance in HFrEF. |
Watson et al. [85] | 2024 | 456 | TAPSE/PASP | TAPSE/PASP < 0.37 mm/mmHg | 2.39 years | RV-PA uncoupling (the median TAPSE/PASP ratio < 0.37 mm/mmHg) was associated with reduced survival across all severities of mitral regurgitation. |
Pestelli et al. [86] | 2021 | 200 | TAPSE × pACT TAPSE/TRV | TAPSE ×pACT < 140 cm·ms TAPSE/TRV < 5.5ms | 2.7 years | TAPSE/PASP was the most powerful predictor of mortality, followed by TAPSE × pACT and TAPSE/TRV, and the both have high correlations with TAPSE/PASP ratio. |
Park et al. [87] | 2022 | 4312 | RVGLS/PASP | RVGLS/PASP ≤ 0.32 %/mmHg | 35.0 months | The RVGLS/PASP ratio ≤ 0.32 %/mmHg was associated with an increased risk of mortality in all the HF phenotypes. |
Vîjîiac et al. [88] | 2022 | 139 | SV/ESV | SV/ESV < 0.54 | - | 3D SV/ESV was an independent correlate of severe HF symptoms in patients with DCM, and the cutoff value was 0.54 for predicting severely symptomatic status, which might be a useful risk stratification tool for these patients. |
Iacoviello et al. [89] | 2017 | 315 | RVGLS/PASP, RVFWS/PASP and TAPSE/PASP | RVGLS/PASP < 0.36 %/mmHg RVFWS/PASP < 0.65 %/mmHg | 36 ± 26 months | RVGLS/PASP and RVFWS/PASP were significantly and independently associated with an increased mortality risk. |
Vîjîiac et al. [90] | 2022 | 60 | TAPSE/PASP; RVGLS/PASP; RVFWS/PASP; 3D RVEF/PASP and 3D RV SV/ESV. | RVFWS/PASP > −0.40 %/mmHg RVEF/PASP < 1.30 %/mmHg | 18 months | RVFWS/PASP and RVEF/PASP were independent predictors of HF rehospitalization in patients with DCM. |
Ghio et al. [6] | 2017 | 1663 | TAPSE/PASP | TAPSE/PASP < 0.36 mm/mmHg | - | The TAPSE/PASP ratio was an independent predictor of prognosis for all types of HF patients, regardless of the degree of left ventricular systolic dysfunction. |
Deaconu et al. [91] | 2021 | 54 | TAPSE/PASP | TAPSE/PASP < 0.58 mm/mmHg | 31 ± 12.9 months | The ratio TAPSE/PASP could predict the CRT response. The ratio TAPSE/PASP < 0.58 mm/mmHg was associated with a higher incidence of death and HF hospitalizations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, M.; Wu, Z.; Zhang, L.; Ji, M.; Qin, S.; He, Q.; Lin, Y.; Xie, M.; Li, Y. Clinical Usefulness of Right Ventricular–Pulmonary Artery Coupling in Patients with Heart Failure. Diagnostics 2025, 15, 2083. https://doi.org/10.3390/diagnostics15162083
Yao M, Wu Z, Zhang L, Ji M, Qin S, He Q, Lin Y, Xie M, Li Y. Clinical Usefulness of Right Ventricular–Pulmonary Artery Coupling in Patients with Heart Failure. Diagnostics. 2025; 15(16):2083. https://doi.org/10.3390/diagnostics15162083
Chicago/Turabian StyleYao, Mengyun, Zhenni Wu, Li Zhang, Mengmeng Ji, Shuxuan Qin, Qing He, Yixia Lin, Mingxing Xie, and Yuman Li. 2025. "Clinical Usefulness of Right Ventricular–Pulmonary Artery Coupling in Patients with Heart Failure" Diagnostics 15, no. 16: 2083. https://doi.org/10.3390/diagnostics15162083
APA StyleYao, M., Wu, Z., Zhang, L., Ji, M., Qin, S., He, Q., Lin, Y., Xie, M., & Li, Y. (2025). Clinical Usefulness of Right Ventricular–Pulmonary Artery Coupling in Patients with Heart Failure. Diagnostics, 15(16), 2083. https://doi.org/10.3390/diagnostics15162083