Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Imaging Protocol and Deep Learning Reconstruction Algorithm
2.3. Qualitative Image Quality Analysis
2.4. Rater Preference
2.5. Quantitative Image-Quality Indices
2.6. Evaluation of Residual Tumor
2.7. Statistical Analysis
3. Results
3.1. Image Quality-Based Analysis
3.2. Pooled Analysis of Qualitative Image Quality Assessment
3.3. Interrater Intraprotocol Agreement of Image Quality-Based Analysis
3.4. Rater Preference Between DLR and Conventionally Reconstructed Images
3.5. Quantitative Image Quality Assessment
3.6. Evaluation of Residual Tumor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNR | Contrast-to-noise Ratio |
CR | Conventional Reconstruction |
DL | Deep Learning |
DLR | Deep Learning-based Reconstruction |
FDA | U.S. Food and Drug Administration |
FLAIR | Fluid-attenuated Inversion Recovery |
FSIM | Feature Similarity Index |
MS-SSIM | Multi-Scale SSIM |
NQM | Noise Quality Metric |
PAT | Parallel Acquisition Technique |
PSNR | Peak SNR |
SD | Standard Deviation |
SE | Spin Echo |
SNR | Signal-to-noise Ratio |
SSIM | Structural Similarity Index |
TSE | Turbo Spin Echo |
References
- Rykkje, A.M.; Carlsen, J.F.; Larsen, V.A.; Skjøth-Rasmussen, J.; Christensen, I.J.; Nielsen, M.B.; Poulsen, H.S.; Urup, T.H.; Hansen, A.E. Prognostic relevance of radiological findings on early postoperative MRI for 187 consecutive glioblastoma patients receiving standard therapy. Sci. Rep. 2024, 14, 10985. [Google Scholar] [CrossRef]
- INTERVAL-GB Collaborative; Neurology and Neurosurgery Interest Group (NANSIG); British Neurosurgical Trainee Research Collaborative (BNTRC). Imaging timing after surgery for glioblastoma: An evaluation of practice in Great Britain and Ireland (INTERVAL-GB)—A multi-centre, cohort study. J. Neuro-Oncol. 2024, 169, 517–529. [Google Scholar] [CrossRef]
- Garcia-Ruiz, A.; Naval-Baudin, P.; Ligero, M.; Pons-Escoda, A.; Bruna, J.; Plans, G.; Calvo, N.; Cos, M.; Majós, C.; Perez-Lopez, R. Precise enhancement quantification in post-operative MRI as an indicator of residual tumor impact is associated with survival in patients with glioblastoma. Sci. Rep. 2021, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.T.; Bhatt, A.A. Brain tumour post-treatment imaging and treatment-related complications. Insights Imaging 2018, 9, 1057–1075. [Google Scholar] [CrossRef]
- Kiesel, B.; Prihoda, R.; Borkovec, M.; Mercea, P.A.; Steindl, A.; Berghoff, A.S.; Furtner, J.; Leitner, J.; Roetzer, T.; Preusser, M.; et al. Postoperative Magnetic Resonance Imaging After Surgery of Brain Metastases: Analysis of Extent of Resection and Potential Risk Factors for Incomplete Resection. World Neurosurg. 2020, 143, e365–e373. [Google Scholar] [CrossRef]
- Srinivasan, S.; Dasgupta, A.; Chatterjee, A.; Baheti, A.; Engineer, R.; Gupta, T.; Murthy, V. The Promise of Magnetic Resonance Imaging in Radiation Oncology Practice in the Management of Brain, Prostate, and GI Malignancies. JCO Glob. Oncol. 2022, 8, e2100366. [Google Scholar] [CrossRef]
- Gohla, G.; Hauser, T.-K.; Bombach, P.; Feucht, D.; Estler, A.; Bornemann, A.; Zerweck, L.; Weinbrenner, E.; Ernemann, U.; Ruff, C. Speeding Up and Improving Image Quality in Glioblastoma MRI Protocol by Deep Learning Image Reconstruction. Cancers 2024, 16, 1287. [Google Scholar] [CrossRef]
- Plenge, E.; Poot, D.H.J.; Bernsen, M.; Kotek, G.; Houston, G.; Wielopolski, P.; van der Weerd, L.; Niessen, W.J.; Meijering, E. Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn. Reson. Med. 2012, 68, 1983–1993. [Google Scholar] [CrossRef]
- Armato, S.G.; Drukker, K.; Hadjiiski, L. AI in medical imaging grand challenges: Translation from competition to research benefit and patient care. Br. J. Radiol. 2023, 96, 20221152. [Google Scholar] [CrossRef]
- Ruff, C.; Bombach, P.; Roder, C.; Weinbrenner, E.; Artzner, C.; Zerweck, L.; Paulsen, F.; Hauser, T.-K.; Ernemann, U.; Gohla, G. Multidisciplinary quantitative and qualitative assessment of IDH-mutant gliomas with full diagnostic deep learning image reconstruction. Eur. J. Radiol. Open 2024, 13, 100617. [Google Scholar] [CrossRef]
- Hossain, M.B.; Shinde, R.K.; Oh, S.; Kwon, K.-C.; Kim, N. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. Sensors 2024, 24, 753. [Google Scholar] [CrossRef]
- Monsour, R.; Borkowski, A. Neuroimaging in the Era of Artificial Intelligence: Current Applications. Fed. Pr. 2022, 39 (Suppl. 1), S14–S20. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.K.; Samuel, B.A.; Bhatia, S.; Khalifa, S.A.M.; El-Seedi, H.R. Artificial Intelligence and Precision Medicine: A New Frontier for the Treatment of Brain Tumors. Life 2022, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, C.; Gensheimer, M.; Padda, S.; Kato, F.; Shirato, H.; Wei, Y.; Schönlieb, C.-B.; Price, S.J.; Jaffray, D.; et al. Radiological tumor classification across imaging modality and histology. Nat. Mach. Intell. 2021, 3, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Carrillo-Perez, F.; Pizurica, M.; Heiland, D.H.; Gevaert, O. Spatial cellular architecture predicts prognosis in glioblastoma. Nat. Commun. 2023, 14, 4122. [Google Scholar] [CrossRef]
- Ottesen, J.A.; Storas, T.; Vatnehol, S.A.S.; Løvland, G.; Vik-Mo, E.O.; Schellhorn, T.; Skogen, K.; Larsson, C.; Bjørnerud, A.; Groote-Eindbaas, I.R.; et al. Deep learning-based Intraoperative MRI reconstruction. Eur. Radiol. Exp. 2025, 9, 29. [Google Scholar] [CrossRef]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef]
- Albert, F.K.; Forsting, M.; Sartor, K.; Adams, H.-P.; Kunze, S. Early postoperative magnetic resonance imaging after resection of malignant glioma: Objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 1994, 34, 45–61. [Google Scholar] [CrossRef]
- Henegar, M.M.; Moran, C.J.; Silbergeld, D.L. Early postoperative magnetic resonance imaging following nonneoplastic cortical resection. J. Neurosurg. 1996, 84, 174–179. [Google Scholar] [CrossRef]
- Mason, A.; Rioux, J.; Clarke, S.E.; Costa, A.; Schmidt, M.; Keough, V.; Huynh, T.; Beyea, S. Comparison of Objective Image Quality Metrics to Expert Radiologists’ Scoring of Diagnostic Quality of MR Images. IEEE Trans. Med. Imaging 2020, 39, 1064–1072. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale Structural Similarity for Image Quality Assessment. In Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003. [Google Scholar]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Damera-Venkata, N.; Kite, T.D.; Geisler, W.S.; Evans, B.L.; Bovik, A.C. Image quality assessment based on a degradation model. IEEE Trans. Image Process 2000, 9, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Bash, S.; Wang, L.; Airriess, C.; Zaharchuk, G.; Gong, E.; Shankaranarayanan, A.; Tanenbaum, L. Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial. Am. J. Neuroradiol. 2021, 42, 2130–2137. [Google Scholar] [CrossRef]
- Rudie, J.D.; Gleason, T.; Barkovich, M.J.; Wilson, D.M.; Shankaranarayanan, A.; Zhang, T.; Wang, L.; Gong, E.; Zaharchuk, G.; Villanueva-Meyer, J.E. Clinical Assessment of Deep Learning-based Super—Resolution for 3D Volumetric Brain MRI. Radiol. Artif. Intell. 2022, 4, e210059. [Google Scholar] [CrossRef]
- Almansour, H.; Herrmann, J.; Gassenmaier, S.; Afat, S.; Jacoby, J.; Koerzdoerfer, G.; Nickel, D.; Mostapha, M.; Nadar, M.; Othman, A.E. Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability. Radiology 2023, 306, e212922. [Google Scholar] [CrossRef]
- Gassenmaier, S.; Afat, S.; Nickel, M.D.; Mostapha, M.; Herrmann, J.; Almansour, H.; Nikolaou, K.; Othman, A.E. Accelerated T2-Weighted TSE Imaging of the Prostate Using Deep Learning Image Reconstruction: A Prospective Comparison with Standard T2-Weighted TSE Imaging. Cancers 2021, 13, 3593. [Google Scholar] [CrossRef]
- Wessling, D.; Herrmann, J.; Afat, S.; Nickel, D.; Othman, A.E.; Almansour, H.; Gassenmaier, S. Reduction in Acquisition Time and Improvement in Image Quality in T2-Weighted MR Imaging of Musculoskeletal Tumors of the Extremities Using a Novel Deep Learning-Based Reconstruction Technique in a Turbo Spin Echo (TSE) Sequence. Tomography 2022, 8, 1759–1769. [Google Scholar] [CrossRef]
- Estler, A.; Hauser, T.-K.; Mengel, A.; Brunnée, M.; Zerweck, L.; Richter, V.; Zuena, M.; Schuhholz, M.; Ernemann, U.; Gohla, G. Deep Learning Accelerated Image Reconstruction of Fluid-Attenuated Inversion Recovery Sequence in Brain Imaging: Reduction of Acquisition Time and Improvement of Image Quality. Acad. Radiol. 2024, 31, 180–186. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.S.; Kim, H.J.; Park, J.E.; Park, S.Y.; Kim, Y.-H.; Kim, S.J.; Lee, J.; Lebel, M.R. Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology 2021, 298, 114–122. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, J.E.; Nam, Y.K.; Lee, J.; Kim, S.; Kim, Y.-H.; Kim, H.S. Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Sci. Rep. 2021, 11, 21302. [Google Scholar] [CrossRef]
- Rastogi, A.; Brugnara, G.; Foltyn-Dumitru, M.; Mahmutoglu, M.A.; Preetha, C.J.; Kobler, E.; Pflüger, I.; Schell, M.; Deike-Hofmann, K.; Kessler, T.; et al. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: A multicentre, retrospective, cohort study. Lancet Oncol. 2024, 25, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Estler, A.; Hauser, T.-K.; Brunnée, M.; Zerweck, L.; Richter, V.; Knoppik, J.; Örgel, A.; Bürkle, E.; Adib, S.D.; Hengel, H.; et al. Deep learning-accelerated image reconstruction in back pain-MRI imaging: Reduction of acquisition time and improvement of image quality. Radiol. Med. 2024, 129, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Gassenmaier, S.; Afat, S.; Nickel, D.; Mostapha, M.; Herrmann, J.; Othman, A.E. Deep learning—accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality. Eur J Radiol 2021, 137, 109600. [Google Scholar] [CrossRef] [PubMed]
- Gassenmaier, S.; Afat, S.; Nickel, D.; Kannengiesser, S.; Herrmann, J.; Hoffmann, R.; Othman, A.E. Application of a Novel Iterative Denoising and Image Enhancement Technique in T1-Weighted Precontrast and Postcontrast Gradient Echo Imaging of the Abdomen: Improvement of Image Quality and Diagnostic Confidence. Investig. Radiol. 2021, 56, 328–334. [Google Scholar] [CrossRef]
- Lee, E.J.; Hwang, J.; Park, S.; Bae, S.H.; Lim, J.; Chang, Y.-W.; Hong, S.S.; Oh, E.; Da Nam, B.; Jeong, J.; et al. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: A multi-reader study. Eur. Radiol. 2023, 33, 7697–7706. [Google Scholar] [CrossRef]
- Gaudino, S.; Giordano, C.; Magnani, F.; Cottonaro, S.; Infante, A.; Sabatino, G.; La Rocca, G.; Della Pepa, G.M.; D’alessandris, Q.G.; Pallini, R.; et al. Neuro-Oncology Multidisciplinary Tumor Board: The Point of View of the Neuroradiologist. J. Pers. Med. 2022, 12, 135. [Google Scholar] [CrossRef]
- Sugahara, T.; Korogi, Y.; Ge, Y.; Shigematsu, Y.; Liang, L.; Yoshizumi, K.; Kitajima, M.; Takahashi, M. Contrast enhancement of intracranial lesions: Conventional T1-weighted spin-echo versus fast spin-echo MR imaging techniques. Am. J. Neuroradiol. 1999, 20, 1554–1559. [Google Scholar]
- Recht, M.P.; Zbontar, J.; Sodickson, D.K.; Knoll, F.; Yakubova, N.; Sriram, A.; Murrell, T.; Defazio, A.; Rabbat, M.; Rybak, L.; et al. Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study. Am. J. Roentgenol. 2020, 215, 1421–1429. [Google Scholar] [CrossRef]
- Antun, V.; Renna, F.; Poon, C.; Adcock, B.; Hansen, A.C. On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc. Natl. Acad. Sci. USA 2020, 117, 30088–30095. [Google Scholar] [CrossRef]
- Suh, P.S.; Park, J.E.; Roh, Y.H.; Kim, S.; Jung, M.; Koo, Y.S.; Lee, S.-A.; Choi, Y.; Kim, H.S. Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy. Korean J. Radiol. 2024, 25, 374–383. [Google Scholar] [CrossRef]
- Lee, K.L.; Kessler, D.A.; Dezonie, S.; Chishaya, W.; Shepherd, C.; Carmo, B.; Graves, M.J.; Barrett, T. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality. Eur. J. Radiol. 2023, 166, 111017. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.J.; Bancroft, L.C.H.; Unal, O.; Estkowski, L.D.; Cashen, T.A.; Korosec, F.; Strigel, R.M.; Kelcz, F.; Fowler, A.M.; Gegios, A.; et al. Evaluation of a Deep Learning Reconstruction for High-Quality T2-Weighted Breast Magnetic Resonance Imaging. Tomography 2023, 9, 1949–1964. [Google Scholar] [CrossRef] [PubMed]
- Kaniewska, M.; Deininger-Czermak, E.; Getzmann, J.M.; Wang, X.; Lohezic, M.; Guggenberger, R. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time. Eur. Radiol. 2023, 33, 1513–1525. [Google Scholar] [CrossRef]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Weller, M.; Huang, R.; Finocchiaro, G.; Gilbert, M.R.; Wick, W.; Ellingson, B.M.; Hashimoto, N.; Pollack, I.F.; Brandes, A.A.; et al. Immunotherapy response assessment in neuro-oncology: A report of the RANO working group. Lancet Oncol. 2015, 16, e534–e542. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Wen, P.Y.; Cloughesy, T.F. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials. Neurotherapeutics 2017, 14, 307–320. [Google Scholar] [CrossRef]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; Bertorelle, R.; Bartolini, S.; Calbucci, F.; Andreoli, A.; et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef]
- Hagiwara, A.; Schlossman, J.; Shabani, S.; Raymond, C.; Tatekawa, H.; Abrey, L.E.; Garcia, J.; Chinot, O.; Saran, F.; Nishikawa, R.; et al. Incidence, molecular characteristics, and imaging features of “clinically-defined pseudoprogression” in newly diagnosed glioblastoma treated with chemoradiation. J. Neurooncol 2022, 159, 509–518. [Google Scholar] [CrossRef]
- Wick, W.; Chinot, O.L.; Bendszus, M.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Revil, C.; Kerloeguen, Y.; Cloughesy, T. Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro-Oncology 2016, 18, 1434–1441. [Google Scholar] [CrossRef]
- Taal, W.; Brandsma, D.; De Bruin, H.G.; Bromberg, J.E.C.; Swaak-Kragten, A.T.; Smitt, P.A.E.S.; Van Es, C.A.; Van Den Bent, M. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 2008, 113, 405–410. [Google Scholar] [CrossRef]
- Youssef, G.; Rahman, R.; Bay, C.; Wang, W.; Lim-Fat, M.J.; Arnaout, O.; Bi, W.L.; Cagney, D.N.; Chang, Y.-S.; Cloughesy, T.F.; et al. Evaluation of Standard Response Assessment in Neuro-Oncology, Modified Response Assessment in Neuro-Oncology, and Immunotherapy Response Assessment in Neuro-Oncology in Newly Diagnosed and Recurrent Glioblastoma. J. Clin. Oncol. 2023, 41, 3160–3171. [Google Scholar] [CrossRef]
- Wen, P.Y.; Bent, M.v.D.; A Vogelbaum, M.; Chang, S.M. RANO 2.0: The revised Response Assessment in Neuro-Oncology (RANO) criteria for high- and low-grade glial tumors in adults designed for the future. Neuro-oncology 2024, 26, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Karschnia, P.; Young, J.S.; Dono, A.; Häni, L.; Sciortino, T.; Bruno, F.; Juenger, S.T.; Teske, N.; A Morshed, R.; Haddad, A.F.; et al. Prognostic validation of a new classification system for extent of resection in glioblastoma: A report of the RANO resect group. Neuro-Oncology 2023, 25, 940–954. [Google Scholar] [CrossRef] [PubMed]
- Noordman, C.R.; Yakar, D.; Bosma, J.; Simonis, F.F.J.; Huisman, H. Complexities of deep learning-based undersampled MR image reconstruction. Eur. Radiol. Exp. 2023, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Guo, Y.; Zhan, J.; Wang, Z.; Lai, Z.; Du, X.; Qu, X.; Guo, D. A review on deep learning MRI reconstruction without fully sampled k-space. BMC Med. Imaging 2021, 21, 195. [Google Scholar] [CrossRef]
Parameters | FLAIRCR | FLAIRDLR | T2(TSE)CR | T2(TSE)DLR | T1(SE)CR | T1(TSE)DLR | T1(SE)CECR | T1(TSE)CEDLR |
---|---|---|---|---|---|---|---|---|
Field of view (mm) | 230 | 230 | 170 | 170 | 230 | 230 | 230 | 230 |
Voxel size (mm) | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 | 0.3 × 0.3 × 3.0 | 0.3 × 0.3 × 3.0 | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 |
Slice thickness (mm) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Number of slices | 36 | 36 | 34 | 34 | 36 | 36 | 36 | 36 |
Base resolution | 256 | 256 | 256 | 256 | 256 | 256 | 256 | 256 |
Parallel imaging factor | n.a. | 4 | n.a. | 4 | n.a. | 3 | n.a. | 3 |
Acceleration mode | None | GRAPPA | None | GRAPPA | None | GRAPPA | None | GRAPPA |
TR (ms) | 8800 | 8800 | 3550 | 3550 | 450 | 600 | 450 | 600 |
TE (ms) | 118 | 118 | 104 | 104 | 12 | 9.6 | 12 | 9.6 |
Averages | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 |
Concatenations | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 3 |
Acquisition time (min) | 2:58 | 1:23 | 2:45 | 1:23 | 2:28 | 1:43 | 2:28 | 1:43 |
Time savings using DLR sequences in min (%) | 1:35 (53%) | 1:22 (50%) | 0:45 (30%) | 0:45 (30%) | ||||
Time saving on average in min (%) | 1:07 (42%) | |||||||
Total time saving in min | 4:27 |
Parameters | FLAIRCR | FLAIRDLR | T2(TSE)CR | T2(TSE)DLR | T1(TSE)CR | T1(TSE)DLR | T1(TSE)CECR | T1(TSE)CEDLR |
---|---|---|---|---|---|---|---|---|
Field of view (mm) | 230 | 230 | 230 | 230 | 230 | 230 | 230 | 230 |
Voxel size (mm) | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 | 0.2 × 0.2 × 3.0 | 0.2 × 0.2 × 3.0 | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 | 0.4 × 0.4 × 4.0 |
Slice thickness (mm) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Number of slices | 36 | 36 | 34 | 34 | 36 | 36 | 36 | 36 |
Base resolution | 320 | 320 | 384 | 384 | 304 | 304 | 304 | 304 |
Parallel imaging factor | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 |
Acceleration mode | GRAPPA | GRAPPA | GRAPPA | GRAPPA | GRAPPA | GRAPPA | GRAPPA | GRAPPA |
TR (ms) | 8800 | 8800 | 7640 | 7640 | 2000 | 2000 | 2000 | 2000 |
TE (ms) | 81 | 81 | 87 | 87 | 9.7 | 9.7 | 9.7 | 9.7 |
Averages | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 |
Concatenations | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 |
Acquisition time (min) | 2:40 | 1:57 | 2:11 | 1:36 | 1:54 | 1:19 | 1:54 | 1:19 |
Time savings using DLR sequences in min (%) | 0:43 (27%) | 0:35 (27%) | 0:35 (31%) | 0:35 (31%) | ||||
Time saving on average in min (%) | 0:37 (29%) | |||||||
Total time saving in min | 2:28 |
Characteristics | Values |
---|---|
Number of examinations | n = 33 |
1.5 T | n = 17 |
3 T | n = 16 |
Age, mean ± standard deviation (years) | 53.9 ± 20.3 |
1.5 T | 56.4 ± 21.7 |
3 T | 51.1 ± 19.6 |
Sex (male vs. female) | n = 14 (42%) vs. n = 19 (58%) |
1.5 T | n = 8 (47%) vs. n = 9 (53%) |
3 T | n = 6 (37%) vs. n = 10 (63%) |
Structural epilepsy | n = 9/33 (27%) |
1.5 T | n = 3/17 (18%) |
3 T | n = 6/16 (38%) |
Tumor type (lesions), 1.5 T | |
Metastasis | 6 |
Subependymoma | 1 |
DNET | 1 |
Pilocytic astrocytoma | 1 |
Astrocytoma grade 2 | 1 |
Astrocytoma grade 4 | 1 |
Oligodendroglioma grade 3 | 2 |
Glioblastoma | 4 |
Tumor type (lesions), 3 T | |
Metastasis | 5 |
Ependymoma | 1 |
Hemangiopericytoma | 1 |
Ganglioglioma grade 1 | 1 |
Midline glioma grade 4 | 1 |
Astrocytoma grade 2 | 1 |
Glioblastoma | 6 |
Previous surgeries | n = 10/33 (30%) |
1.5 T | n = 4/17 (24%) |
3 T | n = 6/16 (38%) |
Contrast-enhancing tumor parts | n = 27/33 (82%) |
1.5 T | n = 12/17 (71%) |
3 T | n = 15/16 (94%) |
Karnofsky performance scale index (KPS in %), median [range] | 80 [20–100] |
1.5 T | 80 [40–90] |
3 T | 80 [20–100] |
ECOG performance status scale, median [range] | 1 [0–4] |
1.5 T | 1 [0–4] |
3 T | 1 [0–4] |
1.5 T (n = 17) | 3 T (n = 16) | Pooled (n = 33) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FLAIRCR | FLAIRDLR | FLAIRCR | FLAIRDLR | FLAIRCR | FLAIRDLR | |||||||||||
Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value FLAIRCR vs. FLAIRDLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value FLAIRCR vs. FLAIRDLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value FLAIRCR vs. FLAIRDLR | ||
Overall image quality | Rater 1 | 4 (4–5) | 4.24 ± 0.437 | 5 (4.5–5) | 4.76 ± 0.437 | 0.003 | 4 (4–5) | 4.31 ± 0.602 | 5 (5–5) | 4.88 ± 0.342 | 0.007 | 4 (4–5) | 4.27 ± 0.517 | 5 (5–5) | 4.82 ± 0.392 | <0.001 |
Rater 2 | 4 (4–4.5) | 4.24 ± 0.437 | 5 (5–5) | 4.94 ± 0.243 | <0.001 | 4 (4–5) | 4.31 ± 0.479 | 5 (5–5) | 4.94 ± 0.250 | 0.002 | 4 (4–5) | 4.27 ± 0.452 | 5 (5–5) | 4.94 ± 0.242 | <0.001 | |
Rater 3 | 4 (4–4) | 4.00 ± 0.500 | 5 (4–5) | 4.53 ± 0.624 | 0.013 | 4 (4–4) | 4.00 ± 0.365 | 5 (4–5) | 4.56 ± 0.629 | 0.007 | 4 (4–4) | 4.00 ± 0.433 | 5 (4–5) | 4.55 ± 0.617 | <0.001 | |
Rater 4 | 4 (4–4) | 4.18 ± 0.393 | 5 (4–5) | 4.76 ± 0.437 | 0.002 | 4 (4–5) | 4.25 ± 0.577 | 5 (4.25–5) | 4.75 ± 0.447 | 0.011 | 4 (4–4.5) | 4.21 ± 0.485 | 5 (4.5–5) | 4.76 ± 0.435 | <0.001 | |
All Raters | 4 (4–4) | 4.16 ± 0.444 | 5 (5–5) | 4.75 ± 0.469 | <0.001 | 4 (4–5) | 4.22 ± 0.519 | 5 (5–5) | 4.75 ± 0.453 | <0.001 | 4 (4–4) | 4.19 ± 0.481 | 5 (5–5) | 4.77 ± 0.460 | <0.001 | |
Visualization of the resection cavity | Rater 1 | 4 (4–5) | 4.24 ± 0.562 | 5 (4–5) | 4.53 ± 0.514 | 0.059 | 4 (4–5) | 4.25 ± 0.683 | 4 (4–5) | 4.38 ± 0.500 | 0.317 | 4 (4–5) | 4.24 ± 0.614 | 5 (4–5) | 4.45 ± 0.506 | 0.035 |
Rater 2 | 4 (4–5) | 4.29 ± 0.470 | 5 (4–5) | 4.65 ± 0.493 | 0.034 | 4.5 (4–5) | 4.44 ± 0.629 | 5 (5–5) | 4.88 ± 0.342 | 0.088 | 4 (4–5) | 4.36 ± 0.549 | 5 (4–4) | 4.76 ± 0.435 | <0.001 | |
Rater 3 | 4 (3.5–4) | 3.82 ± 0.529 | 4 (4–4.5) | 4.12 ± 0.600 | 0.059 | 4 (3–4) | 3.62 ± 0.500 | 4 (4–4) | 3.94 ± 0.443 | 0.059 | 4 (3–4) | 3.73 ± 0.517 | 4 (4–4) | 4.03 ± 0.529 | 0.008 | |
Rater 4 | 4 (4–4.5) | 4.18 ± 0.529 | 4 (4–5) | 4.47 ± 0.514 | 0.025 | 4 (3.25–5) | 4.13 ± 0.806 | 4 (4–5) | 4.31 ± 0.602 | 0.180 | 4 (4–5) | 4.15 ± 0.667 | 4 (4–4) | 4.39 ± 0.556 | 0.011 | |
All Raters | 4 (4–4) | 4.13 ± 0.544 | 4 (4–5) | 4.44 ± 0.557 | <0.001 | 4 (4–5) | 4.11 ± 0.715 | 4 (4–5) | 4.38 ± 0.577 | <0.001 | 4 (4–5) | 4.12 ± 0.630 | 4 (4–5) | 4.41 ± 0.556 | <0.001 | |
Diagnostic confidence | Rater 1 | 4 (4–5) | 4.47 ± 0.514 | 5 (4–5) | 4.53 ± 0.514 | 0.564 | 4 (4–5) | 4.31 ± 0.479 | 4.5 (4–5) | 4.50 ± 0.516 | 0.180 | 4 (4–5) | 4.39 ± 0.496 | 5 (4–5) | 4.52 ± 0.508 | 0.157 |
Rater 2 | 4 (4–5) | 4.29 ± 0.470 | 4 (4–5) | 4.47 ± 0.514 | 0.083 | 5 (4–5) | 4.50 ± 0.632 | 5 (5–5) | 4.88 ± 0.342 | 0.014 | 4 (4–5) | 4.39 ± 0.556 | 5 (4–5) | 4.67 ± 0.479 | 0.003 | |
Rater 3 | 4 (3–4) | 3.59 ± 0.618 | 4 (4–4) | 3.86 ± 0.485 | 0.025 | 4 (3–4) | 3.62 ± 0.500 | 4 (3–4) | 3.75 ± 0.577 | 0.317 | 4 (3–4) | 3.61 ± 0.566 | 4 (3.5–4) | 3.82 ± 0.528 | 0.020 | |
Rater 4 | 4 (4–5) | 4.47 ± 0.514 | 4 (4–5) | 4.41 ± 0.507 | 0.564 | 4 (4–4.75) | 4.25 ± 0.447 | 4 (4–5) | 4.44 ± 0.512 | 0.180 | 4 (4–5) | 4.36 ± 0.489 | 4 (4–5) | 4.42 ± 0.502 | 0.480 | |
All Raters | 4 (4–5) | 4.21 ± 0.636 | 4 (4–5) | 4.32 ± 0.558 | 0.033 | 4 (4–5) | 4.17 ± 0.606 | 4 (4–5) | 4.39 ± 0.663 | 0.002 | 4 (4–5) | 4.19 ± 0.619 | 4 (4–5) | 4.36 ± 0.594 | <0.001 |
1.5 T (n = 17) | 3 T (n = 16) | Pooled (n = 33) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T2CR | T2DLR | T2CR | T2DLR | T2CR | T2DLR | |||||||||||
Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T2CR vs. T2DLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T2CR vs. T2DLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T2CR vs. T2DLR | ||
Overall image quality | Rater 1 | 4 (4–4) | 4.12 ± 0.332 | 5 (4–5) | 4.65 ± 0.493 | 0.003 | 4 (4–5) | 4.38 ± 0.500 | 4 (4–5) | 4.31 ± 0.479 | 0.565 | 4 (4–4.5) | 4.24 ± 0.435 | 4 (4–5) | 4.48 ± 0.508 | 0.021 |
Rater 2 | 4 (4–4) | 4.18 ± 0.393 | 5 (5–5) | 4.94 ± 0.243 | <0.001 | 5 (4.25–5) | 4.75 ± 0.447 | 5 (5–5) | 4.94 ± 0.250 | 0.083 | 4 (4–5) | 4.45 ± 0.506 | 5 (5–5) | 4.94 ± 0.242 | <0.001 | |
Rater 3 | 4 (4–4) | 3.94 ± 0.243 | 5 (4–5) | 4.53 ± 0.514 | 0.002 | 4 (4–4) | 4.06 ± 0.574 | 4 (4–4) | 3.94 ± 0.574 | 0.527 | 4 (4–4) | 4.00 ± 0.433 | 4 (4–5) | 4.24 ± 0.614 | 0.074 | |
Rater 4 | 4 (4–4) | 4.00 ± 0.354 | 5 (4–5) | 4.59 ± 0.507 | 0.002 | 4 (4–5) | 4.31 ± 0.479 | 4 (4–5) | 4.19 ± 0.655 | 0.414 | 4 (4–4) | 4.15 ± 0.442 | 4 (4–5) | 4.39 ± 0.609 | 0.046 | |
All Raters | 4 (4–4) | 4.06 ± 0.340 | 5 (4–5) | 4.68 ± 0.471 | <0.001 | 4 (4–5) | 4.37 ± 0.549 | 4 (4–5) | 4.34 ± 0.623 | 0.670 | 4 (4–4) | 4.21 ± 0.479 | 5 (4–5) | 4.52 ± 0.573 | <0.001 | |
Visualization of the resection cavity | Rater 1 | 4 (4–5) | 4.35 ± 0.493 | 5 (4–5) | 4.59 ± 0.507 | 0.102 | 4 (4–4.75) | 4.13 ± 0.619 | 4 (4–4.75) | 4.19 ± 0.544 | 0.564 | 4 (4–5) | 4.24 ± 0.561 | 4 (4–5) | 4.39 ± 0.556 | 0.096 |
Rater 2 | 4 (4–5) | 4.35 ± 0.606 | 5 (4.5–5) | 4.71 ± 0.588 | 0.034 | 5 (5–5) | 4.81 ± 0.403 | 5 (5–5) | 4.94 ± 0.250 | 0.157 | 5 (4–5) | 4.58 ± 0.561 | 5 (5–5) | 4.82 ± 0.465 | 0.011 | |
Rater 3 | 4 (3.5–4) | 3.76 ± 0.437 | 4 (4–5) | 4.24 ± 0.562 | 0.005 | 4 (3–4) | 3.75 ± 0.683 | 4 (4–4) | 3.87 ± 0.500 | 0.414 | 4 (3–4) | 3.76 ± 0.561 | 4 (4–4) | 4.06 ± 0.556 | 0.008 | |
Rater 4 | 4 (4–5) | 4.24 ± 0.562 | 5 (4–5) | 4.53 ± 0.514 | 0.059 | 4 (4–5) | 4.25 ± 0.683 | 4 (4–4.75) | 4.19 ± 0.544 | 0.564 | 4 (4–5) | 4.24 ± 0.614 | 4 (4–5) | 4.36 ± 0.549 | 0.206 | |
All Raters | 4 (4–5) | 4.18 ± 0.571 | 5 (4–5) | 4.51 ± 0.560 | <0.001 | 4 (4–5) | 4.23 ± 0.707 | 4 (4–5) | 4.30 ± 0.609 | 0.285 | 4 (4–5) | 4.20 ± 0.639 | 4 (4–5) | 4.41 ± 0.592 | <0.001 | |
Diagnostic confidence | Rater 1 | 5 (4–5) | 4.53 ± 0.624 | 5 (4–5) | 4.65 ± 0.493 | 0.414 | 4 (4–5) | 4.37 ± 0.619 | 4.5 (4–5) | 4.38 ± 0.719 | 1 | 5 (4–5) | 4.45 ± 0.617 | 5 (4–5) | 4.52 ± 0.619 | 0.527 |
Rater 2 | 4 (4–5) | 4.35 ± 0.606 | 5 (4–5) | 4.53 ± 0.624 | 0.083 | 5 (5–5) | 4.81 ± 0.403 | 5 (5–5) | 4.94 ± 0.250 | 0.157 | 5 (4–5) | 4.58 ± 0.561 | 5 (4.5–5) | 4.73 ± 0.517 | 0.025 | |
Rater 3 | 4 (3–4) | 3.71 ± 0.588 | 4 (4–4) | 4.00 ± 0.500 | 0.025 | 4 (3–4) | 3.69 ± 0.602 | 4 (3.25–4) | 3.88 ± 0.619 | 0.180 | 4 (3–4) | 3.70 ± 0.585 | 4 (4–4) | 3.94 ± 0.556 | 0.011 | |
Rater 4 | 5 (4–5) | 4.53 ± 0.624 | 5 (4–5) | 4.65 ± 0.493 | 0.414 | 4 (4–5) | 4.25 ± 0.577 | 4 (4–5) | 4.31 ± 0.704 | 0.655 | 4 (4–5) | 4.39 ± 0.609 | 5 (4–5) | 4.48 ± 0.619 | 0.366 | |
All Raters | 4 (4–5) | 4.28 ± 0.688 | 4.5 (4–5) | 4.46 ± 0.584 | 0.007 | 4 (4–5) | 4.28 ± 0.678 | 4.5 (4–5) | 4.38 ± 0.701 | 0.134 | 4 (4–5) | 4.28 ± 0.680 | 4.5 (4–5) | 4.42 ± 0.643 | 0.003 |
1.5 T (n = 17) | 3 T (n = 16) | Pooled (n = 33) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1CR | T1DLR | T1CR | T1DLR | T1CR | T1DLR | |||||||||||
Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T1CR vs. T1DLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T1CR vs. T1DLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T1CR vs. T1DLR | ||
Overall image quality | Rater 1 | 4 (4–4) | 4.06 ± 0.243 | 5 (4–5) | 4.71 ± 0.470 | 0.002 | 4 (4–4) | 4.13 ± 0.342 | 5 (5–5) | 4.81 ± 0.403 | <0.001 | 4 (4–4) | 4.09 ± 0.292 | 5 (4.5–5) | 4.76 ± 0.435 | <0.001 |
Rater 2 | 4 (4–5) | 4.41 ± 0.506 | 5 (4–5) | 4.65 ± 0.493 | 0.317 | 4 (4–4.75) | 4.25 ± 0.447 | 5 (5–5) | 5.00 | <0.001 | 4 (4–5) | 4.33 ± 0.479 | 5 (5–5) | 4.82 ± 0.392 | 0.002 | |
Rater 3 | 4 (4–4) | 3.88 ± 0.485 | 5 (4–5) | 4.41 ± 0.712 | 0.020 | 4 (3–4) | 3.56 ± 0.512 | 4 (4–4) | 4.06 ± 0.574 | 0.021 | 4 (3–4) | 3.73 ± 0.517 | 4 (4–5) | 4.24 ± 0.663 | 0.001 | |
Rater 4 | 4 (4–4) | 4.06 ± 0.243 | 5 (5–5) | 4.82 ± 0.363 | <0.001 | 4 (4–4) | 4.06 ± 0.443 | 5 (4.25–5) | 4.75 ± 0.447 | 0.002 | 4 (4–4) | 4.06 ± 0.348 | 5 (5–5) | 4.79 ± 0.425 | <0.001 | |
All Raters | 4 (4–4) | 4.10 ± 0.428 | 5 (4–5) | 4.65 ± 0.540 | <0.001 | 4 (4–4) | 4.00 ± 0.504 | 5 (4–5) | 4.66 ± 0.541 | <0.001 | 4 (4–4) | 4.05 ± 0.467 | 5 (4–5) | 4.65 ± 0.538 | <0.001 | |
Visualization of the resection cavity | Rater 1 | 4 (4–4) | 4.00 ± 0.612 | 5 (4–5) | 4.65 ± 0.493 | 0.002 | 4 (3–4.75) | 3.81 ± 0.834 | 4 (3.25–5) | 4.13 ± 0.806 | 0.025 | 4 (3–4) | 3.91 ± 0.723 | 5 (4–5) | 4.39 ± 0.704 | <0.001 |
Rater 2 | 4 (4–5) | 4.41 ± 0.507 | 4 (4–5) | 4.47 ± 0.514 | 0.665 | 4 (4–4.75) | 4.19 ± 0.544 | 5 (5–5) | 4.88 ± 0.342 | <0.001 | 4 (4–5) | 4.30 ± 0.529 | 5 (4–5) | 4.67 ± 0.479 | 0.003 | |
Rater 3 | 4 (4–4) | 3.88 ± 0.485 | 4 (4–4.5) | 4.12 ± 0.600 | 0.102 | 3.5 (3–4) | 3.50 ± 0.516 | 4 (3–4) | 3.81 ± 0.655 | 0.059 | 4 (3–4) | 3.70 ± 0.529 | 4 (4–4) | 3.97 ± 0.637 | 0.013 | |
Rater 4 | 4 (4–4) | 4.00 ± 0.612 | 5 (4–5) | 4.59 ± 0.507 | <0.001 | 3.5 (3–4.75) | 3.75 ± 0.856 | 4 (3–5) | 4.00 ± 0.894 | 0.046 | 4 (3–4) | 3.88 ± 0.740 | 4 (4–5) | 4.30 ± 0.770 | <0.001 | |
All Raters | 4 (4–4) | 4.07 ± 0.581 | 4 (4–5) | 4.46 ± 0.558 | <0.001 | 4 (3–4) | 3.81 ± 0.732 | 4 (4–5) | 4.20 ± 0.800 | <0.001 | 4 (3.25–4) | 3.95 ± 0.669 | 4 (4–5) | 4.33 ± 0.695 | <0.001 | |
Diagnostic confidence | Rater 1 | 4 (4–5) | 4.41 ± 0.507 | 4 (4–5) | 4.47 ± 0.514 | 0.317 | 4 (4–4.75) | 4.19 ± 0.544 | 4 (4–5) | 4.38 ± 0.500 | 0.083 | 4 (4–5) | 4.30 ± 0.529 | 4 (4–5) | 4.42 ± 0.502 | 0.046 |
Rater 2 | 4 (4–5) | 4.41 ± 0.507 | 4 (4–5) | 4.35 ± 0.493 | 0.564 | 4 (4–4.75) | 4.19 ± 0.544 | 5 (5–5) | 4.88 ± 0.432 | <0.001 | 4 (4–5) | 4.30 ± 0.529 | 5 (4–5) | 4.61 ± 0.496 | 0.008 | |
Rater 3 | 4 (3–4) | 3.76 ± 0.562 | 4 (4–4) | 4.06 ± 0.556 | 0.059 | 4 (3–4) | 3.69 ± 0.479 | 4 (3–4) | 3.69 ± 0.602 | 1 | 4 (3–4) | 3.73 ± 0.517 | 4 (3.5–4) | 3.88 ± 0.600 | 0.096 | |
Rater 4 | 4 (4–5) | 4.41 ± 0.507 | 4 (4–5) | 4.47 ± 0.514 | 0.317 | 4 (4–4) | 3.94 ± 0.574 | 5 (4–5) | 4.56 ± 0.629 | 0.002 | 4 (4–5) | 4.18 ± 0.584 | 5 (4–5) | 4.52 ± 0.566 | <0.001 | |
All Raters | 4 (4–5) | 4.25 ± 0.583 | 4 (4–5) | 4.34 ± 0.536 | 0.083 | 4 (4–4) | 4.00 ± 0.563 | 4 (4–5) | 4.37 ± 0.678 | <0.001 | 4 (4–4) | 4.13 ± 0.585 | 4 (4–5) | 4.36 ± 0.607 | <0.001 |
1.5 T (n = 17) | 3 T (n = 16) | Pooled (n= 33) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1CECR | T1CEDLR | T1CECR | T1CEDLR | T1CECR | T1CEDLR | |||||||||||
Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T1CECR vs. T1CEDLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T1CECR vs. T1CEDLR | Mdn (IQR) | M ± SD | Mdn (IQR) | M ± SD | p-Value T1CECR vs. T1CEDLR | ||
Overall image quality | Rater 1 | 4 (4–4) | 4.06 ± 0.243 | 5 (5–5) | 4.82 ± 0.393 | <0.001 | 4 (4–4) | 4.19 ± 0.403 | 5 (4.25–5) | 4.75 ± 0.447 | 0.003 | 4 (4–4) | 4.12 ± 0.331 | 5 (5–5) | 4.79 ± 0.415 | <0.001 |
Rater 2 | 4 (4–4) | 4.18 ± 0.393 | 4 (4–5) | 4.47 ± 0.512 | 0.096 | 4 (4–4.75) | 4.25 ± 0.447 | 5 (5–5) | 5.00 | <0.001 | 4 (4–4) | 4.21 ± 0.415 | 5 (4–5) | 4.73 ± 0.453 | <0.001 | |
Rater 3 | 4 (4–4) | 4.06 ± 0.243 | 5 (5–5) | 4.82 ± 0.393 | <0.001 | 4 (3.25–4) | 3.75 ± 0.447 | 4 (4–5) | 4.31 ± 0.602 | 0.007 | 4 (3–4) | 3.70 ± 0.467 | 4 (4–5) | 4.30 ± 0.529 | <0.001 | |
Rater 4 | 4 (3–4) | 3.65 ± 0.493 | 4 (4–5) | 4.29 ± 0.470 | <0.001 | 4 (4–4) | 4.13 ± 0.342 | 5 (4–5) | 4.69 ± 0.479 | 0.003 | 4 (4–4) | 4.09 ± 0.292 | 5 (4.5–5) | 4.76 ± 0.435 | <0.001 | |
All Raters | 4 (4–4) | 3.99 ± 0.405 | 5 (4–5) | 4.60 ± 0.493 | <0.001 | 4 (4–4) | 4.08 ± 0.447 | 5 (4–5) | 4.69 ± 0.500 | <0.001 | 4 (4–4) | 4.03 ± 0.429 | 5 (4–5) | 4.64 ± 0.496 | <0.001 | |
Visualization of the resection cavity | Rater 1 | 4 (4–4) | 4.06 ± 0.556 | 5 (5–5) | 4.82 ± 0.393 | <0.001 | 4 (4–5) | 4.19 ± 0.750 | 4 (4–5) | 4.31 ± 0.704 | 0.414 | 4 (4–5) | 4.12 ± 0.650 | 5 (4–5) | 4.58 ± 0.614 | 0.001 |
Rater 2 | 4 (4–5) | 4.29 ± 0.470 | 5 (4–5) | 4.59 ± 0.507 | 0.025 | 4 (4–4.75) | 4.25 ± 0.447 | 5 (5–5) | 4.94 ± 0.250 | <0.001 | 4 (4–5) | 4.21 ± 0.452 | 5 (4.5–5) | 4.76 ± 0.435 | <0.001 | |
Rater 3 | 4 (3–4) | 3.65 ± 0.606 | 4 (4–4) | 3.12 ± 0.485 | 0.005 | 4 (3–4) | 3.69 ± 0.479 | 4 (4–4) | 4.00 ± 0.632 | 0.059 | 4 (3–4) | 3.67 ± 0.540 | 4 (4–4) | 4.06 ± 0.556 | <0.001 | |
Rater 4 | 4 (4–4) | 4.06 ± 0.556 | 5 (4.5–5) | 4.76 ± 0.437 | <0.001 | 4 (3–5) | 4.06 ± 0.854 | 4 (4–5) | 4.19 ± 0.750 | 0.157 | 4 (4–5) | 4.06 ± 0.704 | 4 (5–5) | 4.48 ± 0.667 | <0.001 | |
All Raters | 4 (4–4) | 4.01 ± 0.586 | 5 (4–5) | 4.57 ± 0.527 | <0.001 | 4 (4–4.75) | 4.05 ± 0.677 | 4 (4–5) | 4.36 ± 0.698 | <0.001 | 4 (4–4) | 4.03 ± 0.629 | 5 (4–5) | 4.47 ± 0.623 | <0.001 | |
Diagnostic confidence | Rater 1 | 4 (4–5) | 4.41 ± 0.507 | 5 (4.5–5) | 4.76 ± 0.437 | 0.014 | 4 (4–4.75) | 4.13 ± 0.619 | 5 (4–5) | 4.56 ± 0.629 | 0.008 | 4 (4–5) | 4.27 ± 0.574 | 5 (4–5) | 4.67 ± 0.540 | <0.001 |
Rater 2 | 4 (4–5) | 4.35 ± 0.493 | 4 (4–5) | 4.47 ± 0.514 | 0.157 | 4 (4–4.75) | 4.25 ± 0.447 | 5 (5–5) | 4.94 ± 0.250 | <0.001 | 4 (4–5) | 4.30 ± 0.467 | 5 (4–5) | 4.70 ± 0.467 | <0.001 | |
Rater 3 | 4 (3–4) | 3.59 ± 0.618 | 4 (4–4) | 4.00 ± 0.500 | 0.008 | 4 (3.2–-4) | 3.75 ± 0.447 | 4 (4–4.75) | 4.06 ± 0.680 | 0.025 | 4 (3–4) | 3.67 ± 0.540 | 4 (4–4) | 4.03 ± 0.585 | <0.001 | |
Rater 4 | 4 (4–5) | 4.41 ± 0.507 | 5 (4–5) | 4.71 ± 0.470 | 0.025 | 4 (4–4) | 4.06 ± 0.574 | 5 (4–5) | 4.50 ± 0.632 | 0.008 | 4 (4–5) | 4.24 ± 0.561 | 5 (4–5) | 4.61 ± 0.556 | <0.001 | |
All Raters | 4 (4–5) | 4.19 ± 0.629 | 5 (4–5) | 4.49 ± 0.560 | <0.001 | 4 (4–4) | 4.05 ± 0.547 | 5 (4–5) | 4.52 ± 0.642 | <0.001 | 4 (4–4) | 4.12 ± 0.593 | 5 (4–5) | 4.50 ± 0.599 | <0.001 |
Kendall’s W | |||
---|---|---|---|
1.5 T (n = 17) | 3 T (n = 16) | Pooled (n = 33) | |
Overall image qualityCR | 0.225 (0.131–0.331) | 0.276 (0.126–0.360) | 0.238 (0.128–0.304) |
FLAIRCR | 0.133 | 0.126 | 0.128 |
T2CR | 0.131 | 0.340 | 0.222 |
T1CR | 0.303 | 0.360 | 0.298 |
T1CECR | 0.331 | 0.279 | 0.304 |
Overall image qualityDLR | 0.231 (0.136–0.349) | 0.413 (0.135–0.605) | 0.264 (0.188–0.349) |
FLAIRDLR | 0.277 | 0.135 | 0.188 |
T2DRL | 0.162 | 0.605 | 0.349 |
T1DLR | 0.136 | 0.587 | 0.293 |
T1CEDLR | 0.349 | 0.325 | 0.226 |
Visualization of the resection cavityCR | 0.271 (0.150–0.362) | 0.303 (0.173–0.546) | 0.262 (0.228–0.359) |
FLAIRCR | 0.150 | 0.303 | 0.222 |
T2CR | 0.272 | 0.546 | 0.359 |
T1CR | 0.298 | 0.190 | 0.228 |
T1CECR | 0.362 | 0.173 | 0.237 |
Visualization of the resection cavityDLR | 0.280 (0.167–0.393) | 0.561 (0.484–0.730) | 0.329 (0.274–0.366) |
FLAIRDLR | 0.248 | 0.502 | 0.359 |
T2DRL | 0.167 | 0.730 | 0.366 |
T1DLR | 0.310 | 0.484 | 0.274 |
T1CEDLR | 0.393 | 0.527 | 0.315 |
Diagnostic confidenceCR | 0.463 (0.368–0.560) | 0.463 (0.193–0.518) | 0.364 (0.313–0.405) |
FLAIRCR | 0.416 | 0.453 | 0.405 |
T2CR | 0.368 | 0.518 | 0.360 |
T1CR | 0.509 | 0.193 | 0.313 |
T1CECR | 0.560 | 0.197 | 0.377 |
Diagnostic confidenceDLR | 0.361 (0.324–0.469) | 0.469 (0.394–0.576) | 0.354 (0.287–0.403) |
FLAIRDLR | 0.366 | 0.495 | 0.403 |
T2DRL | 0.324 | 0.394 | 0.287 |
T1DLR | 0.284 | 0.576 | 0.365 |
T1CEDLR | 0.469 | 0.408 | 0.362 |
Sequence | IQM | 1.5 T (n = 17) Value (M ± SD) | 3 T (n = 16) Value (M ± SD) | Pooled (n = 33) Value (M ± SD) |
---|---|---|---|---|
FLAIR | SSIM | 0.9987 ± 0.0006 | 0.9989 ± 0.0006 | 0.9988 ± 0.0006 |
MS-SSIM | 0.9999 ± 0.0001 | 0.9999 ± 0.0001 | 0.9999 ± 0.0001 | |
FSIM | 0.8420 ± 0.0316 | 0.8242 ± 0.0278 | 0.8337± 0.0298 | |
NQM | 14.3721 ± 2.1645 | 15.0680 ± 1.9378 | 14.6983 ± 2.0582 | |
SNR | 13.6127 ± 2.0214 | 15.0649 ± 2.2866 | 14.2934 ± 2.1457 | |
PSNR | 67.2675 ± 3.2487 | 67.8192 ± 2.6083 | 67.5261± 2.9485 | |
T2 | SSIM | 0.9965 ± 0.0029 | 0.9924 ± 0.0035 | 0.9947 ± 0.0032 |
MS-SSIM | 0.9995 ± 0.0004 | 0.9985 ± 0.0008 | 0.9991 ± 0.0006 | |
FSIM | 0.8159 ± 0.0428 | 0.8440 ± 0.0458 | 0.8284 ± 0.0441 | |
NQM | 14,1331 ± 2.8435 | 14.2798 ± 2.7657 | 14.2008 ± 2.8076 | |
SNR | 13.8342 ± 2.2077 | 12.9179 ± 2.0395 | 13.4269 ± 2.1329 | |
PSNR | 61.1301 ± 3.1127 | 56.6777 ± 2.5528 | 59.1513 ± 2.8639 | |
T1 | SSIM | 0.9801 ± 0.0078 | 0.9982 ± 0.0010 | 0.9882 ± 0.0047 |
MS-SSIM | 0.9978 ± 0.0011 | 0.9997 ± 0.0002 | 0.9986 ± 0.0007 | |
FSIM | 0.6860 ± 0.0763 | 0.8475 ± 0.0298 | 0.7584 ± 0.0555 | |
NQM | 4.2984 ± 2.7396 | 15.9673 ± 2.2263 | 9.5293 ± 2.5095 | |
SNR | 6.0580 ± 1.6684 | 14.9067 ± 1.8536 | 10.0246 ± 1.7514 | |
PSNR | 55.3725 ± 3.7210 | 63.4592 ± 3.9854 | 58.9975 ± 3.8395 | |
T1CE | SSIM | 0.9726 ± 0.0090 | 0.9957 ± 0.0028 | 0.9838 ± 0.0060 |
MS-SSIM | 0.9967 ± 0.0013 | 0.9994 ± 0.0004 | 0.9980 ± 0.0009 | |
FSIM | 0.6599 ± 0.0685 | 0.8311 ± 0.0322 | 0.7427 ± 0.0509 | |
NQM | 3.1430 ± 2.1562 | 15.6468 ± 2.1087 | 9.1932 ± 2.1332 | |
SNR | 5.2700 ± 1.4386 | 14.9875 ± 1.8921 | 9.9720 ± 1.6580 | |
PSNR | 52.6580 ± 3.0930 | 60.9097 ± 3.8099 | 56.6507 ± 3.4399 |
DLR > CR | DLR = CR | DLR < CR | ||
---|---|---|---|---|
Lesion1.5T (n = 17) | Rater 1 | 0 | 11/17 | 0 |
Rater 2 | 4/17 | 6/17 | 0 | |
Rater 3 | 1/17 | 6/17 | 0 | |
Rater 4 | 2/17 | 9/17 | 0 | |
Lesion3T (n = 16) | Rater 1 | 0 | 7/16 | 0 |
Rater 2 | 1/16 | 10/16 | 0 | |
Rater 3 | 0 | 3/16 | 0 | |
Rater 4 | 0 | 6/16 | 0 | |
Lesionpooled (n = 33) | Rater 1 | 0 | 18/33 | 0 |
Rater 2 | 5/33 | 16/33 | 0 | |
Rater 3 | 1/33 | 9/33 | 0 | |
Rater 4 | 2/33 | 15/33 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruff, C.; Hauser, T.-K.; Roder, C.; Feucht, D.; Bombach, P.; Zerweck, L.; Staber, D.; Paulsen, F.; Ernemann, U.; Gohla, G. Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception. Diagnostics 2025, 15, 1982. https://doi.org/10.3390/diagnostics15151982
Ruff C, Hauser T-K, Roder C, Feucht D, Bombach P, Zerweck L, Staber D, Paulsen F, Ernemann U, Gohla G. Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception. Diagnostics. 2025; 15(15):1982. https://doi.org/10.3390/diagnostics15151982
Chicago/Turabian StyleRuff, Christer, Till-Karsten Hauser, Constantin Roder, Daniel Feucht, Paula Bombach, Leonie Zerweck, Deborah Staber, Frank Paulsen, Ulrike Ernemann, and Georg Gohla. 2025. "Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception" Diagnostics 15, no. 15: 1982. https://doi.org/10.3390/diagnostics15151982
APA StyleRuff, C., Hauser, T.-K., Roder, C., Feucht, D., Bombach, P., Zerweck, L., Staber, D., Paulsen, F., Ernemann, U., & Gohla, G. (2025). Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception. Diagnostics, 15(15), 1982. https://doi.org/10.3390/diagnostics15151982