Explainable AI-Based Feature Selection Approaches for Raman Spectroscopy
Abstract
1. Introduction
2. Literature Review
- Two novel feature selection methods based on deep learning models are proposed for medical Raman spectroscopy.
- The methods are evaluated across three medical datasets and compared to five established methods.
- Recommendations for model and feature selection choices are made, considering sample size, task difficulty and level of data compression.
3. Materials and Methods
3.1. Model Implementation
3.1.1. Linear Discriminant Analysis
3.1.2. Random Forest
3.1.3. Convolutional Neural Network
3.1.4. Transformer
3.2. Feature Selection
3.2.1. LDA-Based Feature Selection
3.2.2. Random Forest-Based Feature Selection
3.2.3. CNN-Based Feature Selection
3.2.4. Transformer-Based Feature Selection
3.2.5. L1 Feature Selection
3.2.6. K-Best Feature Selection
3.2.7. Domain-Knowledge-Based Feature Selection
3.3. Datasets
3.3.1. Dataset 1
- De-noising: Whittaker-Henderson smoothing was implemented to de-noise the data. This employs a discrete, penalised least-squares algorithm.
- Baseline Correction: Doubly re-weighted penalised least squares was implemented to baseline correct the data. This helps counter the fluorescence effect, which causes peak shifts and may lead to model overfitting [64].
- Data Normalisation: Max Intensity scaling was used to normalise the scale of the spectra.
3.3.2. Dataset 2
3.3.3. Dataset 3
3.4. Sample Size
4. Results and Discussion
4.1. Full Datasets
4.2. Feature Selection Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
CNN | Convolutional Neural Network |
Grad-CAM | Gradient-weighted Class Activation Mapping |
LDA | Linear Discriminant Analysis |
RF | Random Forest |
Trans | Transformer |
Appendix A
Appendix A.1. LDA
Appendix A.2. Random Forest
Appendix A.3. CNN
Appendix A.4. Transformer
References
- Saletnik, A.; Saletnik, B.; Puchalski, C. Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues. Molecules 2021, 26, 1537. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef]
- Ember, K.J.; Hoeve, M.A.; McAughtrie, S.L.; Bergholt, M.S.; Dwyer, B.J.; Stevens, M.M.; Faulds, K.; Forbes, S.J.; Campbell, C.J. Raman spectroscopy and regenerative medicine: A review. NPJ Regen. Med. 2017, 2, 12. [Google Scholar] [CrossRef]
- Pence, I.; Mahadevan-Jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 2016, 45, 1958–1979. [Google Scholar] [CrossRef]
- Allakhverdiev, E.S.; Khabatova, V.V.; Kossalbayev, B.D.; Zadneprovskaya, E.V.; Rodnenkov, O.V.; Martynyuk, T.V.; Maksimov, G.V.; Alwasel, S.; Tomo, T.; Allakhverdiev, S.I. Raman spectroscopy and its modifications applied to biological and medical research. Cells 2022, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Popp, J.; Bocklitz, T. Deep learning for Raman spectroscopy: A review. Analytica 2022, 3, 287–301. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, D.; Jiang, Y.; Wu, Z.; Zheng, M.; Chen, E.X.; Liang, Y.; Sadi, M.A.; Zhang, K.; Chen, Y.P. Recent progresses in machine learning assisted Raman spectroscopy. Adv. Opt. Mater. 2023, 11, 2203104. [Google Scholar] [CrossRef]
- Conti, F.; D’Acunto, M.; Caudai, C.; Colantonio, S.; Gaeta, R.; Moroni, D.; Pascali, M.A. Raman spectroscopy and topological machine learning for cancer grading. Sci. Rep. 2023, 13, 7282. [Google Scholar] [CrossRef]
- Yin, G.; Li, L.; Lu, S.; Yin, Y.; Su, Y.; Zeng, Y.; Luo, M.; Ma, M.; Zhou, H.; Orlandini, L.; et al. An efficient primary screening of COVID-19 by serum Raman spectroscopy. J. Raman Spectrosc. 2021, 52, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, Z.; Chen, J.; Jing, C. Raman spectroscopy in colorectal cancer diagnostics: Comparison of PCA-LDA and PLS-DA models. J. Spectrosc. 2016, 2016, 1603609. [Google Scholar] [CrossRef]
- Jeng, M.J.; Sharma, M.; Sharma, L.; Chao, T.Y.; Huang, S.F.; Chang, L.B.; Wu, S.L.; Chow, L. Raman spectroscopy analysis for optical diagnosis of oral cancer detection. J. Clin. Med. 2019, 8, 1313. [Google Scholar] [CrossRef]
- Bellantuono, L.; Tommasi, R.; Pantaleo, E.; Verri, M.; Amoroso, N.; Crucitti, P.; Di Gioacchino, M.; Longo, F.; Monaco, A.; Naciu, A.M.; et al. An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis. Sci. Rep. 2023, 13, 16590. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, R.; Khan, A.; Sohail, A.; Wahab, N.; Bilal, M.; Ahmed, M. Random forest-based evaluation of Raman spectroscopy for dengue fever analysis. Appl. Spectrosc. 2017, 71, 2111–2117. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Comput. Biol. Med. 2022, 149, 106043. [Google Scholar] [CrossRef]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; IEEE: New York, NY, USA, 2014; pp. 372–378. [Google Scholar]
- Rossberg, N.; Li, C.L.; Innocente, S.; Andersson-Engels, S.; Komolibus, K.; O’Sullivan, B.; Visentin, A. Machine Learning Applications to Diffuse Reflectance Spectroscopy in Optical Diagnosis—A Systematic Review. Appl. Spectrosc. Rev. 2025, 60, 1–52. [Google Scholar] [CrossRef]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Guo, S.; Popp, J.; Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat. Protoc. 2021, 16, 5426–5459. [Google Scholar] [CrossRef]
- Romanishkin, I.; Savelieva, T.; Kosyrkova, A.; Okhlopkov, V.; Shugai, S.; Orlov, A.; Kravchuk, A.; Goryaynov, S.; Golbin, D.; Pavlova, G.; et al. Differentiation of glioblastoma tissues using spontaneous Raman scattering with dimensionality reduction and data classification. Front. Oncol. 2022, 12, 944210. [Google Scholar] [CrossRef]
- Plante, A.; Dallaire, F.; Grosset, A.A.; Nguyen, T.; Birlea, M.; Wong, J.; Daoust, F.; Roy, N.; Kougioumoutzakis, A.; Azzi, F.; et al. Dimensional reduction based on peak fitting of Raman micro spectroscopy data improves detection of prostate cancer in tissue specimens. J. Biomed. Opt. 2021, 26, 116501. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, H.; Yu, B.; Jia, C.; Cong, X.; Cong, L. Multi-scale sequential feature selection for disease classification using Raman spectroscopy data. Comput. Biol. Med. 2023, 162, 107053. [Google Scholar] [CrossRef] [PubMed]
- Fenn, M.B.; Pappu, V.; Georgeiv, P.G.; Pardalos, P.M. Raman spectroscopy utilizing Fisher-based feature selection combined with Support Vector Machines for the characterization of breast cell lines. J. Raman Spectrosc. 2013, 44, 939–948. [Google Scholar] [CrossRef]
- Fallahzadeh, O.; Dehghani-Bidgoli, Z.; Assarian, M. Raman spectral feature selection using ant colony optimization for breast cancer diagnosis. Lasers Med Sci. 2018, 33, 1799–1806. [Google Scholar] [CrossRef]
- Li, S.; Chen, G.; Zhang, Y.; Guo, Z.; Liu, Z.; Xu, J.; Li, X.; Lin, L. Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques. Opt. Express 2014, 22, 25895–25908. [Google Scholar] [CrossRef]
- Li, C.L.; Fisher, C.J.; Komolibus, K.; Grygoryev, K.; Lu, H.; Burke, R.; Visentin, A.; Andersson-Engels, S. Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery. J. Biomed. Opt. 2023, 28, 121207. [Google Scholar] [CrossRef]
- de Carvalho Gomes, P.; Crossman, A.; Massey, E.; Rickard, J.J.S.; Oppenheimer, P.G. Real-time validation of Surface-Enhanced Raman Scattering substrates via convolutional neural network algorithm. Inform. Med. Unlocked 2022, 33, 101076. [Google Scholar] [CrossRef]
- Blake, N.; Gaifulina, R.; Griffin, L.D.; Bell, I.M.; Thomas, G.M. Machine learning of Raman spectroscopy data for classifying cancers: A review of the recent literature. Diagnostics 2022, 12, 1491. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B.; Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear discriminant analysis. In Robust Data Mining; Springer: New York, NY, USA, 2013; pp. 27–33. [Google Scholar] [CrossRef]
- Song, F.; Mei, D.; Li, H. Feature selection based on linear discriminant analysis. In Proceedings of the 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010; IEEE: New York, NY, USA, 2010; Volume 1, pp. 746–749. [Google Scholar] [CrossRef]
- Clark, L.A.; Pregibon, D. Tree-based models. In Statistical Models in S; Routledge: London, UK, 2017; pp. 377–419. [Google Scholar]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Araveeporn, A.; Wanitjirattikal, P. Comparison of machine learning methods for binary classification of multicollinearity data. In Proceedings of the 2024 7th International Conference on Mathematics and Statistics, Amarante, Portugal, 23–25 June 2024; pp. 44–49. [Google Scholar] [CrossRef]
- Parmar, A.; Katariya, R.; Patel, V. A review on random forest: An ensemble classifier. In Proceedings of the International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, Coimbatore, India, 7–8 August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 758–763. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Networks Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Ajit, A.; Acharya, K.; Samanta, A. A review of convolutional neural networks. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; IEEE: New York, NY, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 1 April 2025).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://tensorflow.org (accessed on 1 April 2025).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR) 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Gottesman, Y. Interpretable ECG Classification With 1D Vision Transformer. 2023. Available online: https://github.com/yonigottesman/ecg_vit (accessed on 1 April 2025).
- Nanga, S.; Bawah, A.T.; Acquaye, B.A.; Billa, M.I.; Baeta, F.D.; Odai, N.A.; Obeng, S.K.; Nsiah, A.D. Review of dimension reduction methods. J. Data Anal. Inf. Process. 2021, 9, 189–231. [Google Scholar] [CrossRef]
- Yıldırım, H. The multicollinearity effect on the performance of machine learning algorithms: Case examples in healthcare modelling. Acad. Platf. J. Eng. Smart Syst. 2024, 12, 68–80. [Google Scholar] [CrossRef]
- Lindner, T.; Puck, J.; Verbeke, A. Beyond addressing multicollinearity: Robust quantitative analysis and machine learning in international business research. J. Int. Bus. Stud. 2022, 53, 1307–1314. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef]
- Qu, J.; Song, W.; Liu, X.; Zhao, L.; Zhao, X. A Novel Improved Reversible Visible Image Watermarking Algorithm Based on Grad-CAM and JND. Secur. Commun. Networks 2021, 2021, 6652897. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Min, S.; Xia, J.; Li, J. Raman spectroscopy combined with convolutional neural network for the sub-types classification of breast cancer and critical feature visualization. Comput. Methods Programs Biomed. 2024, 255, 108361. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Li, J.; Wang, X.; Li, Y.; Li, J. Enhanced cancer classification and critical feature visualization using Raman spectroscopy and convolutional neural networks. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 326, 125242. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Guo, J.; Chen, N.; Xu, X.; Wang, Z.; Fu, K.; Liu, L.; Yi, Z. Medimlp: Using grad-cam to extract crucial variables for lung cancer postoperative complication prediction. IEEE J. Biomed. Health Inform. 2019, 24, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- Panati, C.; Wagner, S.; Brüggenwirth, S. Feature relevance evaluation using grad-CAM, LIME and SHAP for deep learning SAR data classification. In Proceedings of the 2022 23rd International Radar Symposium (IRS), Gdańsk, Poland, 12–14 September 2022; IEEE: New York, NY, USA, 2022; pp. 457–462. [Google Scholar] [CrossRef]
- Van Zyl, C.; Ye, X.; Naidoo, R. Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: A comparative analysis of Grad-CAM and SHAP. Appl. Energy 2024, 353, 122079. [Google Scholar] [CrossRef]
- Clauwaert, J.; Menschaert, G.; Waegeman, W. Explainability in transformer models for functional genomics. Briefings Bioinform. 2021, 22, bbab060. [Google Scholar] [CrossRef]
- Ma, J.; Bai, Y.; Zhong, B.; Zhang, W.; Yao, T.; Mei, T. Visualizing and understanding patch interactions in vision transformer. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 13671–13680. [Google Scholar] [CrossRef]
- Leem, S.; Seo, H. Attention Guided CAM: Visual Explanations of Vision Transformer Guided by Self-Attention. arXiv 2024, arXiv:2402.04563. [Google Scholar] [CrossRef]
- Dahan, S.; Xu, H.; Williams, L.Z.; Fawaz, A.; Yang, C.; Coalson, T.S.; Williams, M.C.; Newby, D.E.; Edwards, A.D.; Glasser, M.F.; et al. Surface Vision Transformers: Flexible Attention-Based Modelling of Biomedical Surfaces. arXiv 2022, arXiv:2204.03408. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Z.; Ji, S.; Tao, D.; Tan, T. Feature selection based on structured sparsity: A comprehensive study. IEEE Trans. Neural Networks Learn. Syst. 2016, 28, 1490–1507. [Google Scholar] [CrossRef]
- Ghosh, P.; Azam, S.; Jonkman, M.; Karim, A.; Shamrat, F.J.M.; Ignatious, E.; Shultana, S.; Beeravolu, A.R.; De Boer, F. Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access 2021, 9, 19304–19326. [Google Scholar] [CrossRef]
- Abdumalikov, S.; Kim, J.; Yoon, Y. Performance analysis and improvement of machine learning with various feature selection methods for EEG-based emotion classification. Appl. Sci. 2024, 14, 10511. [Google Scholar] [CrossRef]
- Cabral, T.W.; Neto, F.B.; de Lima, E.R.; Fraidenraich, G.; Meloni, L.G. Analysis of Variance Combined with Optimized Gradient Boosting Machines for Enhanced Load Recognition in Home Energy Management Systems. Sensors 2024, 24, 4965. [Google Scholar] [CrossRef] [PubMed]
- Paraskevaidi, M. Raman Spectroscopic Techniques to Detect Ovarian Cancer Biomarkers in Blood Plasma. Talanta 2018, 189, 281–288. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, X.; Li, Y. Exosomes in ovarian cancer: Impact on drug resistance and advances in SERS detection techniques. J. Pharm. Anal. 2024, 15, 101170. [Google Scholar] [CrossRef]
- Georgiev, D.; Pedersen, S.V.; Xie, R.; Fernández-Galiana, A.; Stevens, M.M.; Barahona, M. RamanSPy: An open-source Python package for integrative Raman spectroscopy data analysis. Anal. Chem. 2024, 96, 8492–8500. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Pan, X.; Yu, H.; Hua, S.; Wang, D.; Chen, D.Z.; Zhou, M.; Wu, J. A deep learning approach for detecting colorectal cancer via Raman spectra. BME Front. 2022, 11, 23842. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.; Ermon, S.; Dionne, J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927. [Google Scholar] [CrossRef] [PubMed]
Citation | Feature Selection Method | Advantage | Machine Learning | Deep Learning |
---|---|---|---|---|
Wei et al. (2023) [21] | Long-Short Term Memory Model | Long-term dependencies | x | x |
Fenn et al. (2013) [22] | Fisher-based feature selection | Reduced overfitting | x | |
Fallahzadeh et al. (2018) [23] | Ant Colony Optimisation | Robust and combinable | x | |
Li et al. (2014) [24] | Ant Colony Optimisation | Robust and combinable | x | |
Romanishkin et al. (2022) [19] | Fisher Criterion | Reduced overfitting | x | |
Plante et al. (2021) [20] | SVM and Gaussian | Local and long-range features | x |
Algorithm | Hyperparameter | Lower | Upper | Other |
---|---|---|---|---|
LDA | Solver | svd, lsqr, eigen | ||
Shrinkage | 0.1 | 1 | ||
Tolerance | 0.001 | 0.00001 | ||
Random Forest | n estimators | 50 | 600 | |
criterion | gini, entropy, log loss | |||
max depth | 5 | 20 | None | |
min samples split | 1 | 10 | ||
min samples leaf | 1 | 10 | ||
CNN | optimiser | 0.01 | 0.0001 | Adam, Adamax |
conv filters | 8 | 64 | ||
conv window | 8 | 14 | ||
conv stride | 5 | 14 | ||
pool size | 2 | 8 | ||
pool stride | 2 | 8 | ||
batch momentum | 0.70 | 0.90 | ||
batch epsilon | 0.01 | 0.0001 | ||
dense size | 128 | 1024 | ||
Transformer | patch size | 2 | 30 | |
hidden size | 2 | 256 | ||
depth | 3 | 6 | ||
num heads | 2 | 6 | ||
mlp dim | 2 | 128 | ||
sd survival probability | 0.8 | 1 |
Dataset 1 | Dataset 2 | Dataset 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDA | RF | CNN | Trans | LDA | RF | CNN | Trans | LDA | RF | CNN | Trans | ||
Full Data | 0.84 | 0.80 | 0.86 | 0.57 | 0.91 | 0.88 | 0.94 | 0.64 | 0.81 | 0.77 | 0.81 | 0.59 | |
20% | LDA | 0.72 | 0.64 | 0.65 | 0.49 | 0.87 | 0.84 | 0.91 | 0.86 | 0.73 | 0.80 | 0.71 | 0.34 |
RF | 0.73 | 0.63 | 0.66 | 0.57 | 0.89 | 0.87 | 0.93 | 0.90 | 0.74 | 0.77 | 0.80 | 0.32 | |
CNN | 0.79 | 0.82 | 0.83 | 0.64 | 0.86 | 0.85 | 0.91 | 0.84 | 0.77 | 0.78 | 0.77 | 0.46 | |
Trans | 0.71 | 0.79 | 0.85 | 0.49 | 0.77 | 0.78 | 0.82 | 0.78 | 0.61 | 0.70 | 0.73 | 0.51 | |
L1 | 0.69 | 0.71 | 0.67 | 0.50 | 0.69 | 0.59 | 0.73 | 0.75 | 0.58 | 0.6 | 0.59 | 0.34 | |
K-Best | 0.63 | 0.67 | 0.66 | 0.59 | 0.50 | 0.46 | 0.53 | 0.49 | 0.61 | 0.61 | 0.58 | 0.51 | |
Domain | 0.76 | 0.76 | 0.71 | 0.59 | 0.78 | 0.79 | 0.83 | 0.77 | 0.68 | 0.65 | 0.66 | 0.54 | |
15% | LDA | 0.71 | 0.62 | 0.69 | 0.50 | 0.84 | 0.80 | 0.90 | 0.83 | 0.72 | 0.76 | 0.65 | 0.33 |
RF | 0.74 | 0.68 | 0.72 | 0.63 | 0.87 | 0.86 | 0.92 | 0.87 | 0.74 | 0.77 | 0.75 | 0.37 | |
CNN | 0.77 | 0.83 | 0.82 | 0.49 | 0.82 | 0.82 | 0.87 | 0.83 | 0.78 | 0.80 | 0.74 | 0.42 | |
Trans | 0.73 | 0.63 | 0.78 | 0.59 | 0.79 | 0.80 | 0.84 | 0.78 | 0.49 | 0.69 | 0.62 | 0.33 | |
L1 | 0.69 | 0.74 | 0.61 | 0.50 | 0.69 | 0.61 | 0.73 | 0.76 | 0.58 | 0.63 | 0.61 | 0.33 | |
K-Best | 0.63 | 0.66 | 0.59 | 0.59 | 0.50 | 0.46 | 0.53 | 0.49 | 0.61 | 0.58 | 0.56 | 0.55 | |
Domain | 0.77 | 0.74 | 0.64 | 0.59 | 0.78 | 0.77 | 0.81 | 0.76 | 0.60 | 0.65 | 0.70 | 0.55 | |
10% | LDA | 0.69 | 0.64 | 0.78 | 0.50 | 0.78 | 0.76 | 0.85 | 0.76 | 0.66 | 0.80 | 0.65 | 0.34 |
RF | 0.69 | 0.65 | 0.74 | 0.50 | 0.86 | 0.85 | 0.91 | 0.85 | 0.70 | 0.80 | 0.68 | 0.44 | |
CNN | 0.75 | 0.86 | 0.75 | 0.51 | 0.81 | 0.81 | 0.86 | 0.78 | 0.70 | 0.72 | 0.68 | 0.45 | |
Trans | 0.71 | 0.54 | 0.60 | 0.50 | 0.72 | 0.75 | 0.78 | 0.74 | 0.57 | 0.61 | 0.68 | 0.34 | |
L1 | 0.69 | 0.67 | 0.59 | 0.50 | 0.69 | 0.6 | 0.74 | 0.77 | 0.58 | 0.60 | 0.61 | 0.33 | |
K-Best | 0.63 | 0.69 | 0.68 | 0.59 | 0.50 | 0.46 | 0.53 | 0.49 | 0.61 | 0.60 | 0.57 | 0.59 | |
Domain | 0.70 | 0.70 | 0.58 | 0.61 | 0.69 | 0.72 | 0.75 | 0.69 | 0.59 | 0.58 | 0.60 | 0.60 | |
5% | LDA | 0.71 | 0.76 | 0.66 | 0.50 | 0.66 | 0.67 | 0.74 | 0.65 | 0.63 | 0.71 | 0.60 | 0.34 |
RF | 0.66 | 0.62 | 0.65 | 0.50 | 0.81 | 0.81 | 0.86 | 0.82 | 0.66 | 0.72 | 0.70 | 0.52 | |
CNN | 0.76 | 0.75 | 0.80 | 0.50 | 0.70 | 0.73 | 0.77 | 0.70 | 0.65 | 0.74 | 0.72 | 0.34 | |
Trans | 0.70 | 0.63 | 0.66 | 0.50 | 0.66 | 0.68 | 0.71 | 0.66 | 0.61 | 0.60 | 0.63 | 0.34 | |
L1 | 0.69 | 0.69 | 0.63 | 0.50 | 0.69 | 0.60 | 0.74 | 0.75 | 0.58 | 0.61 | 0.62 | 0.55 | |
K-Best | 0.63 | 0.66 | 0.61 | 0.59 | 0.50 | 0.47 | 0.53 | 0.51 | 0.61 | 0.62 | 0.56 | 0.57 | |
Domain | 0.53 | 0.63 | 0.57 | 0.62 | 0.64 | 0.64 | 0.66 | 0.63 | 0.46 | 0.54 | 0.51 | 0.46 | |
1% | LDA | 0.67 | 0.60 | 0.65 | 0.50 | 0.41 | 0.39 | 0.44 | 0.42 | 0.49 | 0.51 | 0.34 | 0.33 |
RF | 0.61 | 0.57 | 0.63 | 0.39 | 0.65 | 0.70 | 0.71 | 0.69 | 0.59 | 0.39 | 0.59 | 0.57 | |
CNN | 0.62 | 0.63 | 0.70 | 0.59 | 0.35 | 0.34 | 0.41 | 0.38 | 0.33 | 0.39 | 0.31 | 0.34 | |
Trans | 0.51 | 0.51 | 0.52 | 0.50 | 0.34 | 0.32 | 0.39 | 0.33 | 0.46 | 0.48 | 0.46 | 0.33 | |
L1 | 0.69 | 0.70 | 0.62 | 0.50 | 0.69 | 0.60 | 0.73 | 0.75 | 0.58 | 0.65 | 0.62 | 0.52 | |
K-Best | 0.63 | 0.64 | 0.59 | 0.59 | 0.50 | 0.47 | 0.53 | 0.49 | 0.61 | 0.62 | 0.56 | 0.34 | |
Domain | 0.62 | 0.64 | 0.61 | 0.58 | 0.50 | 0.48 | 0.53 | 0.51 | 0.39 | 0.47 | 0.53 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossberg, N.; Gautam, R.; Komolibus, K.; O’Sullivan, B.; Visentin, A. Explainable AI-Based Feature Selection Approaches for Raman Spectroscopy. Diagnostics 2025, 15, 2063. https://doi.org/10.3390/diagnostics15162063
Rossberg N, Gautam R, Komolibus K, O’Sullivan B, Visentin A. Explainable AI-Based Feature Selection Approaches for Raman Spectroscopy. Diagnostics. 2025; 15(16):2063. https://doi.org/10.3390/diagnostics15162063
Chicago/Turabian StyleRossberg, Nicola, Rekha Gautam, Katarzyna Komolibus, Barry O’Sullivan, and Andrea Visentin. 2025. "Explainable AI-Based Feature Selection Approaches for Raman Spectroscopy" Diagnostics 15, no. 16: 2063. https://doi.org/10.3390/diagnostics15162063
APA StyleRossberg, N., Gautam, R., Komolibus, K., O’Sullivan, B., & Visentin, A. (2025). Explainable AI-Based Feature Selection Approaches for Raman Spectroscopy. Diagnostics, 15(16), 2063. https://doi.org/10.3390/diagnostics15162063