Saliva Has High Sensitivity and Specificity for Detecting SARS-CoV-2 Compared to Nasal Swabs but Exhibits Different Viral Dynamics from Days of Symptom Onset
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Consent and Data Collection
2.3. Sample Collection
- 1.
- Participants were provided with a preservative-free collection tube with funnel to collect 1–2 mL of saliva (drool). After collection, the participant removed the funnel and placed the cap on the collection vial, verified the tube number with study personnel, and placed the tube in a collection rack.
- 2.
- Participants were then provided with a Roche cobas PCR Uni swab sample tube and instructed to collect a nasal swab sample by inserting the swab approximately 1 inch inside the nostril and then rubbing the swab in a circle 5 times for 10–15 s; this sample collection was repeated with the same swab inside the other nostril. The participant then placed the swab in the provided tube, snapped off the handle, placed the cap on the collection vial, verified the tube number with study personnel, and placed the tube in a collection rack.
2.4. Saliva Testing
2.5. Nasal Swab Testing
2.6. Data Analysis
3. Results
3.1. Demographics
3.2. Testing Results
3.3. Discordant Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ct Value | Cycle threshold value when target is detected |
EUA | Emergency use authorization |
NPA | Negative percent agreement |
PCR | Polymerase chain reaction |
PPA | Positive percent agreement |
qPCR | Quantitative polymerase chain reaction |
RT-qPCR | Reverse transcriptase quantitative polymerase chain reaction |
References
- Hasell, J.; Mathieu, E.; Beltekian, D.; Macdonald, B.; Giattino, C.; Ortiz-Ospina, E.; Roser, M.; Ritchie, H. A cross-country database of COVID-19 testing. Sci. Data 2020, 7, 345. [Google Scholar] [CrossRef]
- Kandel, C.E.; Young, M.; Serbanescu, M.A.; Powis, J.E.; Bulir, D.; Callahan, J.; Katz, K.; McCready, J.; Racher, H.; Sheldrake, E.; et al. Detection of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in outpatients: A multicenter comparison of self-collected saline gargle, oral swab, and combined oral-anterior nasal swab to a provider collected nasopharyngeal swab. Infect. Control. Hosp. Epidemiol. 2021, 42, 1340–1344. [Google Scholar] [CrossRef]
- Migueres, M.; Mansuy, J.M.; Vasseur, S.; Claverie, N.; Lougarre, C.; Soulier, F.; Trémeaux, P.; Izopet, J. Omicron Wave SARS-CoV-2 Diagnosis: Evaluation of Saliva, Anterior Nasal, and Nasopharyngeal Swab Samples. Microbiol. Spectr. 2022, 10, e0252122. [Google Scholar] [CrossRef]
- Kim, Y.G.; Yun, S.G.; Kim, M.Y.; Park, K.; Cho, C.H.; Yoon, S.Y.; Nam, M.H.; Lee, C.K.; Cho, Y.-J.; Lim, C.S. Comparison between Saliva and Nasopharyngeal Swab Specimens for Detection of Respiratory Viruses by Multiplex Reverse Transcription-PCR. J. Clin. Microbiol. 2016, 55, 226–233. [Google Scholar] [CrossRef]
- To, K.K.W.; Chan, K.H.; Ho, J.; Pang, P.K.P.; Ho, D.T.Y.; Chang, A.C.H.; Seng, C.W.; Yip, C.C.Y.; Cheng, V.C.C.; Hung, I.F.N.; et al. Respiratory virus infection among hospitalized adult patients with or without clinically apparent respiratory infection: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Lu, L.; Yip, C.C.Y.; Poon, R.W.S.; Fung, A.M.Y.; Cheng, A.; Lui, D.H.K.; Ho, D.T.Y.; Hung, I.F.N.; Chan, K.-H.; et al. Additional molecular testing of saliva specimens improves the detection of respiratory viruses. Emerg. Microbes Infect. 2017, 6, e49. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Yip, C.C.Y.; Lai, C.Y.W.; Wong, C.K.H.; Ho, D.T.Y.; Pang, P.K.P.; Ng, A.C.K.; Leung, K.H.; Poon, R.W.S.; Chan, K.H.; et al. Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: A diagnostic validity study. Clin. Microbiol. Infect. 2019, 25, 372–378. [Google Scholar] [CrossRef]
- Tan, S.H.; Allicock, O.; Armstrong-Hough, M.; Wyllie, A.L. Saliva as a gold-standard sample for SARS-CoV-2 detection. Lancet Respir. Med. 2021, 9, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Vogels, C.B.F.; Watkins, A.E.; Harden, C.A.; Brackney, D.E.; Shafer, J.; Wang, J.; Caraballo, C.; Kalinich, C.C.; Ott, I.M.; Fauver, J.R.; et al. SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med 2021, 2, 263–280.e6. [Google Scholar] [CrossRef]
- Devina, C.; Nasution, B.B.; Kusumawati, R.L.; Daulay, R.S.; Trisnawati, Y.; Lubis, I.N.D. Sensitivity of nasopharyngeal swab and saliva specimens in the detection of SARS-CoV-2 virus among boarding school girls. IJID Reg. 2023, 8, S13–S17. [Google Scholar] [CrossRef]
- Isabel, S.; Cohen-Silver, J.; Jung, H.; Tam, B.; Lota, M.; Sivilotti, M.; Agbaje, N.; Schwartz, K.L.; Wormsbecker, A.E.; Matukas, L.M.; et al. Swish and gargle saliva sampling is a patient-friendly and comparable alternative to nasopharyngeal swabs to detect SARS-CoV-2 in outpatient settings for adults and children. Microbiol. Spectr. 2023, 11, e0172323. [Google Scholar] [CrossRef]
- Ke, R.; Martinez, P.P.; Smith, R.L.; Gibson, L.L.; Mirza, A.; Conte, M.; Gallagher, N.; Luo, C.H.; Jarrett, J.; Zhou, R.; et al. Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness. Nat. Microbiol. 2022, 7, 640–652. [Google Scholar] [CrossRef]
- Kernéis, S.; Elie, C.; Fourgeaud, J.; Choupeaux, L.; Delarue, S.M.; Alby, M.L.; Quentin, P.; Pavie, J.; Brazille, P.; Néré, M.L.; et al. Accuracy of saliva and nasopharyngeal sampling for detection of SARS-CoV-2 in community screening: A multicentric cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2379–2388. [Google Scholar] [CrossRef]
- Ranoa, D.R.E.; Holland, R.L.; Alnaji, F.G.; Green, K.J.; Wang, L.; Fredrickson, R.L.; Wang, T.; Wong, G.N.; Uelmen, J.; Maslov, S.; et al. Mitigation of SARS-CoV-2 transmission at a large public university. Nat. Commun. 2022, 13, 3207. [Google Scholar] [CrossRef] [PubMed]
- Salu, O.B.; Akase, I.E.; Anyanwu, R.A.; Orenolu, M.R.; Abdullah, M.A.; Giwa-Tubosun, T.; Oloko, S.A.; Oshinjo, A.M.; Abiola, A.A.; Oyedeji, K.S.; et al. Saliva sample for detection of SARS-CoV-2: A possible alternative for mass testing. PLoS ONE 2022, 17, e0275201. [Google Scholar] [CrossRef]
- Savela, E.S.; Winnett, A.V.; Romano, A.E.; Porter, M.K.; Shelby, N.; Akana, R.; Ji, J.; Cooper, M.M.; Schlenker, N.W.; Reyes, J.A.; et al. Quantitative SARS-CoV-2 Viral-Load Curves in Paired Saliva Samples and Nasal Swabs Inform Appropriate Respiratory Sampling Site and Analytical Test Sensitivity Required for Earliest Viral Detection. J. Clin. Microbiol. 2022, 60, e01785-21. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Gibson, L.L.; Martinez, P.P.; Ke, R.; Mirza, A.; Conte, M.; Gallagher, N.; Conte, A.; Wang, L.; Fredrickson, R.; et al. Longitudinal Assessment of Diagnostic Test Performance Over the Course of Acute SARS-CoV-2 Infection. J. Infect. Dis. 2021, 224, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.K.J.; Choudhury, Y.; Tan, I.B.; Cher, C.Y.; Chew, S.H.; Wan, Z.Y.; Cheng, L.T.E.; Oon, L.L.E.; Tan, M.H.; Chan, K.S.; et al. Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-19 infection. Sci. Rep. 2021, 11, 3134. [Google Scholar] [CrossRef]
- Walker, N.F.; Byrne, R.L.; Howard, A.; Nikolaou, E.; Farrar, M.; Glynn, S.; Cheliotis, K.S.; Cubas Atienzar, A.I.; Davies, K.; Reiné, J.; et al. Detection of SARS-CoV-2 infection by saliva and nasopharyngeal sampling in frontline healthcare workers: An observational cohort study. PLoS ONE 2023, 18, e0280908. [Google Scholar] [CrossRef]
- Zhou, C.; Cai, Z.; Jin, B.; Lin, H.; Xu, L.; Jin, Z. Saliva-based detection of SARS-CoV-2: A bibliometric analysis of global research. Mol. Cell Biochem. 2023, 479, 761–777. [Google Scholar] [CrossRef]
- Mannino, R.G.; Nehl, E.J.; Farmer, S.; Peagler, A.F.; Parsell, M.C.; Claveria, V.; Ku, D.; Gottfried, D.S.; Chen, H.; Lam, W.A.; et al. The critical role of engineering in the rapid development of COVID-19 diagnostics: Lessons from the RADx Tech Test Verification Core. Sci. Adv. 2023, 9, eade4962. [Google Scholar] [CrossRef]
- Damhorst, G.L.; Lin, J.; Frediani, J.K.; Sullivan, J.A.; Westbrook, A.; McLendon, K.; Baugh, T.J.; O’Sick, W.H.; Roback, J.D.; Piantadosi, A.L.; et al. Comparison of RT-PCR and antigen test sensitivity across nasopharyngeal, nares, and oropharyngeal swab, and saliva sample types during the SARS-CoV-2 omicron variant. Heliyon 2024, 10, e27188. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, A.L.; Choate, B.; Burke, L.; Ali, Y. Scalable solutions for global health: The SalivaDirect model. Front. Cell Infect. Microbiol. 2024, 14, 1446514. [Google Scholar] [CrossRef]
- Downing, M.; Broach, J.; Lam, W.; Manabe, Y.C.; Martin, G.; McManus, D.; Murphy, R.; Soni, A.; Schachter, S. The Shift to Over-the-Counter Diagnostic Testing After RADx: Clinical, Regulatory, and Societal Implications. IEEE Open J. Eng. Med. Biol. 2025, 6, 237–240. [Google Scholar] [CrossRef]
- Ott, I.M.; Strine, M.S.; Watkins, A.E.; Boot, M.; Kalinich, C.C.; Harden, C.A.; Vogels, C.B.F.; Casanovas-Massana, A.; Moore, A.J.; Muenker, M.C.; et al. Stability of SARS-CoV-2 RNA in Nonsupplemented Saliva. Emerg. Infect. Dis. 2021, 27, 1146–1150. [Google Scholar] [CrossRef]
- Tee, M.L.; Ubial, P.J.R.; Ranoa, D.R.E.; Tee, C.A.; Abrilla, A.A.; Trinidad, L.J.P.L.; Chiong, C.M.; Berba, R.P.; Carrillo, R.J.D.; Lim, M.C.F.; et al. Direct Saliva versus Conventional Nasopharyngeal Swab qRT-PCR to Diagnose SARS-CoV-2: Validity Study. Asian J. Res. Infect. Dis. 2021, 6, 37–46. [Google Scholar] [CrossRef]
- Cohen, J. Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70, 213–220. [Google Scholar] [CrossRef]
- RCoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 September 2024).
- Lenth, R.V.; Bolker, B.; Buerkner, P.; Giné-Vázquez, I.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Piaskowski, J.; Riebl, H.; et al. Estimated Marginal Means, aka Least-Squares Means. 2024. Available online: https://rvlenth.github.io/emmeans/ (accessed on 1 September 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; Francois, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Yoshida, K.; Bartel, A.; Chipman, J.J.; Bohn, J.; D’Agostino McGowan, L.; Barrett, M.; Christensen, R.H.B. Gbouzill Create ‘Table 1’ to Describe Baseline Characteristics with or Without Propensity Score Weights; The R Foundation: Vienna, Austria, 2022; Available online: https://github.com/kaz-yos/tableone (accessed on 1 September 2024).
- Butler-Laporte, G.; Lawandi, A.; Schiller, I.; Yao, M.; Dendukuri, N.; McDonald, E.G.; Lee, T.C. Comparison of Saliva and Nasopharyngeal Swab Nucleic Acid Amplification Testing for Detection of SARS-CoV-2: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2021, 181, 353–360. [Google Scholar] [CrossRef]
- Kojima, N.; Turner, F.; Slepnev, V.; Bacelar, A.; Deming, L.; Kodeboyina, S.; Klausner, J.D. Self-Collected Oral Fluid and Nasal Swabs Demonstrate Comparable Sensitivity to Clinician Collected Nasopharyngeal Swabs for Coronavirus Disease 2019 Detection. Clin. Infect. Dis. 2020, 73, e3106–e3109. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.M.; Brochi, L.; Scarpelli, L.C.; Lopes, A.C.W.; Levi, J.E. SARS-CoV-2 saliva testing is a useful tool for COVID-19 diagnosis. J. Virol. Methods 2021, 296, 114241. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, D.C.; Paranhos, L.R.; Blumenberg, C.; Garcia-Júnior, M.A.; Guevara-Vega, M.; Taveira, E.B.; Nunes, M.A.C.; Cunha, T.M.; Jardim, A.C.G.; Flores-Mir, C.; et al. Salivary SARS-CoV-2 RNA for diagnosis of COVID-19 patients: A systematic revisew and meta-analysis of diagnostic accuracy. Jpn. Dent. Sci. Rev. 2023, 59, 219–238. [Google Scholar] [CrossRef]
- Viloria Winnett, A.; Akana, R.; Shelby, N.; Davich, H.; Caldera, S.; Yamada, T.; Reyna, J.R.B.; Romano, A.E.; Carter, A.M.; Kim, M.K.; et al. Extreme differences in SARS-CoV-2 viral loads among respiratory specimen types during presumed pre-infectious and infectious periods. Proc. Natl. Acad. Sci. Nexus 2023, 2, pgad033. [Google Scholar] [CrossRef]
- Frediani, J.K.; Parsons, R.; McLendon, K.B.; Westbrook, A.L.; Lam, W.; Martin, G.; Pollock, N.R. The New Normal: Delayed Peak SARS-CoV-2 Viral Loads Relative to Symptom Onset and Implications for COVID-19 Testing Programs. Clin. Infect. Dis. 2023, 78, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef]
- Matuck, B.F.; Dolhnikoff, M.; Duarte-Neto, A.N.; Maia, G.; Gomes, S.C.; Sendyk, D.I.; Zarpellon, A.; de Andrade, N.P.; Monteiro, R.A.; Pinho, J.R.R.; et al. Salivary glands are a target for SARS-CoV-2: A source for saliva contamination. J. Pathol. 2021, 254, 239–243. [Google Scholar] [CrossRef]
- Kato, T.; Asakura, T.; Edwards, C.E.; Dang, H.; Mikami, Y.; Okuda, K.; Chen, G.; Sun, L.; Gilmore, R.C.; Hawkins, P.; et al. Prevalence and Mechanisms of Mucus Accumulation in COVID-19 Lung Disease. Am. J. Respir. Crit. Care Med. 2022, 206, 1336–1352. [Google Scholar] [CrossRef]
- Drozdzik, A.; Drozdzik, M. Oral Pathology in COVID-19 and SARS-CoV-2 Infection—Molecular Aspects. Int. J. Mol. Sci. 2022, 23, 1431. [Google Scholar] [CrossRef]
- Winnett, A.V.; Akana, R.; Shelby, N.; Davich, H.; Caldera, S.; Yamada, T.; Reyna, J.R.B.; Romano, A.E.; Carter, A.M.; Kim, M.K.; et al. Daily SARS-CoV-2 Nasal Antigen Tests Miss Infected and Presumably Infectious People Due to Viral Load Differences among Specimen Types. Microbiol. Spectr. 2023, 11, e01295-23. [Google Scholar] [CrossRef]
- Ji, J.; Viloria Winnett, A.; Shelby, N.; Reyes, J.A.; Schlenker, N.W.; Davich, H.; Caldera, S.; Tognazzini, C.; Goh, Y.-Y.; Feaster, M.; et al. Index cases first identified by nasal-swab rapid COVID-19 tests had more transmission to household contacts than cases identified by other test types. PLoS ONE 2023, 18, e0292389. [Google Scholar] [CrossRef]
- Zhang, F.; Lau, R.I.; Liu, Q.; Su, Q.; Chan, F.K.L.; Ng, S.C. Gut microbiota in COVID-19: Key microbial changes, potential mechanisms and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 323–337. [Google Scholar] [CrossRef]
- Armstrong, A.J.S.; Horton, D.B.; Andrews, T.; Greenberg, P.; Roy, J.; Gennaro, M.L.; Carson, J.L.; Panettieri, R.A.; Barrett, E.S.; Blaser, M.J. Saliva microbiome in relation to SARS-CoV-2 infection in a prospective cohort of healthy US adults. EBioMedicine 2023, 94, 104731. [Google Scholar] [CrossRef]
- Brogna, C.; Costanzo, V.; Brogna, B.; Bisaccia, D.R.; Brogna, G.; Giuliano, M.; Montano, L.; Viduto, V.; Cristoni, S.; Fabrowski, M.; et al. Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification. Int. J. Mol. Sci. 2023, 24, 3929. [Google Scholar] [CrossRef]
- Lloyd-Jones, G.; Pontes, C.C.; Molayem, S.; Chapple, I.L.C. The Oral-Vascular-Pulmonary Infection Route: A Pathogenic Mechanism Linking Oral Health Status to Acute and Post-Acute COVID-19. Curr. Oral Health Rep. 2023, 10, 163–174. [Google Scholar] [CrossRef]
- Silva, J.; Lucas, C.; Sundaram, M.; Israelow, B.; Wong, P.; Klein, J.; Tokuyama, M.; Lu, P.; Venkataraman, A.; Liu, F.; et al. Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality. medRxiv 2021. [Google Scholar] [CrossRef]
- Laxton, C.S.; Peno, C.; Hahn, A.M.; Allicock, O.M.; Perniciaro, S.; Wyllie, A.L. The potential of saliva as an accessible and sensitive sample type for the detection of respiratory pathogens and host immunity. Lancet Microbe 2023, 4, e837–e850. [Google Scholar] [CrossRef] [PubMed]
- Tobik, E.R.; Kitfield-Vernon, L.B.; Thomas, R.J.; Steel, S.A.; Tan, S.H.; Allicock, O.M.; Choate, B.L.; Akbarzada, S.; Wyllie, A.L. Saliva as a sample type for SARS-CoV-2 detection: Implementation successes and opportunities around the globe. Expert Rev. Mol. Diagn. 2022, 22, 519–535. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, F.; Bhatt, M.; Zemek, R.; Webster, R.J.; Johnson-Obaseki, S.; Harman, S. Nasopharyngeal swabs vs. saliva sampling for SARS-CoV-2 detection: A cross-sectional survey of acceptability for caregivers and children after experiencing both methods. PLoS ONE 2022, 17, e0270929. [Google Scholar] [CrossRef]
- McLaughlin, H.P.; Worrell, M.C.; Malone, S.; Dawson, P.; Maricque, B.; Halpin, J.L.; Lee, S.; Fritz, S.A.; Tinker, S.C.; Neidich, J.A.; et al. Acceptance of Saliva-Based Specimen Collection for SARS-CoV-2 Testing Among K-12 Students, Teachers, and Staff. Public Health Rep. 2022, 137, 557–563. [Google Scholar] [CrossRef] [PubMed]
Symptom | |
---|---|
1 | Scratchy/painful sore throat |
2 | Painful sore throat |
3 | Cough (worse than baseline) |
4 | Runny nose |
5 | Symptoms of fever or chills |
6 | Temp > 100.4 °F or 38 °C |
7 | Muscle aches (greater than baseline) |
8 | Nausea, vomiting, diarrhea |
9 | Shortness of breath |
10 | Unable to taste or smell |
11 | Red or painful eyes |
12 | No symptoms |
Variable | Level | Both Negative | Both Positive | Nasal Positive | Saliva Positive |
---|---|---|---|---|---|
n | 617 | 96 | 14 | 10 | |
Gender (%) | Female | 346 (56.1) | 46 (47.9) | 7 (50.0) | 5 (50.0) |
Male | 254 (41.2) | 49 (51.0) | 7 (50.0) | 5 (50.0) | |
Nonbinary | 9 (1.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Prefer not to answer | 8 (1.3) | 1 (1.0) | 0 (0.0) | 0 (0.0) | |
Race (%) | AIAN | 8 (1.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Asian | 129 (21.8) | 23 (24.2) | 4 (30.8) | 4 (40.0) | |
Black | 151 (25.5) | 12 (12.6) | 4 (30.8) | 2 (20.0) | |
Hispanic | 104 (17.5) | 15 (15.8) | 1 (7.7) | 0 (0.0) | |
Pacific Islander/Hawaiian | 1 (0.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Self-described | 1 (0.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
White | 199 (33.6) | 45 (47.4) | 4 (30.8) | 4 (40.0) | |
Age in years median [IQR] | 26 [21, 39] | 32 [21, 49] | 23 [19, 30] | 25 [22, 28] | |
Vaccinated (%) | No | 30 (4.9) | 2 (2.1) | 1 (7.1) | 1 (10.0) |
Yes | 587 (95.1) | 94 (97.9) | 13 (92.9) | 9 (90.0) | |
Days since first symptom, median [IQR] | 2 [1, 4] | 3 [2, 5] | 6 [3, 8] | 5 [1, 9] |
Both Negative | Both Positive | Nasal Positive | Saliva Positive | |
---|---|---|---|---|
n | 617 | 96 | 14 | 10 |
Scratchy painful sore throat (%) | 290 (47.0) | 64 (66.7) | 6 (42.9) | 4 (40.0) |
Painful sore throat (%) | 162 (26.3) | 31 (32.3) | 2 (14.3) | 2 (20.0) |
Cough worse than baseline (%) | 236 (38.2) | 69 (71.9) | 7 (50.0) | 4 (40.0) |
Runny nose (%) | 362 (58.7) | 70 (72.9) | 10 (71.4) | 6 (60.0) |
Symptoms of fever or chills (%) | 84 (13.6) | 42 (43.8) | 7 (50.0) | 0 (0.0) |
Temp 100.4 °F or 38 °C (%) | 13 (2.1) | 11 (11.5) | 1 (7.1) | 0 (0.0) |
Muscle aches greater than baseline (%) | 119 (19.3) | 39 (40.6) | 4 (28.6) | 1 (10.0) |
Nausea, vomiting, diarrhea (%) | 69 (11.2) | 19 (19.8) | 2 (14.3) | 0 (0.0) |
Shortness of breath (%) | 73 (11.8) | 16 (16.7) | 2 (14.3) | 2 (20.0) |
Unable to taste or smell (%) | 35 (5.7) | 13 (13.5) | 5 (35.7) | 0 (0.0) |
Red or painful eyes (%) | 72 (11.7) | 12 (12.5) | 2 (14.3) | 0 (0.0) |
Days of Symptoms | Both Negative | Both Positive | Nasal Positive | Saliva Positive | NPA (95% C.I.) | PPA (95% C.I.) |
---|---|---|---|---|---|---|
0 | 109 | 7 | 1 | 1 | 99.1% (95%, 100%) | 87.5% (47.3%, 99.7%) |
1 | 108 | 14 | 2 | 3 | 97.3% (92.3%, 99.4%) | 87.5% (61.7%, 98.4%) |
2 | 117 | 23 | 0 | 0 | 100% (96.9%, 100%) | 100% (85.2%, 100%) |
3 | 79 | 21 | 1 | 0 | 100% (95.4%, 100%) | 95.5% (77.2%, 99.9%) |
4 | 58 | 6 | 0 | 0 | 100% (93.8%, 100%) | 100% (54.1%, 100%) |
5 | 28 | 7 | 1 | 1 | 96.6% (82.2%, 99.9%) | 87.5% (47.3%, 99.7%) |
6 | 10 | 8 | 2 | 1 | 90.9% (58.7%, 99.8%) | 80% (44.4%, 97.5%) |
7 | 30 | 4 | 2 | 0 | 100% (88.4%, 100%) | 66.7% (22.3%, 95.7%) |
Days Since Symptom Onset | Mean Difference in Ct Values | 95% C.I. | p-Value |
---|---|---|---|
0 | 0.2 | −2.62, 3.03 | 0.88 |
1 | 1.53 | −0.64, 3.7 | 0.16 |
2 | 3.5 | 1.4, 5.59 | 0.0023 |
3 | 5.48 | 2.26, 8.71 | 0.0072 |
4 | 2.84 | 0.96, 4.71 | 0.01 |
5 | 5.69 | 2.78, 8.6 | 0.0024 |
6 | 4.6 | −0.82, 10.01 | 0.074 |
7 | 3.17 | −3.15, 9.49 | 0.25 |
>7 | 0.2 | −2.62, 3.03 | 0.88 |
| ||||||
---|---|---|---|---|---|---|
Days of Symptoms | Control | Covid | Pan Corona | |||
0 | 35.97 | 33.84 | 36.3 | |||
1 | 33.77 | 32.8 | 33.9 | |||
1 | 33.24 | 32.36 | 33.68 | |||
3 | 35.1 | 20.64 | 20.7 | |||
5 | 36.79 | 29.67 | 30.76 | |||
6 | 35.64 | 31.25 | 32.22 | |||
6 | 36.65 | 26.2 | 26.74 | |||
7 | 33.63 | 34.99 | 34.15 | |||
7 | 36.52 | 34.83 | 34.55 | |||
8 | 36.32 | 28.24 | 29.27 | |||
8 | 35.39 | 27.52 | 27.32 | |||
8 | 34.88 | 34.4 | 34.33 | |||
9 | 33.85 | 29.84 | 31.27 | |||
10 | 34.79 | 37 | 36.28 | |||
| ||||||
Days of Symptoms | Control | ORF | N | S | ||
0 | 24.75373 | 29.48826 | 28.94565 | 30.46365 | ||
1 | 24.99574 | 32.80674 | 31.77399 | 32.48619 | ||
1 | 24.79328 | 26.82811 | 26.66201 | 26.60906 | ||
1 | 23.4059 | 36.11923 | - | 34.94921 | ||
5 | 24.46222 | 35.44045 | - | 35.55172 | ||
6 | 26.21524 | - | 36.69434 | 37.05559 | ||
8 | 24.2179 | 37.33555 | 35.18433 | - | ||
9 | 32.68468 | 27.74104 | 25.27331 | 27.18791 | ||
11 | 24.42438 | 33.9116 | 32.36166 | - | ||
15 | 24.01456 | 34.51339 | 32.75044 | 34.53242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, T.W.; Smith, R.L.; Walsh, J.T. Saliva Has High Sensitivity and Specificity for Detecting SARS-CoV-2 Compared to Nasal Swabs but Exhibits Different Viral Dynamics from Days of Symptom Onset. Diagnostics 2025, 15, 1918. https://doi.org/10.3390/diagnostics15151918
Jensen TW, Smith RL, Walsh JT. Saliva Has High Sensitivity and Specificity for Detecting SARS-CoV-2 Compared to Nasal Swabs but Exhibits Different Viral Dynamics from Days of Symptom Onset. Diagnostics. 2025; 15(15):1918. https://doi.org/10.3390/diagnostics15151918
Chicago/Turabian StyleJensen, Tor W., Rebecca L. Smith, and Joseph T. Walsh. 2025. "Saliva Has High Sensitivity and Specificity for Detecting SARS-CoV-2 Compared to Nasal Swabs but Exhibits Different Viral Dynamics from Days of Symptom Onset" Diagnostics 15, no. 15: 1918. https://doi.org/10.3390/diagnostics15151918
APA StyleJensen, T. W., Smith, R. L., & Walsh, J. T. (2025). Saliva Has High Sensitivity and Specificity for Detecting SARS-CoV-2 Compared to Nasal Swabs but Exhibits Different Viral Dynamics from Days of Symptom Onset. Diagnostics, 15(15), 1918. https://doi.org/10.3390/diagnostics15151918