Current Understanding and Future Research Direction for Estimating the Postmortem Interval: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
- Original research articles or reviews focused on methods used to estimate the PMI;
- Inclusion of data on the accuracy, performance, feasibility, or applicability of these methods;
- Publication in a peer-reviewed scientific journal.
- Studies not addressing PMI estimation as a primary objective;
- Papers focusing solely on extended PMIs outside the forensic relevance window;
- Articles lacking original data;
- Non-English publications;
- Duplicated datasets or overlapping publications from the same research group.
2.3. Study Selection
2.4. Data Extraction and Synthesis
3. Results
- Table 1 provides a comparative synthesis of the main PMI estimation methods, including their principles, postmortem interval ranges, advantages, limitations, and key references.
- Table 2 presents detailed characteristics of each of the 50 included studies, outlining the methods, PMI range, advantages, and limitations.
Method | Principle and Markers | Typical PMI Range | Advantages | Limitations | Key References |
---|---|---|---|---|---|
1. Thanatological signs (algor, livor, and rigor mortis) | Physical postmortem changes: algor mortis (body cooling), livor mortis (postmortem hypostasis), and rigor mortis (muscle stiffening). | Immediate to ~2–3 days postmortem (early PMI) | Simple, quick, no special equipment; well-understood timeline in early phase. | Large variability due to ambient conditions (temperature, clothing, etc.) and body factors; not usable beyond ~72 h | [1,2,4,5,6] |
2. Vitreous humor chemistry | Rise in electrolyte levels (e.g., potassium, hypoxanthine) in the eye fluid after death. | 1–10 days postmortem (early-to-mid PMI) | Provides semi-quantitative estimates up to ~1 week; relatively independent of external factors (vitreous is protected). | Requires lab analysis; influenced by temperature and certain pathologies; less accurate as decomposition advances | [6] |
3. Forensic entomology | Insect colonization and life cycle stages on the corpse (e.g., blowfly maggot development, insect succession patterns). | Days to months postmortem (middle-to-late PMI) | Can yield PMI estimates long after death when insects have had time to colonize; well-established developmental timelines for many species. | Dependent on environmental conditions (temperature, season) and insect access to body; requires entomological expertise; PMI estimates are given as ranges | [10] |
4. Microbial succession | Changes in bacterial and fungal community composition over time (detected via 16S rRNA gene sequencing or other genomic tools). | Days to weeks postmortem (middle PMI) | Potential “microbial clock” offers objective biochemical marker; microbes present in all bodies and environments; not reliant on insect presence. | Still experimental—high variability between individuals and environments; influenced by soil, temperature, burial; requires advanced DNA sequencing and bioinformatics; not yet standardized | [28] |
5. Molecular methods
| Degradation of mRNA transcripts and/or changes in gene expression postmortem (e.g., loss of RNA integrity, or differential expression of certain genes over time). | Hours to a few days postmortem (early PMI) | Quantifiable molecular changes; tissue-specific RNA markers can improve short-term PMI precision; useful when physical signs are equivocal. | RNA degrades rapidly; sensitive to temperature and pH; requires prompt sample collection and specialized lab equipment (RT-qPCR, sequencing); significant tissue specificity | [17,29] |
Degradation of genomic DNA or DNA fragmentation patterns | Hours to days | DNA is more stable than RNA; some studies report a correlation between fragmentation and PMI; applicable to many tissue types. | High variability; influenced by storage, cause of death, environmental conditions; still in experimental stages | [30] | |
Time-dependent proteolysis and modification of proteins in tissues (e.g., appearance of protein fragments, loss of specific proteins, proteomic profile changes). | Days to weeks postmortem (early-to-mid PMI) | Proteins are more stable than RNA, enabling longer detection; many tissues (muscle, bone, etc.) show measurable protein degradation timelines; amenable to mass spectrometry. | Requires laboratory analysis; some interindividual variation in protein levels; need for large postmortem protein databases; mostly in research phase | [18] | |
6. Imaging techniques | Postmortem imaging or sensing (e.g., infrared thermography for cooling, PMCT for gas/fluid distribution, MRI for tissue changes). | Minutes to hours (thermal), up to days (selected imaging signs) | Non-invasive, can be performed when autopsy is not possible; thermal imaging provides continuous data on cooling; CT/MRI can document internal changes without dissection. | Thermal methods limited to very early PMI; CT/MRI changes are not specific or quantitative for time since death; interpretation requires expertise; equipment not always available in forensic units. | [11,12,13,14,15,16] |
7. Omics technologies (proteomics, metabolomics, and lipidomics) | High-throughput analysis of a broad array of biomolecules to identify signature changes (e.g., protein profile shifts, metabolite accumulation) over time. | Hours to ~2 months (short-to-mid PMI) | Holistic approach—can discover novel biomarkers; data-driven models may increase accuracy; metabolomics can capture chemical changes during decomposition. | Requires sophisticated instrumentation and bioinformatics; large datasets needed to find robust markers; many studies are on animal models; current focus mostly on <7 day PMI | [20] |
Study | Method | PMI Range | Advantages | Limitations |
---|---|---|---|---|
1. Franceschetti et al., 2023 [6] | Literature review of various PMI estimation techniques | Late PMI | Comprehensive overview | Does not present new data |
2. Laplace et al., 2021 [29] | Comparative cooling methods | 0–36 h | Method comparison for early PMI | Precision varies by method |
3. Henssge & Madea, 2007 [5] | Temperature-based PMI estimation | 0–36 h | Empirical formulas | Environmental factors crucial |
4. Singh et al., 2025 [3] | Comprehensive review of PMI estimation methods | General (from immediate to late PMI) | Summarizes traditional and emerging techniques; highlights recent advances and challenges in a forensic context | No new experimental data; narrative synthesis; broad rather than focused on a single method. |
5. Sturner & Gantner, 1964 [24] | Potassium in vitreous humor | 0–120 h | Historical foundation | Outdated sample control |
6. Lange et al., 1994 [8] | Vitreous potassium across studies | 0–100 h | Meta-analytic insight | Interstudy variability |
7. Zilg et al., 2015 [7] | Vitreous potassium corrected for age/temp | 0–100 h | Validated mathematical model | Sampling precision needed |
8. McCleskey et al., 2016 [9] | Review of vitreous humor methods | 0–120 h | Integrative synthesis of existing analytical models | Secondary analysis without primary data |
9. Cordeiro et al., 2019 [23] | Vitreous humor biochemistry, temp, body weight | 0–120 h | Combines multiple indicators | Affected by environmental factors |
10. Madea & Rödig, 2006 [1] | Excitability testing | 0–12 h | Immediate response | Limited to early PMI |
11. Bansode et al., 2025 [31] | Forensic entomology-simulation tools and entomotoxicology | Several days to weeks | Covers modern predictive models, role of necrophagous species beyond dipterans, drug/toxin effects, environmental factors; practical forensic recommendations | Narrative review; no experimental data; applicability may vary by geography |
12. Schoenly et al., 1992 [32] | Algorithm from arthropod succession | 0–15 days | Systematic entomological model | Species- and region-dependent |
13. Schoenly et al., 1996 [33] | Statistical modelling of insect succession | Several days to weeks | Quantitative estimation | High variability and uncertainty in some cases |
14. Marchenko, 2001 [34] | Cadaver associated entomofauna | Several days to weeks | Taxonomic diversity data | Geographic dependency |
15. Donovan, 2006 [35] | Larval growth data | Up to approx. 30 days | Empirical developmental data with temperature-dependent ADH model | Laboratory conditions may not fully reflect environmental variability |
16. Michaud & Moreau, 2009 [36] | Insect visitation prediction by degree day | 0–10 days | Temperature-adjusted | Needs accurate weather data |
17. Reibe et al., 2010 [37] | Simulation model for Lucilia sericata | 0–15 days | Standardized entological tool | Simulation assumptions |
18. Matuszewski, 2011 [38] | Pre-appearance interval from temperature | Early PMI | Quantitative model | Species specific |
19. Mohr & Tomberlin, 2015 [39] | Adult blowfly attendance model | 1–7 days | Specific to dipteran behavior | Not generalizable to all insects |
20. Matuszewski, 2017 [40] | Qualitative indicator integration | 0–10 days | Holistic approach | Subjective indicator selection |
21. Matuszewski & Fratczak, 2018 [41] | PMI based on adult size at emergence in Creophilus maxillosus | 7–30 days | Improves accuracy in insect age estimation | Requires larval rearing to adulthood; limited to one beetle species |
22. Matuszewski, 2021 [10] | Forensic entomology | Early-to-mid PMI | Species-specific PMI estimation | Environmental dependency and local fauna |
23. Obafunwa et al., 2025 [42] | Forensic entomology | Several days to weeks | Established method | Species and environment dependent |
24. Metcalf et al., 2013 [19] | Microbial clock (mouse model) | 0–30 days | High correlation with time | Animal model |
25. Bell et al., 2018 [43] | Thanatomicrobiome sex-based differences | 0–10 days | Sex-specific microbial patterns | Requires sequencing |
26. Lutz et al., 2020 [44] | Microbiome shifts in internal organs | 0–30 days | Internal organ focus | Environmental sensitivity |
27. Tozzo et al., 2022 [28] | Microbiome analysis via 16s rRNA | 0–15 days | Sensitive and specific | Requires sequencing infrastructure |
28. Zapico & Adserias-Garriga, 2022 [45] | Human tissue and microbiome shifts | 0–20 days | Human-based, multiple matrices | Sample variability |
29. Wang et al., 2022 [46] | AI-based microbiome analysis | 0–10 days | Automation, scalability | Complexity, data training needed |
30. Pittner et al., 2016 [47] | Muscle protein degradation | 0–240 h | Time-resolved data | Affected by storage conditions |
31. Zhu et al., 2017 [17] | Gene expression analysis | 0–48 h | Quantifiable molecular changes | Affected by RNA degradation |
32. Prieto-Bonete et al., 2019 [48] | Bone protein profile | Late PMI | Durability of sample | Bone preservation required |
33. Zissler et al., 2020 [18] | Protein degradation | 0–10 days | Biological consistency | Requires lab processing |
34. Javan et al., 2020 [49] | Thanatotranscriptome in liver | 0–48 h | Gene-based marker approach | Requires RNA integrity |
35. Cianci V., et al., 2024 [21] | MicroRNA analysis | 0–5 days | Increased RNA stability; potential for precise early PMI estimation | Experimental; temperature-sensitive; lacks standardization |
36. Gerra M.C., et al., 2024 [50] | Epigenetic markers | 0–10 days | Potentially stable and specific postmortem markers | Highly experimental; requires validation and standardization |
37. Bhoyar L., et al., 2025 [30] | DNA degradation via comet assay bone imaging | 0–5 days | Sensitive detection of DNA degradation; relatively accessible technique | Experimental; needs validation in human forensic context |
38. Wang et al., 2017 [12] | CT imaging | 0–7 days | Structural visualization | High cost, accessibility |
39. Chan et al., 2021 [11] | Infrared thermography | 0–24 h | Non-invasive, real-time | Sensitive to environment |
40. Schmidt et al., 2022 [51] | Handheld NIR spectroscopy on bone | Weeks to years | Portable and fast | Surface degradation effects |
41. Klontzas et al., 2023 [13] | CT radiomics | 0–72 h | Automated analysis | Requires imaging and software |
42. Shen et al., 2024 [14] | Postmortem CT (animal study) | 0–96 h | Multi-tissue analysis | Animal model; translation to humans uncertain |
43. Procopio et al., 2018 [52] | Forensic proteomics in bones | Advanced decomposition | Applicable to skeletonized remains | Specialized techniques required |
44. De-Giorgio et al., 2025 [15] | Radiomic analysis of brain ventricles (CT) | 0–5 days | Quantitative imaging data | Needs CT and postprocessing |
45. Du et al., 2018 [53] | Muscle metabolic profiling (rat) | 0–96 h | Distinct metabolic signatures | Animal model |
46. Ferreira et al., 2018 [54] | Transcriptome analysis postmortem | 0–48 h | Molecular resolution | Affected by ischemia and degradation |
47. Choi et al., 2019 [55] | Proteomics for PMI biomarkers | 0–10 days | Discovery of new biomarkers | Requires MS equipment |
48. Bonicelli et al., 2022 [56] | ForensOMICS (multi-omics in bone) | Late PMI | Integrated data layers | Complex interpretation |
49. Li et al., 2024 [57] | Multi-omics integration | 0–10 days | High-resolution molecular insight | Requires bioinformatics expertise |
50. Secco et al., 2025 [20] | Multi-omics approach | 0–10 days | Comprehensive data integration | Complex and resource-intensive |
Risk of Bias and Limitations
4. Discussion
4.1. General Overview
4.2. Thanatological Signs (Algor, Livor, and Rigor Mortis)
4.3. Biochemical Techniques
4.4. Forensic Entomology
4.5. Microbial Succession (Thanatomicrobiome)
4.6. Molecular Approaches (RNA-, DNA-, and Protein-Based)
4.7. Imaging Techniques
4.8. Omics Technologies
4.9. Limitations of the Reviewed Studies
4.10. Future Directions
4.11. Final Remarks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madea, B.; Rödig, A. Precision of estimating the time since death using different criteria of excitability. Forensic Sci. Med. Pathol. 2006, 2, 127–133. [Google Scholar] [CrossRef]
- Beliș, V.; Astărăstoaie, V.; Buda, O.; Ciornei, D.; Ciurea, A.V.; Constantinovici, A.; Curca, C.; Dermengiu, D.; Dragomirescu, V.T.; Dressler, M.L.; et al. Late postmortem changes. In Treatise of Forensic Medicine; Imbri, E., Gangal, M., Eds.; Medical Publishing House: Bucharest, Romania, 1995; Volume 1, pp. 111–118. [Google Scholar]
- Singh, J.; Kumar, A.; Trivedi, S.; Pandey, S.K. Advancements in estimating post-mortem interval in medico-legal practice: A comprehensive review. Leg. Med. 2025, 75, 102627. [Google Scholar] [CrossRef] [PubMed]
- Madea, B. Methods for determining time of death. Forensic Sci. Med. Pathol. 2016, 12, 451–485. [Google Scholar] [CrossRef] [PubMed]
- Henssge, C.; Madea, B. Estimation of the time since death. Forensic Sci. Int. 2007, 165, 182–184. [Google Scholar] [CrossRef]
- Franceschetti, L.; Amadasi, A.; Bugelli, V.; Bolsi, G.; Tsokos, M. Estimation of Late Postmortem Interval: Where Do We Stand? A Literature Review. Biology 2023, 12, 783. [Google Scholar] [CrossRef]
- Zilg, B.; Bernard, S.; Alkass, K.; Berg, S.; Druid, H. A new model for the estimation of time of death from vitreous potassium levels corrected for age and temperature. Forensic Sci. Int. 2015, 254, 158–166. [Google Scholar] [CrossRef]
- Lange, N.; Swearer, S.; Sturner, W.Q. Human postmortem interval estimation from vitreous potassium: An analysis of original data from six different studies. Forensic Sci. Int. 1994, 66, 159–174. [Google Scholar] [CrossRef]
- McCleskey, B.C.; Dye, D.W.; Gregory, G.D. Review of Postmortem Interval Estimation Using Vitreous Humor: Past, Present and, Future. Acad. Forensic Pathol. 2016, 6, 12–18. [Google Scholar] [CrossRef]
- Matuszewski, S. Post-Mortem Interval Estimation Based on Insect Evidence: Current Challenges. Insects 2021, 12, 314. [Google Scholar] [CrossRef]
- Chan, P.Y.; Tay, A.; Chen, D.; Timms, P.; McNeil, J.; Hopper, I. Infrared thermography as a modality for tracking cutaneous temperature change and postmortem interval in the critical care setting. Forensic Sci. Int. 2021, 327, 110960. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Zhang, J.; Ni, S.; Zhang, B. Estimation of Postmortem Interval Using the Radiological Techniques, Computed Tomography: A Pilot Study. J. Forensic Sci. Med. 2017, 3, 1–8. [Google Scholar] [CrossRef]
- Klontzas, M.E.; Leventis, D.; Spanakis, K.; Karantanas, A.H.; Kranioti, E.F. Post-mortem CT radiomics for the prediction of time since death. Eur. Radiol. 2023, 33, 8387–8395. [Google Scholar] [CrossRef]
- Shen, Z.; Zhong, Y.; Wang, Y.; Zhu, H.; Liu, R.; Yu, S.; Zhang, H.; Wang, M.; Yang, T. A computational approach to estimate postmortem interval using postmortem computed tomography of multiple tissues based on animal. Int. J. Leg. Med. 2024, 138, 1093–1107. [Google Scholar] [CrossRef]
- De-Giorgio, F.; Guerreri, M.; Gatta, R.; Bergamin, E.; De Vita, V.; Mancino, M.; Boldrini, L.; Sala, E.; Pascali, V.L. Exploring radiomic features of lateral cerebral ventricles in postmortem CT for postmortem interval estimation. Int. J. Leg. Med. 2025, 139, 667–677. [Google Scholar] [CrossRef]
- Sapienza, D.; Asmundo, A.; Silipigni, S.; Ugo, B.; Antonella, C.; Francesca, G.; Valeria, B.; Patrizia, G.; Antonio, B.; Michele, G. Feasibility study of MRI Muscles Molecular Imaging in Evaluation of Early Post-Mortem Interval. Sci. Rep. 2020, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, L.; Yin, Y.; Yang, E. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues. Sci. Rep. 2017, 7, 5435. [Google Scholar] [CrossRef] [PubMed]
- Zissler, A.; Steinbacher, P.; Monticelli, F.C.; Pittner, S. Postmortem Protein Degradation as a tool to Estimate the PMI: A Systematic Review. Diagnostics 2020, 10, 1014. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.; Parfrey, L.W.; Gonzalez, A.; Lauber, C.L.; Knights, D.; Ackermann, G.; Humphrey, G.C.; Gebert, M.J.; Van Treuren, W.; Berg-Lyons, D.A.; et al. microbial clock provides an accurate estimate of postmortem interval in a mouse model system. Life 2013, 2, e01104. [Google Scholar] [CrossRef]
- Secco, L.; Palumbi, S.; Padalino, P.; Grosso, E.; Perilli, M.; Casonato, M.; Cecchetto, G.; Viel, G. “Omics” and Postmortem Interval Estimation: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 1034. [Google Scholar] [CrossRef]
- Cianci, V.; Mondelo, C.; Sapienza, D.; Guerrer, M.C.; Cianci, A.; Cracò, A.; Omero, F.; Gioffrè, V.; Gualniera, P.; Asmundo, A.; et al. Potential role of mRNA in Estimating Postmortem Interval: A systematic Review. Int. J. Mol. Sci. 2024, 25, 8185. [Google Scholar] [CrossRef]
- Megyesi, M.S.; Nawrocki, S.P.; Haskell, N.H. Estimating the postmortem interval using Total Body Score TBS and Accumulated Degree Days (ADD). Curent applications and refinememnts. Int. J. Leg. Med. 2024, 138, 725–738. [Google Scholar]
- Cordeiro, C.; Mayán, L.O.; Lendoiro, E.; Frebero-Bande, M.; Vieira, D.N.; Muñoz-Barús, J.I. Areliable method for estimating the post-mortem interval from the biochemistry of the vitreous humor, temperature and body weight. Forensic Sci. Int. 2019, 295, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Sturner, W.Q.; Gantner, G.E., Jr. The post-mortem interval. A study of potassium in the vitreous humor. Am. J. Clin. Pathol. 1964, 42, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Coe, J.I. Vitreous potassium as a measure of the postmortem interval: An historical review and critical evaluation. Forensic Sci. Int. 1989, 42, 201–213. [Google Scholar] [CrossRef]
- Li, C.; Wang, Q.; Zhang, Y.; Lin, H.; Zhang, J.; Huang, P.; Wang, Z. Research progress in the estimation of the postmortem interval by chinese forensic scholars. Forensic Sci. Res. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffman, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tozzo, P.; Amico, I.; Delicati, A.; Toselli, F.; Caenazzo, L. Post-Mortem Interval and Microbiome Analysis through 16S rRNA Analysis: A Systematic Review. Diagnostics 2022, 12, 2641. [Google Scholar] [CrossRef]
- Laplace, K.; Baccino, E.; Peyron, P.-A. Estimation of the time since death based on body cooling: A comparative study of four temperature-based methods. Int. J. Leg. Med. 2021, 135, 2479–2487. [Google Scholar] [CrossRef]
- Bhoyar, L.; Mehar, P.; Chavali, K. Assessing the forensic implications of DNA degradation for PMI estimation using comet assay: A systematic review. J. Forensic Leg. Med. 2025, 109, 102801. [Google Scholar] [CrossRef]
- Bansode, S.; Morajkar, A.; Ragade, V.; More, V.; Kharat, K. Challenges and considerations in forensic entomology: A comprehensive review. J. Forensic Leg. Med. 2025, 110, 102831. [Google Scholar] [CrossRef]
- Schoenly, K.; Goff, M.L.; Early, M. A BASIC algorithm for calculating the postmortem interval from arthropod successional data. J. Forensic Sci. 1992, 37, 808–823. [Google Scholar] [CrossRef] [PubMed]
- Schoenly, K.; Goff, M.L.; Wells, J.D.; Lord, W.D. Quantifying statistical uncertainty in succession-based entomological estimates of the postmortem interval in death scene investigations: A simulation study. Am. Entomol. 1996, 42, 106–112. [Google Scholar] [CrossRef]
- Marchenko, M.I. Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Sci. Int. 2001, 120, 89–109. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S.E.; Hall, M.J.; Turner, B.D.; Moncrieff, C.B. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med. Vet. Entomol. 2006, 20, 106–114. [Google Scholar] [CrossRef]
- Michaud, J.P.; Moreau, G. Predicting the visitation of carcasses by carrion-related insects under different rates of degree-day accumulation. Forensic Sci. Int. 2009, 185, 78–83. [Google Scholar] [CrossRef]
- Reibe, S.; Doetinchem, P.V.; Madea, B. A new simulation-based model for calculating post-mortem intervals using developmental data for Lucilia sericata (Dipt.: Calliphoridae). Parasitol. Res. 2010, 107, 9–16. [Google Scholar] [CrossRef]
- Matuszewski, S. Estimating the pre-appearance interval from temperature in Necrodeslittoralis L. (Coleopt.: Silphidae). Forensic Sci. Int. 2011, 212, 180–188. [Google Scholar] [CrossRef]
- Mohr, R.M.; Tomberlin, J.K. Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance. Int. J. Leg. Med. 2015, 129, 851–859. [Google Scholar] [CrossRef]
- Matuszewski, S. A general approach for postmortem interval based on uniformly distributed and interconnected qualitative indicators. Int. J. Leg. Med. 2017, 131, 877–884. [Google Scholar] [CrossRef]
- Matuszewski, S.; Fratczak-Lagiewska, K. Size at emergence improves accuracy of age estimates in forensically-useful beetle Creophilus maxillosus L. (Staphylinidae). Sci. Rep. 2018, 8, 106–114. [Google Scholar] [CrossRef]
- Obafunwa, J.O.; Roe, A.; Higley, L. A review of the estimation of postmortem interval using forensic entomology. Med. Sci. Law. 2025, 65, 52–64. [Google Scholar] [CrossRef]
- Bell, C.R.; Wilkinson, J.E.; Robertson, B.K.; Javan, G.T. Sex-related differences in the thanatomicrobiome in postmortem heart samples using bacterial gene regions V1-2 and V4. Lett. Appl. Microbiol. 2018, 67, 144–153. [Google Scholar] [CrossRef]
- Lutz, H.; Vangelatos, A.; Gottel, N.; Osculati, A.; Visona, S.; Finley, S.J.; Gilbert, J.A.; Javan, G.T. Effects of Extended Postmortem Interval on Microbial Communities in Organs of the Human Cadaver. Front. Microbiol. 2020, 11, 569630. [Google Scholar] [CrossRef]
- Zapico, C.S.; Adserias-Garriga, J. Postmortem Interval Estimation: New Approaches by the Analysis of Human Tissues and Microbial Communities’ Changes. Forensic Sci. 2022, 1, 163–174. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Wang, L.; Yuan, H.; Guan, D.; Zhao, R. Advances in artificial intelligence-based microbiome for PMI estimation. Front. Microbiol. 2022, 13, 1034051. [Google Scholar] [CrossRef]
- Pittner, S.; Ehrenfellner, B.; Monticelli, F.C.; Zissler, A.; Sänger, A.M.; Stoiber, W.; Steinbacher, P. Postmortem muscle protein degradation in humans as a tool for PMI delimitation. Int. J. Leg. Med. 2016, 130, 1547–1555. [Google Scholar] [CrossRef]
- Prieto-Bonete, G.; Pérez-Cárceles, M.D.; Maurandi-López, A.; Pérez-Martínez, C.; Luna, A. Association between protein profile and postmortem interval in human bone remains. J. Proteom. 2019, 192, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Javan, G.T.; Hanson, E.; Finley, S.J.; Visonà, S.D.; Osculati, A.; Ballantyne, J. Identification of cadaveric liver tissues using thanatotranscriptome biomarkers. Sci. Rep. 2020, 10, 6639. [Google Scholar] [CrossRef] [PubMed]
- Gerra, M.C.; Dallabona, C.; Cecchi, R. Epigenetic analyses in forensic medicine: Future and challenges. Int. J. Leg. Med. 2024, 138, 701–719. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.M.; Zelger, P.; Woss, C.; Huck, C.W.; Arora, R.; Bechtel, E.; Stahl, A.; Brunner, A.; Zelger, B.; Schirmer, M.; et al. Post-Mortem Interval of Human Skeletal Remains Estimated with Handheld NIR Spectrometry. Biology 2022, 11, 1020. [Google Scholar] [CrossRef]
- Procopio, N.; Williams, A.; Chamberlain, A.T.; Buckley, M. Forensic proteomics for the evaluation of the post-mortem decay in bones. J. Proteom. 2018, 177, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Lin, Z.; Xie, Y.; Ye, X.; Tu, C.; Jin, K.; Xie, J.; Shen, Y. Metabolic profiling of femoral muscle from rats at different periods of time after death. PLoS ONE 2018, 13, e0203920. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.G.; Muñoz-Aguirre, M.; Reverter, F.; Godinho, C.P.S.; Sousa, A.; Amadoz, A.; Sodaei, R.; Hidalgo, M.R.; Pervouchine, D.; Carbonell-Caballero, J.; et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat. Commun. 2018, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.M.; Zissler, A.; Kim, E.; Ehrenfellner, B.; Cho, E.; Lee, S.I.; Steinbacher, P.; Yun, K.N.; Shin, J.H.; Kim, J.Y.; et al. Postmortem proteomics to discover biomarkers for forensic PMI estimation. Int. J. Leg. Med. 2019, 133, 899–908. [Google Scholar] [CrossRef]
- Bonicelli, A.; Micklebourgh, H.L.; Chighine, A.; Locci, E.; Wescott, D.J.; Procopio, N. The `ForensOMICS` approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics. ELife 2022, 11, e83658. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.-J.; Liu, M.-F.; Li, N.; Dang, L.-H.; An, G.-S.; Lu, X.-J.; Wang, L.-L.; Du, Q.-X.; Cao, J.; et al. Multi-omics integration strategy in the post-mortem interval of forensic science. Talanta 2024, 268, 125249. [Google Scholar] [CrossRef]
- Lopez-Lazaro, S.; Castillo-Alonso, C. Accuracy of estimating postmortem interval using the relationship between total body score and accumulated degree-days: A systematic review and meta-analysis. Int. J. Leg. Med. 2024, 138, 2659–2670. [Google Scholar] [CrossRef]
- Matuszewski, S. Estimating the post-mortem interval with forensic entomology-quo vadis? Forensic Sci. Int. 2021, 320, 110701. [Google Scholar]
- Reiter, C. Zumwachstumsverhalten der maden der blauenschmeißfliege Calliphoravicina. Z. Für Rechtsmed. 1984, 91, 295–308. [Google Scholar] [CrossRef]
- Amendt, J.; Campobasso, C.P.; Gaudry, E.; Reiter, C.; LeBlanc, H.N.; Hall, M.J. Best practice in forensic entomology-standards and guidelines. Int. J. Leg. Med. 2007, 121, 90–104. [Google Scholar] [CrossRef]
- Amendth, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J.R. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef]
- Metcalf, J.L.; Xu, Z.Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E.R.; Song, S.J.; Amir, A.; Larsen, P.; Sangwan, N.; et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 2016, 351, 158–162. [Google Scholar] [CrossRef]
- Javan, G.T.; Finley, S.J.; Abidin, Z.; Mulle, J.G. The thanatomicrobiome: A missing piece of the microbial puzzle of death. Front Microbiol. 2016, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Pechal, J.L.; Crippen, T.L.; Benbow, M.E.; Tarone, A.M.; Dowd, S.; Tomberlin, J.K. The potential use of bacterial community succession in forensics as described by high throughout metagenomic sequencing. Int. J. Legal Med. 2014, 128, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Hauther, K.A.; Cobaugh, K.L.; Jantz, L.M.; Sparer, T.E.; Debruyn, J.M. Estimating time since death from postmortem human gut microbial communities. J. Forensic Sci. 2015, 60, 1234–1240. [Google Scholar] [CrossRef]
- Cianci, V.; Mondello, C.; Sapienza, D.; Guerrera, M.C.; Cianci, A.; Cracò, A.; Luppino, F.; Gioffrè, V.; Gualniera, P.; Asmundo, A.; et al. MicroRNAs as New Biomolecular Markers to Estimate Time since Death: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 9207. [Google Scholar] [CrossRef]
- Longato, L.; Wos, C.; Hatzer-Grubwieser, P.; Bauer, C.; Parson, W.; Unterberger, S.H.; Kuhn, V.; Pemberger, N.; Pallua, A.K.; Recheis, W.; et al. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping. Anal. Methods 2015, 7, 2917–2927. [Google Scholar] [CrossRef]
- Perju-Dumbrava, D.; Chiroban, O.; Radu, C.C. Obesity and overweight risk factors in sudden death due to cardiovascular causes: A case series. Iran. J. Public Health 2017, 46, 958–964. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strete, G.; Sălcudean, A.; Cozma, A.-A.; Radu, C.-C. Current Understanding and Future Research Direction for Estimating the Postmortem Interval: A Systematic Review. Diagnostics 2025, 15, 1954. https://doi.org/10.3390/diagnostics15151954
Strete G, Sălcudean A, Cozma A-A, Radu C-C. Current Understanding and Future Research Direction for Estimating the Postmortem Interval: A Systematic Review. Diagnostics. 2025; 15(15):1954. https://doi.org/10.3390/diagnostics15151954
Chicago/Turabian StyleStrete, Gabriela, Andreea Sălcudean, Adina-Alexandra Cozma, and Carmen-Corina Radu. 2025. "Current Understanding and Future Research Direction for Estimating the Postmortem Interval: A Systematic Review" Diagnostics 15, no. 15: 1954. https://doi.org/10.3390/diagnostics15151954
APA StyleStrete, G., Sălcudean, A., Cozma, A.-A., & Radu, C.-C. (2025). Current Understanding and Future Research Direction for Estimating the Postmortem Interval: A Systematic Review. Diagnostics, 15(15), 1954. https://doi.org/10.3390/diagnostics15151954