Assessing and Improving the Reproducibility of Cerebrovascular Reactivity Evaluations in Healthy Subjects Using Short-Breath-Hold fMRI
Abstract
1. Introduction
2. Materials and Methods
2.1. The Participants
2.2. MRI Data Acquisition
2.3. fMRI Data Processing
2.4. The Statistical Analysis
3. Results
3.1. The BOLD Signal Course
3.2. The Inter-Session Intra-Personal Reproducibility of the Changes in the BOLD Signals
3.3. Inter-Session Intra-Personal Variability and Intra-Session Inter-Personal Variability
4. Discussion
4.1. The Reproducibility of and Variability in the Increase in the BOLD Signal After Short Bh Periods
4.2. The Influence of the Temporal Interval Size on Reproducibility and Variability
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACA | A. cerebri anterior |
bh-fMRI | Breath-hold functional MRI |
bh periods | Breath-hold periods |
BOLD fMRI | Blood-oxygenation-level-dependent functional magnetic resonance imaging |
CBF | Cerebral blood flow |
CMRO2 | Cerebral metabolic rate of oxygen |
CVR | Cerebrovascular reactivity |
CV | Coefficient of variation |
IAP | Interval around the cerebellar peak |
ICC | Intraclass correlation coefficient |
MCA | A. cerebri media |
MMA | Moyamoya Angiopathy |
PCA | A. cerebri posterior |
PET | [15O]water positron emission tomography |
PSC | Percentage signal change |
TTP | Time to peak |
VOI | Volume of interest |
Appendix A
Age | Sex | |
---|---|---|
Male | Female | |
≤30 | 0.863 (0.842–0.881) | 0.919 (0.911–0.927) |
31–59 | 0.841 (0.824–0.856) | 0.887 (0.875–0.899) |
≥60 | 0.903 (0.893–0.912) | 0.838 (0.811–0.862) |
References
- Urback, A.L.; MacIntosh, B.J.; Goldstein, B.I. Cerebrovascular reactivity measured by functional magnetic resonance imaging during breath-hold challenge: A systematic review. Neurosci. Biobehav. Rev. 2017, 79, 27–47. [Google Scholar] [CrossRef]
- Bright, M.G.; Murphy, K. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. Neuroimage 2013, 83, 559–568. [Google Scholar] [CrossRef]
- Sobczyk, O.; Fierstra, J.; Venkatraghavan, L.; Poublanc, J.; Duffin, J.; Fisher, J.A.; Mikulis, D.J. Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls. Front. Physiol. 2021, 12, 665049. [Google Scholar] [CrossRef]
- Moia, S.; Stickland, R.C.; Ayyagari, A.; Termenon, M.; Caballero-Gaudes, C.; Bright, M.G. Voxelwise optimization of hemodynamic lags to improve regional CVR estimates in breath-hold fMRI. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 1489–1492. [Google Scholar] [CrossRef]
- Pinto, J.; Bright, M.G.; Bulte, D.P.; Figueiredo, P. Cerebrovascular reactivity mapping without gas challenges. Front. Physiol. 2021, 11, 608475. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.; Cullinane, M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 2001, 124 Pt 3, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Webster, M.W.; Makaroun, M.S.; Steed, D.L.; Smith, H.A.; Johnson, D.W.; Yonas, H. Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J. Vasc. Surg. 1995, 21, 338–344, discussion 344–335. [Google Scholar] [CrossRef] [PubMed]
- Ziyeh, S.; Rick, J.; Reinhard, M.; Hetzel, A.; Mader, I.; Speck, O. Blood oxygen level-dependent MRI of cerebral CO2 reactivity in severe carotid stenosis and occlusion. Stroke 2005, 36, 751–756. [Google Scholar] [CrossRef][Green Version]
- Hartkamp, N.S.; Bokkers, R.P.; van Osch, M.J.; de Borst, G.J.; Hendrikse, J. Cerebrovascular reactivity in the caudate nucleus, lentiform nucleus and thalamus in patients with carotid artery disease. J. Neuroradiol. 2017, 44, 143–150. [Google Scholar] [CrossRef]
- Mandell, D.M.; Han, J.S.; Poublanc, J.; Crawley, A.P.; Fierstra, J.; Tymianski, M.; Fisher, J.A.; Mikulis, D.J. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: Preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR Am. J. Neuroradiol. 2011, 32, 721–727. [Google Scholar] [CrossRef]
- Zerweck, L.; Hauser, T.K.; Roder, C.; Blazhenets, G.; Khan, N.; Ernemann, U.; Meyer, P.T.; Klose, U. Evaluation of the cerebrovascular reactivity in patients with Moyamoya Angiopathy by use of breath-hold fMRI: Investigation of voxel-wise hemodynamic delay correction in comparison to [(15)O]water PET. Neuroradiology 2023, 65, 539–550. [Google Scholar] [CrossRef]
- Haight, T.J.; Bryan, R.N.; Erus, G.; Davatzikos, C.; Jacobs, D.R.; D’Esposito, M.; Lewis, C.E.; Launer, L.J. Vascular risk factors, cerebrovascular reactivity, and the default-mode brain network. NeuroImage 2015, 115, 7–16. [Google Scholar] [CrossRef]
- Batson, C.; Froese, L.; Sekhon, M.; Griesdale, D.; Gomez, A.; Thelin, E.P.; Raj, R.; Aries, M.; Gallagher, C.; Bernard, F.; et al. Impact of Chronological Age and Biological Sex on Cerebrovascular Reactivity in Moderate/Severe Traumatic Brain Injury: A CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Study. J. Neurotrauma 2023, 40, 1098–1111. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, F.; Ercole, A.; Czosnyka, M.; Smielewski, P.; Hawryluk, G.; Hutchinson, P.; Menon, D.; Aries, M. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: A narrative review of advances in neurocritical care. Br. J. Anaesth. 2020, 124, 440–453. [Google Scholar] [CrossRef]
- Kleiser, B.; Widder, B. Course of carotid artery occlusions with impaired cerebrovascular reactivity. Stroke 1992, 23, 171–174. [Google Scholar] [CrossRef]
- Kang, C.K.; Song, M.G.; Yang, J.; Lee, H.; Lee, Y.B. Severity Evaluation of Regional Cerebrovascular Reactivity in Acute Stroke Patients Using SPECT. Curr. Med. Imaging 2022, 18, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, K.; Ito, H.; Sasoh, M.; Okuguchi, T.; Kobayashi, M.; Yukawa, H.; Terasaki, K.; Ogawa, A. Quantitative measurement of regional cerebrovascular reactivity to acetazolamide using 123I-N-isopropyl-p-iodoamphetamine autoradiography with SPECT: Validation study using H2 15O with PET. J. Nucl. Med. 2003, 44, 520–525. [Google Scholar]
- Marion, D.W.; Bouma, G.J. The use of stable xenon-enhanced computed tomographic studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsivity caused by a severe head injury. Neurosurgery 1991, 29, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Fierstra, J.; van Niftrik, C.; Warnock, G.; Wegener, S.; Piccirelli, M.; Pangalu, A.; Esposito, G.; Valavanis, A.; Buck, A.; Luft, A.; et al. Staging Hemodynamic Failure With Blood Oxygen-Level-Dependent Functional Magnetic Resonance Imaging Cerebrovascular Reactivity: A Comparison Versus Gold Standard ((15)O-)H(2)O-Positron Emission Tomography. Stroke 2018, 49, 621–629. [Google Scholar] [CrossRef]
- Zerweck, L.; Hauser, T.; Roder, C.; Klose, U. Investigation of the BOLD-Based MRI Signal Time Course During Short Breath-Hold Periods for Estimation of the Cerebrovascular Reactivity. SN Compr. Clin. Med. 2020, 2, 1551–1562. [Google Scholar] [CrossRef]
- Juttukonda, M.; Donahue, M. Neuroimaging of vascular reserve in patients with cerebrovascular diseases. NeuroImage 2017, 187, 192–208. [Google Scholar] [CrossRef]
- Fierstra, J.; Sobczyk, O.; Battisti-Charbonney, A.; Mandell, D.M.; Poublanc, J.; Crawley, A.P.; Mikulis, D.J.; Duffin, J.; Fisher, J.A. Measuring cerebrovascular reactivity: What stimulus to use? J. Physiol. 2013, 591, 5809–5821. [Google Scholar] [CrossRef]
- Yao, J.F.; Yang, H.S.; Wang, J.H.; Liang, Z.; Talavage, T.M.; Tamer, G.G., Jr.; Jang, I.; Tong, Y. A novel method of quantifying hemodynamic delays to improve hemodynamic response, and CVR estimates in CO2 challenge fMRI. J. Cereb. Blood Flow Metab. 2021, 41, 1886–1898. [Google Scholar] [CrossRef]
- Kastrup, A.; Li, T.Q.; Takahashi, A.; Glover, G.H.; Moseley, M.E. Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. Stroke 1998, 29, 2641–2645. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef]
- Poublanc, J.; Han, J.S.; Mandell, D.M.; Conklin, J.; Stainsby, J.A.; Fisher, J.A.; Mikulis, D.J.; Crawley, A.P. Vascular steal explains early paradoxical blood oxygen level-dependent cerebrovascular response in brain regions with delayed arterial transit times. Cerebrovasc. Dis. Extra 2013, 3, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, W.C.; Wetzler, S. Five percent carbon dioxide challenge: Valid analogue and marker of panic disorder? Biol. Psychiatry 1990, 27, 689–701. [Google Scholar] [CrossRef]
- Pillai, J.J.; Mikulis, D.J. Cerebrovascular reactivity mapping: An evolving standard for clinical functional imaging. AJNR Am. J. Neuroradiol. 2015, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Tancredi, F.B.; Hoge, R.D. Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation. J. Cereb. Blood Flow Metab. 2013, 33, 1066–1074. [Google Scholar] [CrossRef]
- Kastrup, A.; Kruger, G.; Neumann-Haefelin, T.; Moseley, M.E. Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: Comparison of CO(2) and breath holding. Magn. Reson. Imaging 2001, 19, 13–20. [Google Scholar] [CrossRef]
- Hauser, T.K.; Seeger, A.; Bender, B.; Klose, U.; Thurow, J.; Ernemann, U.; Tatagiba, M.; Meyer, P.T.; Khan, N.; Roder, C. Hypercapnic BOLD MRI compared to H(2)(15)O PET/CT for the hemodynamic evaluation of patients with Moyamoya Disease. Neuroimage Clin. 2019, 22, 101713. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Jorge, J.; Sousa, I.; Vilela, P.; Figueiredo, P. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility. Neuroimage 2016, 135, 223–231. [Google Scholar] [CrossRef]
- Lipp, I.; Murphy, K.; Wise, R.G.; Caseras, X. Understanding the contribution of neural and physiological signal variation to the low repeatability of emotion-induced BOLD responses. Neuroimage 2014, 86, 335–342. [Google Scholar] [CrossRef]
- Peng, S.-L.; Yang, H.-C.; Chen, C.-M.; Shih, C.-T. Short- and long-term reproducibility of BOLD signal change induced by breath-holding at 1.5 and 3 T. NMR Biomed. 2020, 33, e4195. [Google Scholar] [CrossRef] [PubMed]
- Magon, S.; Basso, G.; Farace, P.; Ricciardi, G.; Beltramello, A.; Sbarbati, A. Reproducibility of BOLD signal change induced by breath holding. NeuroImage 2009, 45, 702–712. [Google Scholar] [CrossRef]
- Mutsaerts, H.J.M.M.; van Dalen, J.W.; Heijtel, D.F.R.; Groot, P.F.C.; Majoie, C.B.L.M.; Petersen, E.T.; Richard, E.; Nederveen, A.J. Cerebral Perfusion Measurements in Elderly with Hypertension Using Arterial Spin Labeling. PLoS ONE 2015, 10, e0133717. [Google Scholar] [CrossRef] [PubMed]
- Tatu, L.; Moulin, T.; Bogousslavsky, J.; Duvernoy, H. Arterial territories of the human brain: Cerebral hemispheres. Neurology 1998, 50, 1699–1708. [Google Scholar] [CrossRef]
- Sleight, E.; Stringer, M.S.; Marshall, I.; Wardlaw, J.M.; Thrippleton, M.J. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front. Physiol. 2021, 12, 643468. [Google Scholar] [CrossRef]
- Cicchetti, D.V. Methodological Commentary The Precision of Reliability and Validity Estimates Re-Visited: Distinguishing Between Clinical and Statistical Significance of Sample Size Requirements. J. Clin. Exp. Neuropsychol. 2001, 23, 695–700. [Google Scholar] [CrossRef]
- Bland, J.; Altman, D. Statistics Notes: Measurement error. BMJ 1996, 313, 744. [Google Scholar] [CrossRef]
- Johnson, N.L.; Welch, B.L. APPLICATIONS OF THE NON-CENTRAL t-DISTRIBUTION. Biometrika 1940, 31, 362–389. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Gluck, M.A.; Poldrack, R.A. Long-term test-retest reliability of functional MRI in a classification learning task. Neuroimage 2006, 29, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- van Niftrik, C.H.B.; Sebok, M.; Germans, M.R.; Halter, M.; Pokorny, T.; Stumpo, V.; Bellomo, J.; Piccirelli, M.; Pangalu, A.; Katan, M.; et al. Increased Risk of Recurrent Stroke in Symptomatic Large Vessel Disease With Impaired BOLD Cerebrovascular Reactivity. Stroke 2024, 55, 613–621. [Google Scholar] [CrossRef]
- Zerweck, L.; Klose, U.; Roder, C.; Staber, D.; Renger, E.; Blazhenets, G.; Grundmann-Hauser, K.; Meyer, P.T.; Ernemann, U.; Hauser, T.K. Measuring cerebrovascular reactivity with breath-hold fMRI in patients with Moyamoya angiopathy: MR perfusion based delay correction significantly improves agreement to [(15)O]water PET. Neuroradiology 2025. [Google Scholar] [CrossRef]
- Zerweck, L.; Roder, C.; Blazhenets, G.; Martus, P.; Thurow, J.; Haas, P.; Estler, A.; Gohla, G.; Ruff, C.; Selo, N.; et al. MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA): An MRI-Based Scoring System for the Severity of Moyamoya Angiopathy. Diagnostics 2024, 14, 1437. [Google Scholar] [CrossRef]
- Sebok, M.; van Niftrik, C.H.B.; Winklhofer, S.; Wegener, S.; Esposito, G.; Stippich, C.; Luft, A.; Regli, L.; Fierstra, J. Mapping Cerebrovascular Reactivity Impairment in Patients With Symptomatic Unilateral Carotid Artery Disease. J. Am. Heart Assoc. 2021, 10, e020792. [Google Scholar] [CrossRef]
- Sebok, M.; Stumpo, V.; Bellomo, J.; Esposito, G.; van Niftrik, C.H.B.; Kulcsar, Z.; Luft, A.R.; Regli, L.; Fierstra, J. Preoperative BOLD cerebrovascular reactivity correlates with intraoperative STA-MCA bypass flow and influences postoperative CVR improvement. Eur. Stroke J. 2025. [Google Scholar] [CrossRef]
- Bellomo, J.; Sebok, M.; Stumpo, V.; van Niftrik, C.H.B.; Meisterhans, D.; Piccirelli, M.; Michels, L.; Reolon, B.; Esposito, G.; Schubert, T.; et al. Blood Oxygenation Level-Dependent Cerebrovascular Reactivity-Derived Steal Phenomenon May Indicate Tissue Reperfusion Failure After Successful Endovascular Thrombectomy. Transl. Stroke Res. 2023, 16, 207–216. [Google Scholar] [CrossRef]
- Bosselmann, C.M.; Kegele, J.; Zerweck, L.; Klose, U.; Ethofer, S.; Roder, C.; Grimm, A.M.; Hauser, T.K. Breath-Hold-Triggered BOLD fMRI in Drug-Resistant Nonlesional Focal Epilepsy-A Pilot Study. Clin. Neuroradiol. 2024, 34, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Muscas, G.; van Niftrik, C.H.B.; Sebok, M.; Della Puppa, A.; Seystahl, K.; Andratschke, N.; Brown, M.; Weller, M.; Regli, L.; Piccirelli, M.; et al. Distinct Cerebrovascular Reactivity Patterns for Brain Radiation Necrosis. Cancers 2021, 13, 1840. [Google Scholar] [CrossRef] [PubMed]
- Fierstra, J.; van Niftrik, C.; Piccirelli, M.; Bozinov, O.; Pangalu, A.; Krayenbuhl, N.; Valavanis, A.; Weller, M.; Regli, L. Diffuse gliomas exhibit whole brain impaired cerebrovascular reactivity. Magn. Reson. Imaging 2018, 45, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, A.; Li, T.Q.; Glover, G.H.; Moseley, M.E. Cerebral blood flow-related signal changes during breath-holding. AJNR Am. J. Neuroradiol. 1999, 20, 1233–1238. [Google Scholar] [PubMed]
- Thomason, M.E.; Glover, G.H. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal. Neuroimage 2008, 39, 206–214. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dlamini, N.; Shah-Basak, P.; Leung, J.; Kirkham, F.; Shroff, M.; Kassner, A.; Robertson, A.; Dirks, P.; Westmacott, R.; deVeber, G.; et al. Breath-Hold Blood Oxygen Level–Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease. Am. J. Neuroradiol. 2018, 39, 1717–1723. [Google Scholar] [CrossRef]
- Kassner, A.; Winter, J.D.; Poublanc, J.; Mikulis, D.J.; Crawley, A.P. Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: Reproducibility and gender differences. J. Magn. Reson. Imaging 2010, 31, 298–304. [Google Scholar] [CrossRef]
- Leung, J.; Kim, J.A.; Kassner, A. Reproducibility of cerebrovascular reactivity measures in children using BOLD MRI. J. Magn. Reson. Imaging 2016, 43, 1191–1195. [Google Scholar] [CrossRef]
- Thrippleton, M.J.; Shi, Y.; Blair, G.; Hamilton, I.; Waiter, G.; Schwarzbauer, C.; Pernet, C.; Andrews, P.J.; Marshall, I.; Doubal, F.; et al. Cerebrovascular reactivity measurement in cerebral small vessel disease: Rationale and reproducibility of a protocol for MRI acquisition and image processing. Int. J. Stroke 2018, 13, 195–206. [Google Scholar] [CrossRef]
- Shah, L.M.; Cramer, J.A.; Ferguson, M.A.; Birn, R.M.; Anderson, J.S. Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state. Brain Behav. 2016, 6, e00456. [Google Scholar] [CrossRef] [PubMed]
- Leontiev, O.; Buxton, R.B. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. NeuroImage 2007, 35, 175–184. [Google Scholar] [CrossRef]
- Tjandra, T.; Brooks, J.C.W.; Figueiredo, P.; Wise, R.; Matthews, P.M.; Tracey, I. Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: Implications for clinical trial design. NeuroImage 2005, 27, 393–401. [Google Scholar] [CrossRef]
- Friedman, L.; Turner, J.A.; Stern, H.; Mathalon, D.H.; Trondsen, L.C.; Potkin, S.G. Chronic smoking and the BOLD response to a visual activation task and a breath hold task in patients with schizophrenia and healthy controls. NeuroImage 2008, 40, 1181–1194. [Google Scholar] [CrossRef]
- Donahue, M.J.; van Laar, P.J.; van Zijl, P.C.; Stevens, R.D.; Hendrikse, J. Vascular space occupancy (VASO) cerebral blood volume-weighted MRI identifies hemodynamic impairment in patients with carotid artery disease. J. Magn. Reson. Imaging 2009, 29, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Riecker, A.; Grodd, W.; Klose, U.; Schulz, J.B.; Gröschel, K.; Erb, M.; Ackermann, H.; Kastrup, A. Relation between Regional Functional MRI Activation and Vascular Reactivity to Carbon Dioxide during Normal Aging. J. Cereb. Blood Flow Metab. 2003, 23, 565–573. [Google Scholar] [CrossRef]
- Scouten, A.; Schwarzbauer, C. Paced respiration with end-expiration technique offers superior BOLD signal repeatability for breath-hold studies. Neuroimage 2008, 43, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Lipp, I.; Murphy, K.; Caseras, X.; Wise, R.G. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan. Neuroimage 2015, 113, 387–396. [Google Scholar] [CrossRef]
- Yezhuvath, U.S.; Lewis-Amezcua, K.; Varghese, R.; Xiao, G.; Lu, H. On the assessment of cerebrovascular reactivity using hypercapnia BOLD MRI. NMR Biomed. 2009, 22, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Goode, S.D.; Krishan, S.; Alexakis, C.; Mahajan, R.; Auer, D.P. Precision of cerebrovascular reactivity assessment with use of different quantification methods for hypercapnia functional MR imaging. AJNR Am. J. Neuroradiol. 2009, 30, 972–977. [Google Scholar] [CrossRef]
- Zerweck, L.; Roder, C.; Hauser, T.K.; Thurow, J.; Mengel, A.; Tatagiba, M.; Khan, N.; Meyer, P.T.; Ernemann, U.; Klose, U. Hemodynamic evaluation of patients with Moyamoya Angiopathy: Comparison of resting-state fMRI to breath-hold fMRI and [(15)O]water PET. Neuroradiology 2022, 64, 553–563. [Google Scholar] [CrossRef]
- Thomason, M.E.; Burrows, B.E.; Gabrieli, J.D.; Glover, G.H. Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 2005, 25, 824–837. [Google Scholar] [CrossRef]
- Birn, R.M.; Smith, M.A.; Jones, T.B.; Bandettini, P.A. The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 2008, 40, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, M.; Scheinberg, P.; Busto, R.; Reinmuth, O.M. The Relation Between Cerebral Oxygen Consumption and Cerebral Vascular Reactivity to Carbon Dioxide. Stroke 1971, 2, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.L.; Dumas, J.A.; Park, D.C.; Liu, P.; Filbey, F.M.; McAdams, C.J.; Pinkham, A.E.; Adinoff, B.; Zhang, R.; Lu, H. Age-related increase of resting metabolic rate in the human brain. Neuroimage 2014, 98, 176–183. [Google Scholar] [CrossRef]
- McGonigle, D.J.; Howseman, A.M.; Athwal, B.S.; Friston, K.J.; Frackowiak, R.S.J.; Holmes, A.P. Variability in fMRI: An Examination of Intersession Differences. NeuroImage 2000, 11, 708–734. [Google Scholar] [CrossRef] [PubMed]
Participants, n | 49 * |
Included bh-fMRI datasets | 147 |
M:F ratio | 1.04:1 |
Mean age (range) | 45.5 (20–74) |
Session | ±6 s IAP | ±3 s IAP | ±0 s IAP |
---|---|---|---|
1, 2 and 3 | 0.894 (0.890–0.899) | 0.892 (0.887–0.897) | 0.887 (0.882–0.892) |
1 and 3 | 0.844 (0.836–0.852) | 0.843 (0.834–0.851) | 0.839 (0.830–0.847) |
2 and 3 | 0.838 (0.829–0.846) | 0.840 (0.832–0.848) | 0.832 (0.823–0.840) |
1 and 2 | 0.867 (0.859–0.873) | 0.857 (0.849–0.864) | 0.849 (0.840–0.856) |
PSC | TTP | |
---|---|---|
CVintra | ||
±0 s IAP | 14.52% ± 8.54% | 4.84% ± 3.94% |
±3 s IAP | 21.17% ± 25.48% | - |
±6 s IAP | 18.94% ± 97.97% | - |
CVinter | ||
±0 s IAP | 32.0% ± 2.33% | 9.75% ± 2.76% |
±3 s IAP | 39.0% ± 4.51% | - |
±6 s IAP | 67.0% ± 13.25% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renger, E.; Hauser, T.-K.; Klose, U.; Ernemann, U.; Zerweck, L. Assessing and Improving the Reproducibility of Cerebrovascular Reactivity Evaluations in Healthy Subjects Using Short-Breath-Hold fMRI. Diagnostics 2025, 15, 1946. https://doi.org/10.3390/diagnostics15151946
Renger E, Hauser T-K, Klose U, Ernemann U, Zerweck L. Assessing and Improving the Reproducibility of Cerebrovascular Reactivity Evaluations in Healthy Subjects Using Short-Breath-Hold fMRI. Diagnostics. 2025; 15(15):1946. https://doi.org/10.3390/diagnostics15151946
Chicago/Turabian StyleRenger, Emely, Till-Karsten Hauser, Uwe Klose, Ulrike Ernemann, and Leonie Zerweck. 2025. "Assessing and Improving the Reproducibility of Cerebrovascular Reactivity Evaluations in Healthy Subjects Using Short-Breath-Hold fMRI" Diagnostics 15, no. 15: 1946. https://doi.org/10.3390/diagnostics15151946
APA StyleRenger, E., Hauser, T.-K., Klose, U., Ernemann, U., & Zerweck, L. (2025). Assessing and Improving the Reproducibility of Cerebrovascular Reactivity Evaluations in Healthy Subjects Using Short-Breath-Hold fMRI. Diagnostics, 15(15), 1946. https://doi.org/10.3390/diagnostics15151946