Liquid Biopsy and Single-Cell Technologies in Maternal–Fetal Medicine: A Scoping Review of Non-Invasive Molecular Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Data Synthesis and Analysis
2.6. Limitations
3. Results
3.1. Overview of Included Studies
3.2. Role of Emerging Technologies in Understanding Placental Biology and Pregnancy Complications
Technical Distinctions Between Liquid Biopsy and Single-Cell Technologies
3.3. Applications of Liquid Biopsy for Perinatal Complications
3.4. Applications of Single-Cell Analysis in Perinatal Research
3.5. Limitations and Challenges
4. Discussion
4.1. Interpretation of Findings
4.2. Strengths and Limitations
4.3. Implications for Clinical Practice
4.4. Broader Implications for Research and Technology Development
4.5. Recommendations for Future Research
4.6. Addressing Disparities and Equity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, F.; Lei, J.; Qiu, J.; Zhao, C.; Wang, X.; Li, M.; Sun, M.; Zhang, M.; Gao, Q. DNA methylation landscape in pregnancy-induced hypertension: Progress and challenges. Reprod. Biol. Endocrinol. 2024, 22, 77. [Google Scholar] [CrossRef]
- Cena, B.; Melloul, E.; Demartines, N.; Dormond, O.; Labgaa, I. Basic Science with Preclinical Models to Investigate and Develop Liquid Biopsy: What Are the Available Data and Is It a Fruitful Approach? Int. J. Mol. Sci. 2022, 23, 5343. [Google Scholar] [CrossRef]
- Kelley, J.; McGillivray, G.; Meagher, S.; Hui, L. Increased nuchal translucency after low-risk noninvasive prenatal testing: What should we tell prospective parents? Prenat. Diagn. 2021, 41, 1305–1315. [Google Scholar] [CrossRef]
- Zedníková, I.; Chylíková, B.; Šeda, O.; Korabečná, M.; Pazourková, E.; Břešťák, M.; Krkavcová, M.; Calda, P.; Hořínek, A. Genome-wide miRNA profiling in plasma of pregnant women with down syndrome fetuses. Mol. Biol. Rep. 2020, 47, 4531–4540. [Google Scholar] [CrossRef]
- Loy, C.; Ahmann, L.; De Vlaminck, I.; Gu, W. Liquid Biopsy Based on Cell-Free DNA and RNA. Annu. Rev. Biomed. Eng. 2024, 26, 169–195. [Google Scholar] [CrossRef]
- Moufarrej, M.N.; Vorperian, S.K.; Wong, R.J.; Campos, A.A.; Quaintance, C.C.; Sit, R.V.; Tan, M.; Detweiler, A.M.; Mekonen, H.; Neff, N.F.; et al. Early prediction of preeclampsia in pregnancy with cell-free RNA. Nature 2022, 602, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Moufarrej, M.N.; Wong, R.J.; Shaw, G.M.; Stevenson, D.K.; Quake, S.R. Investigating Pregnancy and Its Complications Using Circulating Cell-Free RNA in Women’s Blood During Gestation. Front. Pediatr. 2020, 8, 605219. [Google Scholar] [CrossRef]
- Barnes, M.V.C.; Pantazi, P.; Holder, B. Circulating extracellular vesicles in healthy and pathological pregnancies: A scoping review of methodology, rigour and results. J. Extracell. Vesicles 2023, 12, e12377. [Google Scholar] [CrossRef] [PubMed]
- Moufarrej, M.N.; Winn, V.D.; Quake, S.R. Cell-Free Nucleic Acids for Early Prediction of Preeclampsia. Curr. Hypertens. Rep. 2024, 26, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Vento-Tormo, R.; Efremova, M.; Botting, R.A.; Turco, M.Y.; Vento-Tormo, M.; Meyer, K.B.; Park, J.-E.; Stephenson, E.; Polański, K.; Goncalves, A. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 2018, 563, 347–353. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Wang, S.; Deng, Q.; An, Y.; Xing, Y.; Dai, X.; Li, Z.; Ma, Q.; Wang, K. Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal-fetal interface. Sci. Rep. 2022, 12, 10892. [Google Scholar] [CrossRef]
- Barrozo, E.R.; Aagaard, K.M. Human placental biology at single-cell resolution: A contemporaneous review. BJOG Int. J. Obstet. Gynaecol. 2022, 129, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, Q.; Liu, Y.; Garmire, L.X. Single cell transcriptome research in human placenta. Reproduction 2020, 160, R155–R167. [Google Scholar] [CrossRef]
- Chen, Q.; Shan, D.; Xie, Y.; Luo, X.; Wu, Y.; Chen, Q.; Dong, R.; Hu, Y. Single cell RNA sequencing research in maternal fetal interface. Front. Cell Dev. Biol. 2022, 10, 1079961. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, X. An update review of the application of single-cell RNA sequencing in pregnancy-related diseases. Front. Endocrinol. 2024, 15, 1415173. [Google Scholar] [CrossRef]
- Derisoud, E.; Jiang, H.; Zhao, A.; Chavatte-Palmer, P.; Deng, Q. Revealing the molecular landscape of human placenta: A systematic review and meta-analysis of single-cell RNA sequencing studies. Hum. Reprod. Update 2024, 30, 410–441. [Google Scholar] [CrossRef]
- Wang, Z.; Ou, Q.; Gao, L. The increased cfRNA of TNFSF4 in peripheral blood at late gestation and preterm labor: Its implication as a noninvasive biomarker for premature delivery. Front. Immunol. 2023, 14, 1154025. [Google Scholar] [CrossRef]
- Li, K.; Guo, Z.; Li, F.; Lu, S.; Zhang, M.; Gong, Y.; Tan, J.; Sheng, C.; Hao, W.; Yang, X. Non-invasive determination of gene expression in placental tissue using maternal plasma cell-free DNA fragmentation characters. Gene 2024, 928, 148789. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Xiao, Z.; Yan, L.; Guo, S.; Wang, Y.; Wu, H.; Zhao, X.; Lu, X.; Wang, H. A differentiation roadmap of murine placentation at single-cell resolution. Cell Discov. 2023, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Barber, E.; Segura-Benítez, M.; Carbajo-García, M.C.; Bas-Rivas, A.; Faus, A.; Vidal, C.; Giles, J.; Labarta, E.; Pellicer, A.; Cervelló, I.; et al. Extracellular vesicles secreted by adenomyosis endometrial organoids contain miRNAs involved in embryo implantation and pregnancy. Reprod. BioMed. Online 2023, 46, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Kazatsker, M.M.; Sharabi-Nov, A.; Meiri, H.; Sammour, R.; Sammar, M. Augmented Placental Protein 13 in Placental-Associated Extracellular Vesicles in Term and Preterm Preeclampsia Is Further Elevated by Corticosteroids. Int. J. Mol. Sci. 2023, 24, 12051. [Google Scholar] [CrossRef]
- Munoz, J.L.; Einerson, B.D.; Silver, R.M.; Mulampurath, S.; Sherman, L.S.; Rameshwar, P.; Prewit, E.B.; Ramsey, P.S. Serum exosomal microRNA pathway activation in placenta accreta spectrum: Pathophysiology and detection. AJOG Glob. Rep. 2024, 4, 100319. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, A.V.; Fedorov, I.S.; Suhova, Y.V.; Tarasova, A.M.; Ezhova, L.S.; Zabelina, T.M.; Vasilchenko, O.N.; Ivanets, T.Y.; Sukhikh, G.T. Diagnostic Role of Cell-Free miRNAs in Identifying Placenta Accreta Spectrum during First-Trimester Screening. Int. J. Mol. Sci. 2024, 25, 871. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.Y.; Gardner, L.; Kay, R.G.; Hamilton, R.S.; Prater, M.; Hollinshead, M.S.; McWhinnie, A.; Esposito, L.; Fernando, R.; Skelton, H.; et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018, 564, 263–267. [Google Scholar] [CrossRef]
- Nelson, A.C.; Mould, A.W.; Bikoff, E.K.; Robertson, E.J. Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy. Nat. Commun. 2016, 7, 11414. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z. Gene expression profile of human placental villous pericytes in the first trimester-An analysis by single-cell RNA sequencing. Reprod. Biol. 2024, 24, 100919. [Google Scholar] [CrossRef]
- Admati, I.; Skarbianskis, N.; Hochgerner, H.; Ophir, O.; Yagel, S.; Solt, I.; Zeisel, A. Single-nuclei RNA-sequencing fails to detect molecular dysregulation in the preeclamptic placenta. Placenta 2025, 159, 170–179. [Google Scholar] [CrossRef]
- Durlak, W.; Thébaud, B. The vascular phenotype of BPD: New basic science insights-new precision medicine approaches. Pediatr. Res. 2024, 96, 1162–1171. [Google Scholar] [CrossRef]
- Song, K.; Musci, T.J.; Caughey, A.B. Clinical utility and cost of non-invasive prenatal testing with cfDNA analysis in high-risk women based on a US population. J. Matern. Fetal Neonatal Med. 2013, 26, 1180–1185. [Google Scholar] [CrossRef]
- Walker, B.S.; Nelson, R.E.; Jackson, B.R.; Grenache, D.G.; Ashwood, E.R.; Schmidt, R.L. A Cost-Effectiveness Analysis of First Trimester Non-Invasive Prenatal Screening for Fetal Trisomies in the United States. PLoS ONE. 2015, 10, e0131402. [Google Scholar] [CrossRef]
- Chang, Y.H.; Wu, K.C.; Harnod, T.; Ding, D.C. Comparison of the Cost and Effect of Combined Conditioned Medium and Conventional Medium for Fallopian Tube Organoid Cultures. Cell Transplant. 2023, 32, 9636897231160216. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, H.K.; Traverse, E.M.; Barr, K.L. Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS. Pathogens 2021, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
Technology | Applications | Findings | Associated Pregnancy Complication(s) | Limitations |
---|---|---|---|---|
Liquid Biopsy | Non-invasive detection of preeclampsia, preterm birth, fetal growth restriction, and PAS through cfRNA, cfDNA, and EV profiling. | cfRNA: Inflammation-associated transcripts (e.g., TNFSF4) as early markers of preterm birth. cfDNA: Fragmentomics reflect placental dysfunction. EVs: microRNAs and proteins related to implantation and preeclampsia. | Preterm birth Preeclampsia FGR | Lack of standardized biomarker protocols. Pre-analytical variability (e.g., sample handling). High cost and limited accessibility. |
EVs | Biomarker discovery for preeclampsia and PAS via circulating microRNAs and placental proteins. | PP13 in EVs: Marker of preeclampsia severity. Endometrial EV miRNAs linked to implantation. miR-1246, miR-1910-5p in PAS. | Preeclampsia PAS | Limited validation in clinical practice. Optimization needed for reliable biomarker isolation. |
scRNA-seq | High-resolution analysis of cellular alterations in preeclampsia, FGR, and preterm birth using placental biopsies. | Disrupted pericyte and endothelial pathways in FGR and preeclampsia. Myeloid and endothelial signatures in early-onset preeclampsia. | Preeclampsia FGR Preterm birth | Requires fresh tissue and bioinformatics expertise; high cost. |
Organoid Models | Functional modeling of trophoblast invasion and placental dysfunction in early-onset preeclampsia and implantation failure. | Trophoblast organoids replicate hormone production, nutrient transport, and invasive behavior. | Preeclampsia | Limited scalability for broader research. Cost and complexity in creating and maintaining organoids. |
Technology | Estimated Cost per Sample | Main Applications | Key Implementation Barriers |
---|---|---|---|
cfDNA | USD 350–795 | Non-invasive prenatal testing; placental gene expression | Already commercialized; limited access in low-resource settings |
cfRNA | USD 500–1000+ | Inflammatory markers; early detection of preterm labor | Experimental; lacks standardization and clinical validation |
EVs | USD 200–1000+ | Biomarkers for implantation, preeclampsia | Requires ultracentrifugation or specialized platforms; low scalability |
scRNA-seq | USD 1000–3000+ | Placental cell-type profiling; pathway analysis | High costs; bioinformatics expertise and infrastructure needed |
Organoid Models | Variable; ~USD 1000+ per assay | Functional modeling of placental development and pathology | Costly, labor-intensive; not scalable for clinical use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroy-Muñoz, I.E.; Torres-Torres, J.; Rojas-Zepeda, L.; Villafan-Bernal, J.R.; Espino-y-Sosa, S.; Baca, D.; Camacho-Martinez, Z.A.; Perez-Duran, J.; Solis-Paredes, J.M.; Estrada-Gutierrez, G.; et al. Liquid Biopsy and Single-Cell Technologies in Maternal–Fetal Medicine: A Scoping Review of Non-Invasive Molecular Approaches. Diagnostics 2025, 15, 2056. https://doi.org/10.3390/diagnostics15162056
Monroy-Muñoz IE, Torres-Torres J, Rojas-Zepeda L, Villafan-Bernal JR, Espino-y-Sosa S, Baca D, Camacho-Martinez ZA, Perez-Duran J, Solis-Paredes JM, Estrada-Gutierrez G, et al. Liquid Biopsy and Single-Cell Technologies in Maternal–Fetal Medicine: A Scoping Review of Non-Invasive Molecular Approaches. Diagnostics. 2025; 15(16):2056. https://doi.org/10.3390/diagnostics15162056
Chicago/Turabian StyleMonroy-Muñoz, Irma Eloisa, Johnatan Torres-Torres, Lourdes Rojas-Zepeda, Jose Rafael Villafan-Bernal, Salvador Espino-y-Sosa, Deyanira Baca, Zaira Alexi Camacho-Martinez, Javier Perez-Duran, Juan Mario Solis-Paredes, Guadalupe Estrada-Gutierrez, and et al. 2025. "Liquid Biopsy and Single-Cell Technologies in Maternal–Fetal Medicine: A Scoping Review of Non-Invasive Molecular Approaches" Diagnostics 15, no. 16: 2056. https://doi.org/10.3390/diagnostics15162056
APA StyleMonroy-Muñoz, I. E., Torres-Torres, J., Rojas-Zepeda, L., Villafan-Bernal, J. R., Espino-y-Sosa, S., Baca, D., Camacho-Martinez, Z. A., Perez-Duran, J., Solis-Paredes, J. M., Estrada-Gutierrez, G., Moreno-Verduzco, E. R., & Martinez-Portilla, R. (2025). Liquid Biopsy and Single-Cell Technologies in Maternal–Fetal Medicine: A Scoping Review of Non-Invasive Molecular Approaches. Diagnostics, 15(16), 2056. https://doi.org/10.3390/diagnostics15162056