Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms
Abstract
1. Background
2. Literature Review
3. Study Contributions and Objectives
4. Methods
4.1. Study Population
4.2. Definitions and Outcomes
4.3. ML Models
4.4. Statistical Analyses
5. Results
5.1. Baseline Characteristics and Clinical Outcomes
5.2. Univariate and Multivariate Logistic Analysis of Risk Factors
5.3. Machine Learning-Based Prediction of Acute Kidney Injury
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Christiansen, C.L.; Cleary, P.D.; Munro, C.; Lazarus, J.M. Prognostic stratification in critically ill patients with acute renal failure requiring dialysis. Arch. Intern. Med. 1995, 155, 1505–1511. [Google Scholar] [CrossRef]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Susantitaphong, P.; Cruz, D.N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B.L. World incidence of AKI: A meta-analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef]
- Buttner, S.; Stadler, A.; Mayer, C.; Patyna, S.; Betz, C.; Senft, C.; Geiger, H.; Jung, O.; Finkelmeier, F. Incidence, Risk Factors, and Outcome of Acute Kidney Injury in Neurocritical Care. J. Intensive Care Med. 2020, 35, 338–346. [Google Scholar] [CrossRef]
- Husain-Syed, F.; Takeuchi, T.; Neyra, J.A.; Ramírez-Guerrero, G.; Rosner, M.H.; Ronco, C.; Tolwani, A.J. Acute kidney injury in neurocritical care. Crit. Care 2023, 27, 341. [Google Scholar] [CrossRef]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef]
- Ramirez-Guerrero, G.; Baghetti-Hernandez, R.; Ronco, C. Acute Kidney Injury at the Neurocritical Care Unit. Neurocrit. Care 2022, 36, 640–649. [Google Scholar] [CrossRef]
- Malek, M. Brain consequences of acute kidney injury: Focusing on the hippocampus. Kidney Res. Clin. Pract. 2018, 37, 315–322. [Google Scholar] [CrossRef]
- Pickkers, P.; Ostermann, M.; Joannidis, M.; Zarbock, A.; Hoste, E.; Bellomo, R.; Prowle, J.; Darmon, M.; Bonventre, J.V.; Forni, L.; et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 2017, 43, 1198–1209. [Google Scholar] [CrossRef]
- Tomašev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019, 572, 116–119. [Google Scholar] [CrossRef]
- Sadan, O.; Singbartl, K.; Kandiah, P.A.; Martin, K.S.; Samuels, O.B. Hyperchloremia Is Associated with Acute Kidney Injury in Patients with Subarachnoid Hemorrhage. Crit. Care Med. 2017, 45, 1382–1388. [Google Scholar] [CrossRef]
- Yunos, N.M.; Bellomo, R.; Hegarty, C.; Story, D.; Ho, L.; Bailey, M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012, 308, 1566–1572. [Google Scholar] [CrossRef]
- Peng, C.; Yang, F.; Li, L.; Peng, L.; Yu, J.; Wang, P.; Jin, Z. A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury. Neurocrit. Care 2023, 38, 335–344. [Google Scholar] [CrossRef]
- Al-Mufti, F.; Kim, M.; Dodson, V.; Sursal, T.; Bowers, C.; Cole, C.; Scurlock, C.; Becker, C.; Gandhi, C.; Mayer, S.A. Machine Learning and Artificial Intelligence in Neurocritical Care: A Specialty-Wide Disruptive Transformation or a Strategy for Success. Curr. Neurol. Neurosci. Rep. 2019, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.J.; Wang, S.V.; Vaduganathan, M.; Evers, T.; Schneeweiss, S. Comparison of Machine Learning Methods with Traditional Models for Use of Administrative Claims with Electronic Medical Records to Predict Heart Failure Outcomes. JAMA Netw. Open 2020, 3, e1918962. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Shah, N.H.; Milstein, A.; Bagley, S. Making Machine Learning Models Clinically Useful. JAMA 2019, 322, 1351–1352. [Google Scholar] [CrossRef] [PubMed]
- Frizzell, J.D.; Liang, L.; Schulte, P.J.; Yancy, C.W.; Heidenreich, P.A.; Hernandez, A.F.; Bhatt, D.L.; Fonarow, G.C.; Laskey, W.K. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. JAMA Cardiol. 2017, 2, 204–209. [Google Scholar] [CrossRef]
- Khera, R.; Haimovich, J.; Hurley, N.C.; McNamara, R.; Spertus, J.A.; Desai, N.; Rumsfeld, J.S.; Masoudi, F.A.; Huang, C.; Normand, S.L.; et al. Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiol. 2021, 6, 633–641. [Google Scholar] [CrossRef]
- Adamson, A.S.; Smith, A. Machine Learning and Health Care Disparities in Dermatology. JAMA Dermatol. 2018, 154, 1247–1248. [Google Scholar] [CrossRef]
- Goldstein, B.A.; Navar, A.M.; Carter, R.E. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur. Heart J. 2017, 38, 1805–1814. [Google Scholar] [CrossRef]
- Koyner, J.L.; Carey, K.A.; Edelson, D.P.; Churpek, M.M. The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit. Care Med. 2018, 46, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Kate, R.J.; Perez, R.M.; Mazumdar, D.; Pasupathy, K.S.; Nilakantan, V. Prediction and detection models for acute kidney injury in hospitalized older adults. BMC Med. Inform. Decis. Mak. 2016, 16, 39. [Google Scholar] [CrossRef]
- Rashidi, P.; Bihorac, A. Artificial intelligence approaches to improve kidney care. Nat. Rev. Nephrol. 2020, 16, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Kumar, A.B.; Shi, Y.; Shotwell, M.S.; Richards, J.; Ehrenfeld, J.M. Hypernatremia is a significant risk factor for acute kidney injury after subarachnoid hemorrhage: A retrospective analysis. Neurocrit. Care 2015, 22, 184–191. [Google Scholar] [CrossRef]
- Riha, H.M.; Erdman, M.J.; Vandigo, J.E.; Kimmons, L.A.; Goyal, N.; Davidson, K.E.; Pandhi, A.; Jones, G.M. Impact of Moderate Hyperchloremia on Clinical Outcomes in Intracerebral Hemorrhage Patients Treated with Continuous Infusion Hypertonic Saline: A Pilot Study. Crit. Care Med. 2017, 45, e947–e953. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.K.; Jeon, Y.-T.; Sohn, H.; Chung, S.H.; Do, S.-H. Association of Perioperative Hyperchloremia and Hyperchloremic Metabolic Acidosis with Acute Kidney Injury After Craniotomy for Intracranial Hemorrhage. World Neurosurg. 2019, 125, e1226–e1240. [Google Scholar] [CrossRef]
- Sigmon, J.; May, C.C.; Bryant, A.; Humanez, J.; Singh, V. Assessment of Acute Kidney Injury in Neurologically Injured Patients Receiving Hypertonic Sodium Chloride: Does Chloride Load Matter? Ann. Pharmacother. 2020, 54, 541–546. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Acute Kidney Injury Network. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef]
- Fink, M.E. Osmotherapy for intracranial hypertension: Mannitol versus hypertonic saline. Continuum 2012, 18, 640–654. [Google Scholar] [CrossRef]
- Lee, K.; Jeon, J.; Kim, J.M.; Kim, G.; Kim, K.; Jang, H.R.; Lee, J.E.; Joh, J.W.; Lee, S.K.; Huh, W. Perioperative risk factors of progressive chronic kidney disease following liver transplantation: Analyses of a 10-year follow-up single-center cohort. Ann. Surg. Treat. Res. 2020, 99, 52–62. [Google Scholar] [CrossRef]
- Batista, G.E.A.P.A.; Monard, M.C. A Study of K-Nearest Neighbour as an Imputation Method. Computing Systems—Design, Management and Applications, HIS 2002, December 1–4, 2002, Santiago, Chile. Available online: https://www.researchgate.net/profile/Maria-Carolina-Monard/publication/2475229_A_Study_of_K-Nearest_Neighbour_as_an_Imputation_Method/links/0deec51ae1802c9861000000/A-Study-of-K-Nearest-Neighbour-as-an-Imputation-Method.pdf (accessed on 1 February 2024).
- Jonsson, P.; Wohlin, C. An evaluation of k-nearest neighbour imputation using likert data. In Proceedings of the 10th International Symposium on Software Metrics, 2004, Proceedings, Chicago, IL, USA, 11–17 September 2004; Available online: https://ieeexplore.ieee.org/document/1357895 (accessed on 1 February 2024).
- Pan, R.; Yang, T.; Cao, J.; Lu, K.; Zhang, Z. Missing data imputation by K nearest neighbours based on grey relational structure and mutual information. Appl. Intell. 2015, 43, 614–632. [Google Scholar] [CrossRef]
- Barlow, B.; Thompson Bastin, M.L.; Shadler, A.; Cook, A.M. Association of chloride-rich fluids and medication diluents on the incidence of hyperchloremia and clinical consequences in aneurysmal subarachnoid hemorrhage. J. Neurocrit. Care 2022, 15, 113–121. [Google Scholar] [CrossRef]
- Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How Machine Learning Will Transform Biomedicine. Cell 2020, 181, 92–101. [Google Scholar] [CrossRef]
- Shaw, A.D.; Raghunathan, K.; Peyerl, F.W.; Munson, S.H.; Paluszkiewicz, S.M.; Schermer, C.R. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014, 40, 1897–1905. [Google Scholar] [CrossRef]
Author/Year | Population | Sample Size | Methodology | Key Predictors | Performance (AUC) | Limitations/Gaps |
---|---|---|---|---|---|---|
Buttner et al. (2020) [7] | Neurocritical care patients | 1234 | Logistic regression | Age, APACHE II, mechanical ventilation | 0.75 | Small sample; traditional statistics; no ML comparison |
Peng et al. (2023) [16] | Traumatic brain injury | 892 | Random Forest, SVM | GCS, age, creatinine | 0.78 | Limited to TBI; no hyperosmolar therapy focus |
Sadan et al. (2017) [14] | Subarachnoid hemorrhage | 315 | Logistic regression | Hyperchloremia, fluid balance | 0.69 | Single condition; small cohort; basic chloride analysis |
Kumar et al. (2015) [29] | Subarachnoid hemorrhage | 287 | Logistic regression | Hypernatremia, age | 0.71 | Limited predictors; no advanced analytics |
Koyner et al. (2018) [25] | General ICU patients | 5344 | Gradient boosting | Creatinine, medications, vitals | 0.84 | Not neurocritical care specific; no hyperosmolar focus |
Tomašev et al. (2019) [13] | General hospital patients | 703,782 | Deep learning | Multiple clinical variables | 0.92 | General population; complex model; limited interpretability |
Kate et al. (2016) [26] | Hospitalized elderly | 1182 | Random Forest, SVM | Comorbidities, medications | 0.79 | Elderly-specific; no ICU focus |
Rashidi & Bihorac (2020) [27] | Various populations | Review study | Multiple ML approaches | Various | Variable | Review paper; no specific neurocritical focus |
Oh et al. (2019) [31] | Craniotomy patients | 1456 | Logistic regression | Hyperchloremia, acidosis | 0.73 | No ML; limited to surgical patients |
Riha et al. (2017) [30] | Intracerebral hemorrhage | 124 | Descriptive analysis | Hyperchloremia | N/A | Small sample; no prediction model |
Sigmon et al. (2020) [32] | Neurological patients | 89 | Descriptive analysis | Chloride load | N/A | Very small sample; no prediction focus |
Variables | Non-AKI (n = 4073) | AKI (n = 813) | p Value |
---|---|---|---|
Patient demographics | |||
Age (year) | 52.1 ± 15.7 | 51.8 ± 20.8 | 0.710 |
Sex, male | 1703 (41.8) | 341 (41.9) | 0.976 |
Comorbidities | |||
Malignancy | 2241 (55.0) | 433 (53.3) | 0.377 |
Hypertension | 1163 (28.6) | 287 (35.3) | <0.001 |
Diabetes mellitus | 374 (9.2) | 106 (13.0) | 0.001 |
Chronic kidney disease | 74 (1.8) | 46 (5.7) | <0.001 |
Chronic liver disease | 67 (1.6) | 24 (3.0) | 0.018 |
Cardiovascular disease | 51 (1.3) | 24 (3.0) | 0.001 |
Behavioral risk factors | |||
Current alcohol consumption | 1000 (24.6) | 182 (22.4) | 0.203 |
Current smoking | 450 (11.0) | 90 (11.1) | 0.999 |
Cause of ICU admission | <0.001 | ||
Brain tumor | 1889 (46.4) | 304 (37.4) | |
Microvascular decompression | 940 (23.1) | 27 (3.3) | |
Elective vascular surgery | 663 (16.3) | 72 (8.9) | |
Intracerebral hemorrhage | 140 (3.4) | 120 (14.8) | |
Subarachnoid hemorrhage | 114 (2.8) | 101 (12.4) | |
Traumatic brain injury | 102 (2.5) | 101 (12.4) | |
Spinal surgery | 93 (2.3) | 26 (3.2) | |
Central nervous system infection | 23 (0.6) | 18 (2.2) | |
Cerebral infarction | 21 (0.5) | 15 (1.8) | |
Others | 88 (2.2) | 29 (3.6) | |
APACHE II score on ICU admission | 2.4 ± 3.8 | 5.2 ± 6.3 | <0.001 |
Glasgow coma scale on ICU admission | 14.7 ± 1.4 | 13.3 ± 3.5 | <0.001 |
ICU management | |||
Mechanical ventilation | 471 (11.6) | 378 (46.5) | <0.001 |
Duration of mechanical ventilation | 3.1 ± 5.2 | 6.5 ± 7.0 | <0.001 |
Continuous renal replacement therapy | 3 (0.1) | 18 (2.2) | <0.001 |
Duration of renal replacement therapy | 1.3 ± 0.6 | 4.1 ± 2.4 | 0.067 |
ICP monitoring | 238 (5.8) | 208 (25.6) | <0.001 |
Duration of ICP monitoring | 5.5 ± 4.1 | 7.3 ± 5.9 | <0.001 |
Use of mannitol * | 3662 (89.9) | 606 (74.5) | <0.001 |
Use of glycerin * | 703 (17.3) | 365 (44.9) | <0.001 |
Use of hypertonic saline | 126 (21.2) | 141 (23.9) | 0.030 |
Use of mannitol and glycerin | 292 (7.2) | 158 (19.4) | <0.001 |
Use of vasopressors | 40 (1.0) | 86 (10.6) | <0.001 |
Laboratory data | |||
Serum sodium level | 141.5 ± 4.3 | 146.2 ± 9.5 | <0.001 |
Hypernatremia | 360 (8.8) | 295 (36.3) | <0.001 |
Duration of hyperchloremia | 0.1 ± 0.8 | 1.0 ± 2.3 | <0.001 |
Initial chloride level | 107.29 (3.89) | 108.93 (7.45) | <0.001 |
Maximal chloride level | 107.87 (4.74) | 113.03 (10.50) | <0.001 |
Delta chloride | 0.6 ± 2.6 | 4.1 ± 7.5 | <0.001 |
pH | 7.43 ± 0.04 | 7.41 ± 0.07 | <0.001 |
Bicarbonate level | 21.34 ± 2.62 | 20.25 ± 3.47 | <0.001 |
Serum osmolality | 302.1 ± 11.4 | 315.4 ± 25.7 | <0.001 |
Osmolar gap | 4.2 ± 7.6 | 8.4 ± 12.3 | <0.001 |
Serum creatinine level | 0.74 ± 0.32 | 1.17 ± 1.38 | <0.001 |
Estimated glomerular filtration rate | 100.0 ± 23.2 | 82.8 ± 36.3 | <0.001 |
Variables | Non-AKI (n = 4073) | AKI (n = 813) | p Value |
---|---|---|---|
AKI stage | <0.001 | ||
1 | 623 (76.6) | ||
2 | 135 (16.6) | ||
3 | 55 (6.8) | ||
Clinical outcomes | |||
In-hospital mortality | 84 (2.1) | 133 (16.4) | <0.001 |
28-day mortality | 88 (2.2) | 132 (16.2) | <0.001 |
ICU mortality | 64 (1.6) | 99 (12.2) | <0.001 |
ICU length of stay (hour) | 39.2 ± 109.2 | 135.7 ± 219.2 | <0.001 |
Hospital length of stay (day) | 13.57 ± 15.7 | 33.9 ± 83.7 | <0.001 |
ICU readmission within 48 h | 16 (0.4) | 13 (1.6) | 0.003 |
Variables | Adjusted OR (95% CI) | p Value |
---|---|---|
Sex, male | 0.70 (0.57–0.85) | <0.001 |
Hypertension | 1.16 (1.05–1.28) | 0.003 |
Intracranial hemorrhage | 3.25 (2.31–4.56) | <0.001 |
Subarachnoid hemorrhage | 3.30 (2.31–4.68) | <0.001 |
Traumatic brain injury | 3.76 (2.57–5.48) | <0.001 |
Spinal surgery | 2.77 (1.67–4.46) | <0.001 |
Central nerve system infection | 5.48 (2.72–10.90) | <0.001 |
APACHE II score on ICU admission | 1.16 (1.05–1.29) | 0.003 |
Mechanical ventilation | 1.32 (1.21–1.44) | <0.001 |
ICP monitoring | 1.20 (1.11–1.29) | <0.001 |
Use of vasopressors | 1.18 (1.09–1.27) | <0.001 |
Initial chloride level | 5.21 (1.01–49.10) | 0.005 |
Delta chloride | 5.08 (1.22–35.61) | 0.041 |
Bicarbonate level | 0.92 (0.84–1.00) | 0.057 |
Serum osmolality | 1.36 (1.21–1.53) | <0.001 |
Algorithm | Preprocessing | AUROC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) |
---|---|---|---|---|---|---|---|
GBM | Exclude missing | 0.83 (0.79–0.88) | 0.74 (0.64–0.82) | 0.80 (0.77–0.83) | 0.40 (0.33–0.47) | 0.94 (0.92–0.96) | 0.79 (0.76–0.82) |
GBM | KNN imputation | 0.85 (0.81–0.89) | 0.79 (0.70–0.87) | 0.80 (0.77–0.83) | 0.42 (0.35–0.49) | 0.96 (0.93–0.97) | 0.80 (0.77–0.83) |
RF | Exclude missing | 0.86 (0.82–0.91) | 0.80 (0.71–0.87) | 0.82 (0.79–0.85) | 0.45 (0.38–0.52) | 0.96 (0.94–0.97) | 0.82 (0.79–0.85) |
RF | KNN imputation | 0.86 (0.82–0.91) | 0.79 (0.70–0.87) | 0.85 (0.82–0.88) | 0.48 (0.41–0.56) | 0.96 (0.94–0.97) | 0.84 (0.81–0.87) |
RF | SMOTE balancing | 0.61 (0.81–0.90) | 0.70 (0.60–0.78) | 0.50 (0.46–0.54) | 0.20 (0.16–0.24) | 0.90 (0.87–0.93) | 0.53 (0.49–0.57) |
XGBoost | Exclude missing | 0.85 (0.81–0.89) | 0.81 (0.72–0.88) | 0.79 (0.75–0.82) | 0.41 (0.34–0.48) | 0.96 (0.94–0.97) | 0.79 (0.76–0.82) |
XGBoost | KNN imputation | 0.85 (0.81–0.89) | 0.79 (0.70–0.87) | 0.78 (0.74–0.81) | 0.39 (0.32–0.46) | 0.95 (0.93–0.97) | 0.78 (0.75–0.81) |
XGBoost | SMOTE balancing | 0.85 (0.81–0.89) | 0.76 (0.67–0.84) | 0.81 (0.77–0.84) | 0.41 (0.34–0.49) | 0.95 (0.93–0.97) | 0.80 (0.77–0.83) |
Fold | GBM Exclude | GBM KNN Imputation | RF Exclude | RF KNN Imputation | XGBoost Exclude | XGBoost KNN Imputation |
---|---|---|---|---|---|---|
Fold 1 | 0.773 | 0.899 | 0.816 | 0.906 | 0.810 | 0.884 |
Fold 2 | 0.857 | 0.802 | 0.857 | 0.807 | 0.848 | 0.801 |
Fold 3 | 0.900 | 0.825 | 0.837 | 0.826 | 0.832 | 0.819 |
Fold 4 | 0.787 | 0.840 | 0.838 | 0.854 | 0.808 | 0.849 |
Fold 5 | 0.838 | 0.826 | 0.777 | 0.826 | 0.796 | 0.833 |
Fold 6 | 0.760 | 0.850 | 0.806 | 0.859 | 0.821 | 0.838 |
Fold 7 | 0.835 | 0.851 | 0.882 | 0.849 | 0.845 | 0.839 |
Fold 8 | 0.855 | 0.760 | 0.789 | 0.769 | 0.790 | 0.774 |
Fold 9 | 0.810 | 0.784 | 0.878 | 0.799 | 0.870 | 0.778 |
Fold 10 | 0.856 | 0.829 | 0.881 | 0.821 | 0.858 | 0.828 |
Mean ± SD | 0.827 ± 0.042 | 0.827 ± 0.040 | 0.836 ± 0.035 | 0.832 ± 0.041 | 0.828 ± 0.027 | 0.824 ± 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.S.; Yoon, T.J.; Ahn, J.; Ryu, J.-A. Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms. Diagnostics 2025, 15, 2061. https://doi.org/10.3390/diagnostics15162061
Kim KS, Yoon TJ, Ahn J, Ryu J-A. Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms. Diagnostics. 2025; 15(16):2061. https://doi.org/10.3390/diagnostics15162061
Chicago/Turabian StyleKim, Keun Soo, Tae Jin Yoon, Joonghyun Ahn, and Jeong-Am Ryu. 2025. "Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms" Diagnostics 15, no. 16: 2061. https://doi.org/10.3390/diagnostics15162061
APA StyleKim, K. S., Yoon, T. J., Ahn, J., & Ryu, J.-A. (2025). Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms. Diagnostics, 15(16), 2061. https://doi.org/10.3390/diagnostics15162061