Coronary Artery Inflammation and Epicardial Adipose Tissue Volume in Relation with Atrial Fibrillation Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. CCT Acquisition Protocol
2.3. CAD, EAT Volume, and LAV Assessment
2.4. Pericoronary Inflammation Assessment
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Imaging Biomarkers of Atrial and Coronary Pathology: LAVI, EAT, CACs, and CAD-RADS
3.3. LAVI, EAT Volumes, and the Risk of AF
3.4. CACs, FAI-Score, and CaRi-Heart® Risk Score in AF and Non-AF Patients
3.5. Regional Analysis of FAI-Score Values and Total FAI Score
4. Discussion
5. Study Limitation and Possible Bias
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
AUC | Area Under the Curve (ROC analysis) |
EAT | Epicardial Adipose Tissue |
EAT-LA | Epicardial Adipose Tissue at the level of the Left Atrium |
EAT-BA | Epicardial Adipose Tissue at the Bi-atrial level |
LAV | Left Atrial Volume |
LAVI | Left Atrial Volume Index |
CCT | Cardiac Computed Tomography |
FAI | Fat Attenuation Index |
FAI-HU | Fat Attenuation Index measured in Hounsfield Units |
CAD | Coronary Artery Disease |
CAD-RADS | Coronary Artery Disease-Reporting and Data System |
PCAT | Pericoronary Adipose Tissue |
PCAT-FAI | Fat Attenuation Index of Pericoronary Adipose Tissue |
CACs | Coronary Artery Calcium Score |
HU | Hounsfield Units |
ROC | Receiver Operating Characteristic |
LAD | Left Anterior Descending artery |
LCX | Left Circumflex artery |
RCA | Right Coronary Artery |
BMI | Body Mass Index |
CRP | C-Reactive Protein |
References
- Al Chekakie, M.O.; Welles, C.C.; Metoyer, R.; Ibrahim, A.; Shapira, A.R.; Cytron, J.; Santucci, P.; Wilber, D.J.; Akar, J.G. Pericardial fat is independently associated with human atrial fibrillation. J. Am. Coll. Cardiol. 2010, 56, 784–788. [Google Scholar] [CrossRef]
- Thanassoulis, G.; Massaro, J.M.; O’Donnell, C.J.; Hoffmann, U.; Levy, D.; Ellinor, P.T.; Wang, T.J.; Schnabel, R.B.; Vasan, R.S.; Fox, C.S.; et al. Pericardial fat is associated with prevalent atrial fibrillation: The Framingham Heart Study. Circ. Arrhythm. Electrophysiol. 2010, 3, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Van Rosendael, A.R.; Dimitriu-Leen, A.C.; van Rosendael, P.J.; Leung, M.; Smit, J.M.; Saraste, A.; Knuuti, J.; van der Geest, R.J.; van der Arend, B.W.; van Zwet, E.W.; et al. Association Between Posterior Left Atrial Adipose Tissue Mass and Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2017, 10, e004614. [Google Scholar] [CrossRef]
- Nakamori, S.; Nezafat, M.; Ngo, L.H.; Manning, W.J.; Nezafat, R. Left Atrial Epicardial Fat Volume Is Associated with Atrial Fibrillation: A Prospective Cardiovascular Magnetic Resonance 3D Dixon Study. J. Am. Heart Assoc. 2018, 7, e008232. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. J. Am. Coll. Cardiol. 2015, 66, 1–11. [Google Scholar] [CrossRef]
- Nagashima, K.; Okumura, Y.; Watanabe, I.; Nakai, T.; Ohkubo, K.; Kofune, T.; Kofune, M.; Mano, H.; Sonoda, K.; Hirayama, A. Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circ. J. 2011, 75, 2559–2565. [Google Scholar] [CrossRef]
- Ciuffo, L.; Nguyen, H.; Marques, M.D.; Aronis, K.N.; Sivasambu, B.; de Vasconcelos, H.D.; Tao, S.; Spragg, D.D.; Marine, J.E.; Berger, R.D.; et al. Periatrial Fat Quality Predicts Atrial Fibrillation Ablation Outcome. Circ. Cardiovasc. Imaging 2019, 12, e008764. [Google Scholar] [CrossRef]
- Nogami, K.; Sugiyama, T.; Kanaji, Y.; Hoshino, M.; Hara, S.; Yamaguchi, M.; Hada, M.; Sumino, Y.; Misawa, T.; Hirano, H.; et al. Association between pericoronary adipose tissue attenuation and outcome after second-generation cryoballoon ablation for atrial fibrillation. Br. J. Radiol. 2021, 94, 20210361. [Google Scholar] [CrossRef]
- Gerculy, R.; Benedek, I.; Kovács, I.; Rat, N.; Halațiu, V.B.; Rodean, I.; Bordi, L.; Blîndu, E.; Roșca, A.; Mátyás, B.-B.; et al. CT-Assessment of Epicardial Fat Identifies Increased Inflammation at the Level of the Left Coronary Circulation in Patients with Atrial Fibrillation. J. Clin. Med. 2024, 13, 1307. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.J.; Guo, F.Q.; Hu, J.; Liu, X.-W.; Chen, C.; Gao, B.; Li, C.-Y. Association of pericoronary adipose tissue with atrial fibrillation recurrence after ablation based on computed tomographic angiography. Jpn. J. Radiol. 2023, 41, 955–964. [Google Scholar] [CrossRef]
- Sha, R.; Han, W.; Lin, M.; Zhong, J. Is Epicardial Adipose Tissue Associated with Atrial Fibrillation Following Cardiac Surgery? A Systematic Review and Meta-Analysis. Heart Surg. Forum 2021, 24, E801–E807. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Chen, J.; Ren, L.; Guo, H.; Chen, X.; Dong, J.; Chen, Y.; Sun, Y. Impact of pericoronary adipose tissue attenuation on recurrence after radiofrequency catheter ablation for atrial fibrillation. Clin. Cardiol. 2023, 46, 1244–1252. [Google Scholar] [CrossRef]
- Wu, J.; Meng, X.; Wu, D.; Li, Y.; Zhang, X.; Wang, Z.; Wang, X.; Zhang, F. Radiomic phenotype of peri-coronary adipose tissue as a potential non-invasive imaging tool for detecting atrial fibrillation. Br. J. Radiol. 2025, 98, 777–784. [Google Scholar] [CrossRef]
- Raniga, D.; Goda, M.; Hattingh, L.; Thorning, S.; Rowe, M.; Howes, L. Left atrial volume index: A predictor of atrial fibrillation recurrence following direct current cardioversion-A systematic review and meta-analysis. Int. J. Cardiol. Heart Vasc. 2024, 51, 101364. [Google Scholar] [CrossRef]
- Maier, J.; Blessberger, H.; Nahler, A.; Hrncic, D.; Fellner, A.; Reiter, C.; Hönig, S.; Schmit, P.; Fellner, F.; Lambert, T.; et al. Cardiac Computed Tomography-Derived Left Atrial Volume Index as a Predictor of Long-Term Success of Cryo-Ablation in Patients With Atrial Fibrillation. Am. J. Cardiol. 2021, 140, 69–77. [Google Scholar] [CrossRef]
- Tops, L.F.; Schalij, M.J.; Bax, J.J. Imaging and atrial fibrillation: The role of multimodality imaging in patient evaluation and management of atrial fibrillation. Eur. Heart J. 2010, 31, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.; Dey, D.; Marwick, T.H.; Nerlekar, N. Pericoronary Adipose Tissue as a Marker of Cardiovascular Risk: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 913–923. [Google Scholar] [CrossRef]
- Dell’aversana, F.; Tuccillo, R.; Monfregola, A.; De Angelis, L.; Ferrandino, G.; Tedeschi, C.; Cacciapuoti, F.; Tamburro, F.; Liguori, C. Epicardial Adipose Tissue Volume Assessment in the General Population and CAD-RADS 2.0 Score Correlation Using Dual Source Cardiac CT. Diagnostics 2025, 15, 681. [Google Scholar] [CrossRef] [PubMed]
- Cruz, I.; Fernandes, S.L.; Diaz, S.O.; Saraiva, F.; Barros, A.S.; Primo, J.; Sampaio, F.; Ladeiras-Lopes, R.; Fontes-Carvalho, R. Epicardial adipose tissue volume is not an independent predictor of atrial fibrillation recurrence after catheter ablation. Rev. Esp. Cardiol. 2023, 76, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Abhayaratna, W.P.; Seward, J.B.; Appleton, C.P.; Douglas, P.S.; Oh, J.K.; Tajik, A.J.; Tsang, T.S. Left atrial size: Physiologic determinants and clinical applications. J. Am. Coll. Cardiol. 2006, 47, 2357–2363. [Google Scholar] [CrossRef]
- Gaibazzi, N.; Martini, C.; Benatti, G.; Palumbo, A.A.; Cacciola, G.; Tuttolomondo, D. Atrial Fibrillation and Peri-Atrial Inflammation Measured through Adipose Tissue Attenuation on Cardiac Computed Tomography. Diagnostics 2021, 11, 2087. [Google Scholar] [CrossRef]
- Al Chekakie, M.O.; Akar, J.G. Epicardial Fat and Atrial Fibrillation: A Review. J. Atr. Fibrillation. 2012, 4, 483. [Google Scholar] [CrossRef]
- Cook, L.; Perry, M.; Hill, A.; Thorpe, J. Methods to model epicardial adipose tissue-mediated atrial fibrillation. Npj Cardiovasc. Health 2025, 2, 29. [Google Scholar] [CrossRef]
- Sun, Y.-H.; Tian, X.; Bao, W.-J.; Liu, X.-W.; Kou, C.-G.; Guo, F.-Q.; Zhang, H.-W.; Li, M.-Y.; Li, C.-Y. The association between the recurrence of atrial fibrillation and the shape of left atrial lateral ridge. Sci. Rep. 2024, 14, 30060. [Google Scholar] [CrossRef]
- Lin, F.-F.; Chen, Q.; Wu, Q.-Y.; Li, S.-J.; Zhu, Y.-B.; Tang, Y.; Xue, Y.-J.; Luo, J.-W.; Li, Z.-A.; Chen, H.-Y. The value of computed tomography angiography for evaluation of left atrial enlargement in patients with persistent atrial fibrillation. BMC Cardiovasc. Disord. 2024, 24, 502. [Google Scholar] [CrossRef]
- Wattanachayakul, P.; Srikulmontri, T.; Kulthamrongsri, N.; Lo, K.B.; Kewcharoen, J.; Mainigi, S. Left Atrial Size and Left Atrial Volume Index as Predictors of Atrial High-Rate Episodes. Pacing Clin. Electrophysiol. 2025, 48, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Batal, O.; Schoenhagen, P.; Shao, M.; Ayyad, A.E.; Van Wagoner, D.R.; Halliburton, S.S.; Tchou, P.J.; Chung, M.K. Left Atrial Epicardial Adiposity and Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2010, 3, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef]
- Napoli, G.; Pergola, V.; Basile, P.; De Feo, D.; Bertrandino, F.; Baggiano, A.; Mushtaq, S.; Fusini, L.; Fazzari, F.; Carrabba, N.; et al. Epicardial and Pericoronary Adipose Tissue, Coronary Inflammation, and Acute Coronary Syndromes. J. Clin. Med. 2023, 12, 7212. [Google Scholar] [CrossRef]
- Yuvaraj, J.; Cheng, K.; Lin, A.; Psaltis, P.J.; Nicholls, S.J.; Wong, D.T.L. The Emerging Role of CT-Based Imaging in Adipose Tissue and Coronary Inflammation. Cells 2021, 10, 1196. [Google Scholar] [CrossRef]
- Conte, M.; Petraglia, L.; Cabaro, S.; Valerio, V.; Poggio, P.; Pilato, E.; Attena, E.; Russo, V.; Ferro, A.; Formisano, P.; et al. Epicardial Adipose Tissue and Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 932262. [Google Scholar] [CrossRef]
- Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef]
- Pracon, R.; Kruk, M.; Kepka, C.; Pregowski, J.; Opolski, M.P.; Dzielinska, Z.; Michalowska, I.; Chmielak, Z.; Demkow, M.; Ruzyłło, W. Epicardial Adipose Tissue Radiodensity Is Independently Related to Coronary Atherosclerosis-A Multidetector Computed Tomography Study:A Multidetector Computed Tomography Study. Circ. J. 2011, 75, 391–397. [Google Scholar] [CrossRef]
- Blîndu, E.; Mátyás, B.B.; Bajka, B.; Buicu, C.F.; Chițu, M.; Benedek, I. High Inflammation and Coronary Calcification in an Acute Coronary Syndrome Successfully Treated with Cutting Balloon. J. Cardiovasc. Emergencies 2024, 10, 111–116. [Google Scholar] [CrossRef]
- Mátyás, B.B.; Blîndu, E.; Rat, N.; Kovács, I.; Buicu, C.F.; Benedek, T. A Race Against Time: Coronary Computed Tomography Angiography Discovers a Highly Inflamed Plaque in 49-Year-Old Right Before STEMI. J. Cardiovasc. Emergencies 2024, 10, 117–123. [Google Scholar] [CrossRef]
- Zain, S.; Shamshad, T.; Kabir, A.; Khan, A.A. Epicardial Adipose Tissue and Development of Atrial Fibrillation (AFIB) and Heart Failure With Preserved Ejection Fraction (HFpEF). Cureus 2023, 15, e46153. [Google Scholar] [CrossRef]
- Iacobellis, G.; Di Gioia, C.R.; Di Vito, M.; Petramala, L.; Cotesta, D.; De Santis, V.; Vitale, D.; Tritapepe, L.; Letizia, C. Epicardial Adipose Tissue and Intracoronary Adrenomedullin Levels in Coronary Artery Disease. Horm. Metab. Res. 2009, 41, 855–860. [Google Scholar] [CrossRef]
Parameters | Whole Study Sample (n = 122) | Group 1 (Patients with AF) (n = 42) | Group 2 (Patients without AF) (n = 80) | p Value |
---|---|---|---|---|
Age, mean ± SD | 63.70 ± 7.78 | 64.05 ± 7.84 | 63.53 ± 7.78 | 0.6628 |
Male gender, n (%) | 75 (61.47%) | 25 (59.52%) | 50 (62.50%) | 0.8452 |
BMI 1, (kg/m2), mean ± SD | 27.44 ± 4.32 | 28.25 ± 5.07 | 27.05 ± 3.86 | 0.2567 |
Cardiovascular risk factors: | ||||
Hypertension, n (%) | 75 (61.47%) | 29 (69.05%) | 46 (57.50%) | 0.2441 |
Hypercholesterolemia, n (%) | 43 (35.24%) | 17 (40.48%) | 26 (32.50%) | 0.4278 |
Diabetes, n (%) | 32 (26.22%) | 10 (23.81%) | 22 (27.50%) | 0.8288 |
Smoking, n (%) | 27 (22.13%) | 11 (26.19%) | 16 (20.00%) | 0.4937 |
Parameters | Whole Study Sample (n = 122) | Group 1 (Patients with AF) (n = 42) | Group 2 (Patients without AF) (n = 80) | p Value |
---|---|---|---|---|
LAV 1 (mL), mean ± SD | 92.15 ± 23.45 | 103.3 ± 20.34 | 86.3 ± 22.94 | <0.0001 |
LAVI 2 (mL/m2), mean ± SD | 49.96 ± 13.39 | 57.7 ± 11.44 | 45.9 ± 12.58 | <0.0001 |
EAT 3 assessment: | ||||
EAT volume (mL), mean ± SD | 180.3 ± 63.5 | 231.8 ± 45.85 | 153.2 ± 54.14 | <0.0001 |
EAT-LA 4 volume (mL), mean ± SD | 18.30 ± 8.7 | 23.55 ± 6.44 | 15.54 ± 8.49 | <0.0001 |
EAT-BA 5 volume (mL), mean ± SD | 43.42 ± 15.5 | 50.24 ± 12.69 | 39.84 ± 15.70 | 0.0002 |
CACs 6 extent, mean ± SD: | 378.2 ± 137.1 | 231.9 ± 76.98 | 455.1 ± 91.27 | <0.0001 |
CACs < 10, n (%) | 70 (57.37%) | 28 (66.67%) | 42 (52.50%) | 0.1775 |
CACs: 10–400, n (%) | 31 (25.40%) | 8 (19.05%) | 23 (28.75%) | 0.2800 |
CACs > 400, n (%) | 21 (17.21%) | 6 (14.29%) | 15 (18.75%) | 0.6202 |
CAD-RADS 7 categories: | ||||
0–1, n (%) | 49 (40.16%) | 11 (26.19%) | 38 (47.75%) | 0.0320 |
2–3, n (%) | 42 (34.42%) | 17 (40.48%) | 25 (31.25%) | 0.3230 |
4–5, n (%) | 31 (25.40%) | 14 (33.33%) | 17 (21.25%) | 0.1892 |
Parameters | AUC 1 | 95% CI for AUC | z-Statistic | Youden Index | Cu-Off Value for AF | Sensitivity (%) | Specificity (%) | p Value |
---|---|---|---|---|---|---|---|---|
LAV 2 (mL), mean ± SD | 0.713 | 0.62–0.79 | 4.43 | 0.37 | >92.72 | 73.81 | 63.75 | <0.0001 |
LAVI 3 (mL/m2), mean ± SD | 0.756 | 0.67–0.82 | 5.75 | 0.45 | >52.25 | 73.81 | 71.25 | <0.0001 |
EAT 4 volume, mL | 0.869 | 0.79–0.92 | 11.40 | 0.66 | >179.01 | 92.86 | 73.75 | <0.0001 |
EAT + LAVI (combined score) | 0.887 | 0.81–0.93 | 12.76 | 0.71 | >232.58 | 92.86 | 78.75 | <0.0001 |
EAT-LA 5 volume, mL | 0.776 | 0.69–0.84 | 6.61 | 0.44 | >17.74 | 83.33 | 61.25 | <0.0001 |
EAT-BA 6 volume, mL | 0.703 | 0.61–0.78 | 4.09 | 0.33 | >49.95 | 57.14 | 76.25 | <0.0001 |
CACs 7 extent | 0.968 | 0.91–0.99 | 35.31 | 0.83 | ≤352.21 | 97.62 | 86.25 | <0.0001 |
FAI 8—Score TOTAL | 0.562 | 0.50–0.61 | 1.85 | 0.18 | >18.49 | 37.30 | 81.25 | 0.0634 |
CaRi-Heart® risk score | 0.503 | 0.41–0.59 | 0.04 | 0.07 | ≤ 13.16 | 30.95 | 61.25 | 0.9622 |
Parameters | Whole Study Sample (n = 122) | Group 1 (Patients with AF) (n = 42) | Group 2 (Patients without AF) (n = 80) | p Value |
---|---|---|---|---|
FAI 1 scores: | ||||
FAI—Score LAD, mean ± SD | 9.69 ± 5.94 | 12.17 ± 8.61 | 8.77 ± 4.78 | 0.0712 |
FAI—Score LCX, mean ± SD | 12.24 ± 6.51 | 13.13 ± 7.78 | 11.77 ± 5.73 | 0.2751 |
FAI—Score RCA, mean ± SD | 17.80 ± 11.29 | 19.20 ± 12.25 | 17.07 ± 10.77 | 0.3690 |
FAI—Score TOTAL, mean ± SD | 13.04 ± 8.49 | 14.83 ± 10.16 | 12.37 ± 7.89 | 0.0447 |
CaRi-Heart® risk score, mean ± SD | 18.92 ± 12.5 | 19.12 ± 12.84 | 18.81 ± 12.40 | 0.8647 |
FAI—Score Centile categories: | ||||
≤24.9th percentile (low) | 11 (9.01%) | 2 (4.76%) | 9 (11.25%) | 0.3273 |
25–49.9th percentile (minimal) | 29 (23.77%) | 4 (9.52%) | 25 (31.25%) | 0.0073 |
50–74.9th percentile (medium) | 30 (24.59%) | 9 (21.43%) | 21 (26.25%) | 0.6604 |
75–89.9th percentile (high) | 27 (22.13%) | 13 (30.95%) | 14 (17.50%) | 0.1096 |
≥90th percentile (very high) | 25 (20.49%) | 14 (33.33%) | 11 (13.75%) | 0.0172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerculy, R.; Benedek, I.; Kovács, I.; Rat, N.; Rodean, I.-P.; Mátyás, B.B.; Blîndu, E.; Păcurar, D.; Grigoroaea, C.-G.; Benedek, T. Coronary Artery Inflammation and Epicardial Adipose Tissue Volume in Relation with Atrial Fibrillation Development. Diagnostics 2025, 15, 2003. https://doi.org/10.3390/diagnostics15162003
Gerculy R, Benedek I, Kovács I, Rat N, Rodean I-P, Mátyás BB, Blîndu E, Păcurar D, Grigoroaea C-G, Benedek T. Coronary Artery Inflammation and Epicardial Adipose Tissue Volume in Relation with Atrial Fibrillation Development. Diagnostics. 2025; 15(16):2003. https://doi.org/10.3390/diagnostics15162003
Chicago/Turabian StyleGerculy, Renáta, Imre Benedek, István Kovács, Nóra Rat, Ioana-Patricia Rodean, Botond Barna Mátyás, Emanuel Blîndu, Delia Păcurar, Ciprian-Gelu Grigoroaea, and Theodora Benedek. 2025. "Coronary Artery Inflammation and Epicardial Adipose Tissue Volume in Relation with Atrial Fibrillation Development" Diagnostics 15, no. 16: 2003. https://doi.org/10.3390/diagnostics15162003
APA StyleGerculy, R., Benedek, I., Kovács, I., Rat, N., Rodean, I.-P., Mátyás, B. B., Blîndu, E., Păcurar, D., Grigoroaea, C.-G., & Benedek, T. (2025). Coronary Artery Inflammation and Epicardial Adipose Tissue Volume in Relation with Atrial Fibrillation Development. Diagnostics, 15(16), 2003. https://doi.org/10.3390/diagnostics15162003