The Temporal and Spatial Distribution Patterns of Necrotic and Apoptotic Cells in and Around the Spinal Cord Injury Site †
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Setup
2.2. Surgical Procedure
2.3. Postoperative Care
2.4. Morphologic Analyses, Immunohistochemistry, and Rostro-Caudal Extension of the Lesion
Quantification Approach, Digital Mapping, and Blinding
2.5. Statistical Analyses
3. Results
3.1. Histopathological Examination Using H&E and LFB Histochemistry: Evaluation Using Injury Site, Necrosis Distribution, Edema, Chronologic Evaluation, and Mapping
3.2. Distribution of Apoptotic Cells Using ssDNA Immunohistochemistry: Evaluation of DNA Damage and Rostro-Caudal and Spatial Distributions
3.3. DNA Damage Index and Temporal and Rostro-Caudal Distributions
3.4. Cathepsin B Immunohistochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagan, M.J.; Pertsch, N.J.; Leary, O.P.; Zheng, B.; Camara-Quintana, J.Q.; Niu, T.; Mueller, K.; Boghani, Z.; Telfeian, A.E.; Gokaslan, Z.L.; et al. Influence of psychosocial and sociodemographic factors in the surgical management of traumatic cervicothoracic spinal cord injury at level I and II trauma centers in the United States. J. Spine Surg. 2021, 7, 277–288. [Google Scholar] [CrossRef]
- Sekhon, L.H.; Fehlings, M.G. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 2001, 26 (Suppl. 24), S2–S12. [Google Scholar] [CrossRef]
- Ackery, A.; Tator, C.; Krassioukov, A. A global perspective on spinal cord injury epidemiology. J. Neurotrauma 2004, 21, 1355–1370. [Google Scholar] [CrossRef]
- Rowland, J.W.; Hawryluk, G.W.J.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Ha, K.Y.; Kim, S.I. Spinal Cord Injury and Related Clinical Trials. Clin. Orthop. Surg. 2017, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taoka, Y.; Okajima, K. Spinal cord injury in the rat. Prog. Neurobiol. 1998, 56, 341–358. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef]
- Chio, J.C.T.; Xu, K.J.; Popovich, P.; David, S.; Fehlings, M.G. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp. Neurol. 2021, 341, 113704. [Google Scholar] [CrossRef]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.F.; Fiani, B.; Rahman, M.; Ramachandran, A.; et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar] [CrossRef]
- Tator, C.H. Spine-spinal cord relationships in spinal cord trauma. Clin. Neurosurg. 1983, 30, 479–494. [Google Scholar] [CrossRef]
- Tator, C.H. Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 1991, 37, 291–302. [Google Scholar]
- Young, W. Secondary injury mechanisms in acute spinal cord injury. J. Emerg. Med. 1993, 11 (Suppl. 1), 13–22. [Google Scholar] [PubMed]
- Liu, X.Z.; Xu, X.M.; Hu, R.; Du, C.; Zhang, S.X.; McDonald, J.W.; Dong, H.X.; Wu, Y.J.; Fan, G.S.; Jacquin, M.F.; et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 1997, 17, 5395–5406. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.D.; Rosenberg, L.J.; Wrathall, J.R. Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp. Neurol. 2001, 168, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Baldassarro, V.A.; Sanna, M.; Bighinati, A.; Sannia, M.; Gusciglio, M.; Giardino, L.; Lorenzini, L.; Calzà, L. A Time-Course Study of the Expression Level of Synaptic Plasticity-Associated Genes in Un-Lesioned Spinal Cord and Brain Areas in a Rat Model of Spinal Cord Injury: A Bioinformatic Approach. Int. J. Mol. Sci. 2021, 22, 8606. [Google Scholar] [CrossRef]
- Beattie, M.S.; Hermann, G.E.; Rogers, R.C.; Bresnahan, J.C. Cell death in models of spinal cord injury. Prog. Brain Res. 2002, 137, 37–47. [Google Scholar]
- Choi, D.W. Excitotoxic cell death. J. Neurobiol. 1992, 23, 1261–1276. [Google Scholar] [CrossRef]
- Katoh, K.; Ikata, T.; Katoh, S.; Hamada, Y.; Nakauchi, K.; Sano, T.; Niwa, M. Induction and its spread of apoptosis in rat spinal cord after mechanical trauma. Neurosci. Lett. 1996, 216, 9–12. [Google Scholar] [CrossRef]
- Vinay, K.; Abul, K.A.; Aster, J.C. Robbins & Cotran Pathologic Basis of Disease, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Shi, Z.; Yuan, S.; Shi, L.; Li, J.; Ning, G.; Kong, X.; Feng, S. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif. 2021, 54, e12992. [Google Scholar] [CrossRef]
- Unal-Cevik, I.; Kilinç, M.; Can, A.; Gürsoy-Ozdemir, Y.; Dalkara, T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 2004, 35, 2189–2194. [Google Scholar] [CrossRef]
- Spotnitz, W.D.; Mintz, P.D.; Avery, N.; Bithell, T.C.; Kaul, S.; Nolan, S.P. Fibrin glue from stored human plasma. An inexpensive and efficient method for local blood bank preparation. Am. Surg. 1987, 53, 460–462. [Google Scholar]
- Yu, W.R.; Liu, T.; Fehlings, T.K.; Fehlings, M.G. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury. Eur. J. Neurosci. 2009, 29, 114–131. [Google Scholar] [CrossRef]
- Crowe, M.J.; Bresnahan, J.C.; Shuman, S.L.; Masters, J.N.; Beattie, M.S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 1997, 3, 73–76. [Google Scholar] [CrossRef]
- Frankfurt, O.; Krishan, A. Application of anti-ssDNA monoclonal antibody to study exogenous and apoptosis-associated DNA damage. Cytom. Part J. Int. Soc. Anal. Cytol. 2008, 73A, 1114–1115. [Google Scholar] [CrossRef]
- Frankfurt, O.S.; Robb, J.A.; Sugarbaker, E.V.; Villa, L. Monoclonal antibody to single-stranded DNA is a specific and sensitive cellular marker of apoptosis. Exp. Cell Res. 1996, 226, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.; Han, K.; Hyun, J.K. The Time Sequence of Gene Expression Changes after Spinal Cord Injury. Cells 2022, 11, 2236. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.R. Remarks on the Histopathological Changes in the Spinal Cord due to Impact. An Experimental Study. J. Nerv. Ment. Dis. 1914, 41, 141–147. [Google Scholar] [CrossRef]
- Wrathall, J.R.; Pettegrew, R.K.; Harvey, F. Spinal cord contusion in the rat: Production of graded, reproducible, injury groups. Exp. Neurol. 1985, 88, 108–122. [Google Scholar] [CrossRef]
- Allen, A.R. Surgery of Experimental Lesion of Spinal Cord Equivalent to Crush Injury of Fracture Dislocation of Spinal Column: A Preliminary Report. J. Am. Med. Assoc. 1911, LVII, 878. [Google Scholar] [CrossRef]
- Fiani, B.; Arshad, M.A.; Shaikh, E.S.; Baig, A.; Farooqui, M.; Ayub, M.A.; Zafar, A.; Quadri, S.A. Current updates on various treatment approaches in the early management of acute spinal cord injury. Rev. Neurosci. 2021, 32, 513–530. [Google Scholar] [CrossRef]
- Hart, S.N.; Patel, S.P.; Michael, F.M.; Stoilov, P.; Leow, C.J.; Hernandez, A.G.; Jolly, A.; de la Grange, P.; Rabchevsky, A.G.; Stamm, S. Rat Spinal Cord Injury Associated with Spasticity Leads to Widespread Changes in the Regulation of Retained Introns. Neurotrauma Rep. 2022, 3, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, S.; Sribnick, E.A.; Das, A.; Knaryan, V.H.; Matzelle, D.D.; Yallapragada, A.V.; Reiter, R.J.; Ray, S.K.; Banik, N.L. Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J. Pineal Res. 2008, 44, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Onifer, S.M.; Rabchevsky, A.G.; Scheff, S.W. Rat models of traumatic spinal cord injury to assess motor recovery. ILAR J. 2007, 48, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Springer, J.E. Neuroproteomic methods in spinal cord injury. Methods Mol. Biol. 2009, 566, 57–67. [Google Scholar]
- Adjan, V.V.; Hauser, K.F.; Bakalkin, G.; Yakovleva, T.; Gharibyan, A.; Scheff, S.W.; Knapp, P. Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: Differential effects on glia and neurons. Neuroscience 2007, 148, 724–736. [Google Scholar] [CrossRef]
- Arishima, Y.; Setoguchi, T.; Yamaura, I.; Yone, K.; Komiya, S. Preventive effect of erythropoietin on spinal cord cell apoptosis following acute traumatic injury in rats. Spine 2006, 31, 2432–2438. [Google Scholar] [CrossRef]
- Vaquero, J.; Zurita, M.; Oya, S.; Aguayo, C.; Bonilla, C. Early administration of methylprednisolone decreases apoptotic cell death after spinal cord injury. Histol. Histopathol. 2006, 21, 1091–1102. [Google Scholar]
- Bree, R.T.; Neary, C.; Samali, A.; Lowndes, N.F. The switch from survival responses to apoptosis after chromosomal breaks. DNA Repair 2004, 3, 989–995. [Google Scholar] [CrossRef]
- Alsabaani, N. Inhibition of Protein Kinase R by C16 Protects the Retinal Ganglion Cells from Hypoxia-induced Oxidative Stress, Inflammation, and Apoptosis. Curr. Eye Res. 2021, 46, 719–730. [Google Scholar] [CrossRef]
- Michiue, T.; Quan, L.; Ishikawa, T.; Zhu, B.L.; Maeda, H. Quantitative analysis of single-stranded DNA immunoreactivity as a marker of neuronal apoptosis in hippocampus with regard to the causes of death in medicolegal autopsy. Leg. Med. 2009, 11 (Suppl. 1), S168–S170. [Google Scholar] [CrossRef]
- Kim, B.W.; Jeong, Y.E.; Wong, M.; Martin, L.J. DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol. Commun. 2020, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Abou-El-Hassan, H.; Bsat, S.; Sukhon, F.; Assaf, E.J.; Mondello, S.; Kobeissy, F.; Wang, K.K.W.; Weiner, H.L.; Omeis, I. Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol. Neurobiol. 2020, 57, 2702–2726. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hogan, E.L.; Banik, N.L. Role of calpain in spinal cord injury: Increased calpain immunoreactivity in rat spinal cord after impact trauma. Neurochem. Res. 1996, 21, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, L. The role of apoptosis in spinal cord injury: A bibliometric analysis from 1994 to 2023. Front. Cell Neurosci. 2023, 17, 1334092. [Google Scholar] [CrossRef]
- Kayabaş, M.; Şahin, L.; Makav, M.; Alwazeer, D.; Aras, L.; Yiğit, S.; LeBaron, T.W. Protective Effect of Hydrogen-Rich Saline on Spinal Cord Damage in Rats. Pharmaceuticals 2023, 16, 527. [Google Scholar] [CrossRef]
- Reigada, D.; Maza, R.M.; Muñoz-Galdeano, T.; Barreda-Manso, M.A.; Soto, A.; Lindholm, D.; Navarro-Ruíz, R.; Nieto-Díaz, M. Overexpression of the X-Linked Inhibitor of Apoptosis Protein (XIAP) in Neurons Improves Cell Survival and the Functional Outcome after Traumatic Spinal Cord Injury. Int. J. Mol. Sci. 2023, 24, 2791. [Google Scholar] [CrossRef]
- Muñoz-Galdeano, T.; Reigada, D.; Soto, A.; Barreda-Manso, M.A.; Ruíz-Amezcua, P.; Nieto-Díaz, M.; Maza, R.M. Identification of a New Role of miR-199a-5p as Factor Implied in Neuronal Damage: Decreasing the Expression of Its Target X-Linked Anti-Apoptotic Protein (XIAP) After SCI. Int. J. Mol. Sci. 2024, 25, 12374. [Google Scholar] [CrossRef]
- Wei, F.L.; Wang, T.F.; Wang, C.L.; Zhang, Z.P.; Zhao, J.W.; Heng, W.; Tang, Z.; Du, M.R.; Yan, X.D.; Li, X.X.; et al. Cytoplasmic Escape of Mitochondrial DNA Mediated by Mfn2 Downregulation Promotes Microglial Activation via cGas-Sting Axis in Spinal Cord Injury. Adv. Sci. 2024, 11, e2305442. [Google Scholar] [CrossRef]
- Ayhan, S.; Bozkurt, G.; Ayhan, A.; Akbay, A. Deneysel Akut Omurilik Kontüzyon Modelinde Hücre Ölüm Tiplerinin Kronolojik Olarak İncelenmesi ve Hücre Zedelenme Şekli, Şiddeti ve Dağılımının Haritalanması. In Proceedings of the 24th Scientific Congress of the Turkish Neurosurgical Society, Antalya, Turkey, 14–18 May 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayhan, S.; Bozkurt, G.; Akbay, A.; Hayran, M.; Ogawa, H.; Yasui, W.; Tanaka, M.; Ayhan, A. The Temporal and Spatial Distribution Patterns of Necrotic and Apoptotic Cells in and Around the Spinal Cord Injury Site. Diagnostics 2025, 15, 2067. https://doi.org/10.3390/diagnostics15162067
Ayhan S, Bozkurt G, Akbay A, Hayran M, Ogawa H, Yasui W, Tanaka M, Ayhan A. The Temporal and Spatial Distribution Patterns of Necrotic and Apoptotic Cells in and Around the Spinal Cord Injury Site. Diagnostics. 2025; 15(16):2067. https://doi.org/10.3390/diagnostics15162067
Chicago/Turabian StyleAyhan, Selim, Gokhan Bozkurt, Atilla Akbay, Mutlu Hayran, Hiroshi Ogawa, Wataru Yasui, Masato Tanaka, and Ayse Ayhan. 2025. "The Temporal and Spatial Distribution Patterns of Necrotic and Apoptotic Cells in and Around the Spinal Cord Injury Site" Diagnostics 15, no. 16: 2067. https://doi.org/10.3390/diagnostics15162067
APA StyleAyhan, S., Bozkurt, G., Akbay, A., Hayran, M., Ogawa, H., Yasui, W., Tanaka, M., & Ayhan, A. (2025). The Temporal and Spatial Distribution Patterns of Necrotic and Apoptotic Cells in and Around the Spinal Cord Injury Site. Diagnostics, 15(16), 2067. https://doi.org/10.3390/diagnostics15162067