Clinical Relevance of PCR Versus Culture in Urinary Tract Infections Diagnosis: Quantification Cycle as a Predictor of Bacterial Load
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Quantification of Bacterial Load in Urine Samples Using Culture-Based Methods
2.3. qPCR to Determine the Cq Value for Known Bacterial Population Estimate
2.4. Establishing the Cq to CFU/mL Correlation Algorithm
2.5. Correlation of Cq and CFU in Clinical Specimens
2.6. Statistical Analysis
3. Results
3.1. Estimation of Colony-Forming Units from Serially Diluted Bacterial Cell Suspensions
3.2. Determination Cq Values by Open Array™ Multiplex qPCR
3.3. Cq to CFU/mL Correlation Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cq | Quantification cycle |
CFU | Colony forming unit |
EQUC | Expanded quantitative urine cultures |
MHA | Mueller-Hinton agar |
NAAT | Nucleic acid amplification tests |
NGS | Next generation sequencing |
qPCR | Quantitative PCR |
SUC | Standard urine culture |
TNTC | Too numerous to count |
TSA | Tryptic soy agar |
UTI | Urinary tract infection |
References
- Yoo, J.-J.; Shin, H.B.; Song, J.S.; Kim, M.; Yun, J.; Kim, Z.; Lee, Y.M.; Lee, S.W.; Lee, K.W.; Kim, W.B.; et al. Urinary Microbiome Characteristics in Female Patients with Acute Uncomplicated Cystitis and Recurrent Cystitis. J. Clin. Med. 2021, 10, 1097. [Google Scholar] [CrossRef]
- Szlachta-McGinn, A.; Douglass, K.M.; Chung, U.Y.R.; Jackson, N.J.; Nickel, J.C.; Ackerman, A.L. Molecular Diagnostic Methods Versus Conventional Urine Culture for Diagnosis and Treatment of Urinary Tract Infection: A Systematic Review and Meta-analysis. Eur. Urol. Open Sci. 2022, 44, 113–124. [Google Scholar] [CrossRef]
- Price, T.K.; Dune, T.; Hilt, E.E.; Thomas-White, K.J.; Kliethermes, S.; Brincat, C.; Wolfe, A.J.; Brubaker, L. The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms. J. Clin. Microbiol. 2016, 54, 1216–1222. [Google Scholar] [CrossRef]
- Deen, N.S.; Ahmed, A.; Tasnim, N.T.; Khan, N. Clinical Relevance of Expanded Quantitative Urine Culture in Health and Disease. Front. Cell. Infect. Microbiol. 2023, 13, 1210161. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Deebel, N.; Casals, R.; Dutta, R.; Mirzazadeh, M. A New Gold Rush: A Review of Current and Developing Diagnostic Tools for Urinary Tract Infections. Diagnostics 2021, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, I.; Aschbacher, R.; Pagani, E. Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics 2023, 12, 1580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Qi, S.; Sun, Y.; Zheng, X. Comparison of Polymerase Chain Reaction and Next-Generation Sequencing with Conventional Urine Culture for the Diagnosis of Urinary Tract Infections: A Meta-analysis. Open Med. 2024, 19, 20240921. [Google Scholar] [CrossRef]
- Karah, N.; Rafei, R.; Elamin, W.; Ghazy, A.; Abbara, A.; Hamze, M.; Uhlin, B.E. Guideline for Urine Culture and Biochemical Identification of Bacterial Urinary Pathogens in Low-Resource Settings. Diagnostics 2020, 10, 832. [Google Scholar] [CrossRef]
- Stamm, W.E.; Norby, S.R. Urinary Tract Infections: Disease Panorama and Challenges. J. Infect. Dis. 2001, 183, S1–S4. [Google Scholar] [CrossRef]
- Hooton, T.M.; Roberts, P.L.; Cox, M.E.; Stapleton, A.E. Voided Midstream Urine Culture and Acute Cystitis in Premenopausal Women. N. Engl. J. Med. 2013, 369, 1883–1891. [Google Scholar] [CrossRef]
- Kunin, C.M.; White, L.V.; Hua, T.H. A Reassessment of the Importance of “Low-Count” Bacteriuria in Young Women with Acute Urinary Symptoms. Ann. Intern. Med. 1993, 119, 454–460. [Google Scholar] [CrossRef]
- Singh, V.; Reddy, J.; Granger, J. A Survey of Viral-Bacterial Co-infection in Respiratory Samples Using Multiplex Real-Time PCR. J. Infect. Dis. Ther. 2019, 7, 400. [Google Scholar]
- Upadhyay, P.; Surar, F.; Kim, G.; Reddy, J.; Shakir, S.; Alexander, B.D.; Hanson, K.; Singh, V. Comparative Analysis of the Detection of UTI Pathogens via Culture Method and the Open Array-Nanofluidic Real Time PCR Method. Open Forum Infect. Dis. 2022, 9, ofac492. [Google Scholar] [CrossRef]
- Cybulski, Z.; Schmidt, K.; Grabiec, A.; Talaga, Z.; Bociąg, P.; Wojciechowicz, J.; Roszak, A.; Kycler, W. Usability Application of Multiplex Polymerase Chain Reaction in the Diagnosis of Microorganisms Isolated from Urine of Patients Treated in Cancer Hospital. Radiol. Oncol. 2013, 47, 296–303. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, A.; Roorda, L.; Bosman, G.; Ossewaarde, J.M. Molecular Diagnosis of Urinary Tract Infections by Semi-Quantitative Detection of Uropathogens in a Routine Clinical Hospital Setting. PLoS ONE 2016, 11, e0150755. [Google Scholar] [CrossRef]
- Wojno, K.J.; Baunoch, D.; Luke, N.; Opel, M.; Korman, H.; Kelly, C.; Jafri, S.M.A.; Keating, P.; Hazelton, D.; Hindu, S.; et al. Multiplex PCR Based Urinary Tract Infection (UTI) Analysis Compared to Traditional Urine Culture in Identifying Significant Pathogens in Symptomatic Patients. Urology 2020, 136, 119–126. [Google Scholar] [CrossRef]
- Heytens, S.; De Sutter, A.; Coorevits, L.; Cools, P.; Boelens, J.; Van Simaey, L.; Christiaens, T.; Vaneechoutte, M.; Claeys, G. Women with Symptoms of a Urinary Tract Infection but a Negative Urine Culture: PCR-Based Quantification of Escherichia coli Suggests Infection in Most Cases. Clin. Microbiol. Infect. 2017, 23, 647–652. [Google Scholar] [CrossRef]
- Burillo, A.; Marín, M.; Cercenado, E.; Ruiz-Carrascoso, G.; Pérez-Granda, M.J.; Oteo, J.; Bouza, E.; Floto, A.R. Evaluation of the Xpert Carba-R (Cepheid) Assay Using Contrived Bronchial Specimens from Patients with Suspicion of Ventilator-Associated Pneumonia for the Detection of Prevalent Carbapenemases. PLoS ONE 2016, 11, e016847. [Google Scholar] [CrossRef]
- Medina-Bombardó, D.; Jover-Palmer, A. Does Clinical Examination Aid in the Diagnosis of Urinary Tract Infections in Women? A Systematic Review and Meta-Analysis. BMC Fam. Pract. 2011, 12, 111. [Google Scholar] [CrossRef][Green Version]
- Lehmann, L.E.; Hauser, S.; Malinka, T.; Klaschik, S.; Weber, S.U.; Schewe, J.C.; Stüber, F.; Book, M. Rapid Qualitative Urinary Tract Infection Pathogen Identification by SeptiFast Real-Time PCR. PLoS ONE 2011, 6, e17146. [Google Scholar] [CrossRef]
- Medina, M.; Castillo-Pino, E. An Introduction to the Epidemiology and Burden of Urinary Tract Infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef] [PubMed]
- Dumkow, L.E.; Worden, L.J.; Rao, S.N. Syndromic Diagnostic Testing: A New Way to Approach Patient Care in the Treatment of Infectious Diseases. J. Antimicrob. Chemother. 2021, 76, iii4–iii11. [Google Scholar] [CrossRef]
- Schreckenberger, P.C.; McAdam, A.J. Point-Counterpoint: Large Multiplex PCR Panels Should Be First-Line Tests for Detection of Respiratory and Intestinal Pathogens. J. Clin. Microbiol. 2015, 53, 3110–3115. [Google Scholar] [CrossRef][Green Version]
- Huang, H.S.; Tsai, C.L.; Chang, J.; Hsu, T.C.; Lin, S.; Lee, C.C. Multiplex PCR System for the Rapid Diagnosis of Respiratory Virus Infection: Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2018, 24, 1055–1063. [Google Scholar] [CrossRef]
- Kelly, B.N. UTI Detection by PCR: Improving Patient Outcomes. J. Mass Spectrom. Adv. Clin. Lab. 2023, 28, 60–62. [Google Scholar] [CrossRef]
- Elia, J.; Hafron, J.; Holton, M.; Ervin, C.; Hollander, M.B.; Kapoor, D.A. The Impact of Polymerase Chain Reaction Urine Testing on Clinical Decision-Making in the Management of Complex Urinary Tract Infections. Int. J. Mol. Sci. 2024, 25, 6616. [Google Scholar] [CrossRef]
Bacteria | Strain | Source |
---|---|---|
Escherichia coli | ATCC 25922 | ThermoFisher (KS, USA) |
Klebsiella pneumoniae | ATCC 700603 | |
Pseudomonas aeruginosa | ATCC 27853 | |
Staphylococcus aureus | BA 977 | |
Enterococcus faecalis | ATCC 51299 |
Bacterial Pathogens | |
---|---|
Acinetobacter baumannii | Staphylococcus aureus |
Citrobacter freundii | Staphylococcus epidermidis |
Enterobacter cloacae complex | Staphylococcus haemolyticus |
Enterobacter aerogenes | Staphylococcus lugdunensis |
Enterococcus faecalis | Staphylococcus saprophyticus |
Enterococcus faecium | Streptococcus agalactiae (Group B Strep) |
Escherichia coli | Streptococcus pyogenes (Group A Strep) |
Klebsiella pneumoniae | |
Klebsiella oxytoca | |
Morganella morganii | Fungal Pathogens |
Proteus mirabilis | Candida albicans |
Proteus vulgaris | Candida parapsilosis |
Pseudomonas aeruginosa | Candida glabrata |
Serratia marcescens | Candida krusei |
Bacterial Concentration | Cq Value Range | Report |
---|---|---|
Gram-Negative Bacteria | ||
≥105 CFU/mL | <23 | Detected ≥ 105 CFU/mL |
<105 CFU/mL | 23–28 | Detected < 105 CFU/mL |
NA | >28 | Negative |
Gram-Positive Bacteria | ||
≥105 CFU/mL | <26 | Detected ≥ 105 CFU/mL |
<105 CFU/mL | 26–30 | Detected < 105 CFU/mL |
NA | >30 | Negative |
Culture (CFU/mL) Result | Count | Agreement | Non-Agreement | Percentage | |
---|---|---|---|---|---|
E. coli | ≥105 | 90 | 82 | 8 | 91.1 |
<105 | 13 | 11 | 2 | 84.6 | |
Klebsiella spp. | ≥105 | 11 | 9 | 2 | 81.8 |
<105 | 5 | 5 | 0 | 100 | |
Pseudomonas spp. | ≥105 | 3 | 2 | 1 | 66 |
<105 | 0 | 0 | 0 | NA | |
Enterobacter spp. | ≥105 | 6 | 6 | 0 | 100 |
<105 | 1 | 0 | 1 | 0 | |
Proteus spp. | ≥105 | 4 | 3 | 1 | 75 |
<105 | 1 | 1 | 0 | 100 | |
Serratia marcescens | ≥105 | 1 | 1 | 0 | 100 |
<105 | 0 | 0 | 0 | N/A | |
Citrobacter spp. | ≥105 | 1 | 1 | 0 | 100 |
<105 | 2 | 0 | 2 | 0 | |
Staphylococcus aureus | ≥105 | 4 | 3 | 1 | 75 |
<105 | 0 | 0 | 0 | NA | |
Enterococcus spp. | ≥105 | 4 | 4 | 0 | 100 |
<105 | 5 | 4 | 1 | 80 | |
Streptococcus agalactiae | ≥105 | 1 | 1 | 0 | 100 |
<105 | 4 | 0 | 4 | 0 | |
Coagulase Negative Staphylococcus spp. | ≥105 | 6 | 3 | 3 | 50 |
<105 | 6 | 4 | 2 | 67 | |
Total | 168 | 140 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, P.; Vallabhaneni, A.; Ager, E.; Alexander, B.; Rosato, A.; Singh, V. Clinical Relevance of PCR Versus Culture in Urinary Tract Infections Diagnosis: Quantification Cycle as a Predictor of Bacterial Load. Diagnostics 2025, 15, 1939. https://doi.org/10.3390/diagnostics15151939
Upadhyay P, Vallabhaneni A, Ager E, Alexander B, Rosato A, Singh V. Clinical Relevance of PCR Versus Culture in Urinary Tract Infections Diagnosis: Quantification Cycle as a Predictor of Bacterial Load. Diagnostics. 2025; 15(15):1939. https://doi.org/10.3390/diagnostics15151939
Chicago/Turabian StyleUpadhyay, Pallavi, Arjuna Vallabhaneni, Edward Ager, Barbara Alexander, Adriana Rosato, and Vijay Singh. 2025. "Clinical Relevance of PCR Versus Culture in Urinary Tract Infections Diagnosis: Quantification Cycle as a Predictor of Bacterial Load" Diagnostics 15, no. 15: 1939. https://doi.org/10.3390/diagnostics15151939
APA StyleUpadhyay, P., Vallabhaneni, A., Ager, E., Alexander, B., Rosato, A., & Singh, V. (2025). Clinical Relevance of PCR Versus Culture in Urinary Tract Infections Diagnosis: Quantification Cycle as a Predictor of Bacterial Load. Diagnostics, 15(15), 1939. https://doi.org/10.3390/diagnostics15151939