Role of Interleukins in Type 1 and Type 2 Diabetes
Abstract
1. Introduction
2. Literature Search Strategy
3. Role of Interleukins on Diabetes Mellitus
3.1. Interleukin-1 (IL-1)
3.2. Interleukin-2 (IL-2)
3.3. Interleukin-3 (IL-3)
3.4. Interleukin-4 (IL-4)
3.5. Interleukin-5 (IL-5)
3.6. Interleukin-6 (IL-6)
3.7. Interleukin-7 (IL-7)
3.8. Interleukin-8 (IL-8)
3.9. Interleukin-9 (IL-9)
3.10. Interleukin-10 (IL-10)
3.11. Interleukin-12 (IL-12)
3.12. Interleukin-17 (IL-17)
3.13. Interleukin-18 (IL-18)
3.14. Interleukin-23 (IL-23)
3.15. Interleukin-27 (IL-27)
3.16. Interleukin-33 (IL-33)
3.17. Interleukin-35 (IL-35)
3.18. Innate Immune Cells in Pathogenesis and Modulation of Type 1 Diabetes
4. Methodological Limitations and Evidence Strength
5. Clinical Implications and Practical Utility of Interleukins
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Magliano, D.; Boyko, E.; IDF Diabetes Atlas 10th Edition Scientific Committee. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Haller, M.J.; Atkinson, M.A.; Schatz, D. Type 1 Diabetes Mellitus: Etiology, Presentation, and Management. Pediatr. Clin. N. Am. 2005, 52, 1553–1578. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity & Inflammation: The Linking Mechanism & the Complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Lu, J.; Liu, J.; Li, L.; Lan, Y.; Liang, Y. Cytokines in Type 1 Diabetes: Mechanisms of Action and Immunotherapeutic Targets. Clin. Transl. Immunol. 2020, 9, e1122. [Google Scholar] [CrossRef]
- Moller, D.E.; Kaufman, K.D. Metabolic Syndrome: A Clinical and Molecular Perspective. Annu. Rev. Med. 2005, 56, 45–62. [Google Scholar] [CrossRef]
- Dinarello, C.A. Historical Review of Cytokines. Eur. J. Immunol. 2007, 37, S34–S45. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and Therapeutic Potential of Interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef]
- Ehses, J.A.; Lacraz, G.; Giroix, M.H.; Schmidlin, F.; Coulaud, J.; Kassis, N.; Irminger, J.C.; Kergoat, M.; Portha, B.; Homo-Delarche, F.; et al. IL-1 Antagonism Reduces Hyperglycemia and Tissue Inflammation in the Type 2 Diabetic GK Rat. Proc. Natl. Acad. Sci. USA 2009, 106, 13998–14003. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Mercantepe, F.; Baydur Sahin, S.; Cumhur Cure, M.; Karadag, Z. Relationship Between Serum Endocan Levels and Other Predictors of Endothelial Dysfunction in Obese Women. Angiology 2022, 74, 948–957. [Google Scholar] [CrossRef]
- Bastard, J.P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Martine Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent Advances in the Relationship between Obesity, Inflammation, and Insulin Resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar]
- Gouda, W.; Mageed, L.; Abd El Dayem, S.M.; Ashour, E.; Afify, M. Evaluation of Pro-Inflammatory and Anti-Inflammatory Cytokines in Type 1 Diabetes Mellitus. Bull. Natl. Res. Cent. 2018, 42, 14. [Google Scholar] [CrossRef]
- Cano-Cano, F.; Gómez-Jaramillo, L.; Ramos-García, P.; Arroba, A.I.; Aguilar-Diosdado, M. IL-1β Implications in Type 1 Diabetes Mellitus Progression: Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1303. [Google Scholar] [CrossRef]
- Fatima, N.; Faisal, S.M.; Zubair, S.; Ajmal, M.; Siddiqui, S.S.; Moin, S.; Owais, M. Role of Pro-Inflammatory Cytokines and Biochemical Markers in the Pathogenesis of Type 1 Diabetes: Correlation with Age and Glycemic Condition in Diabetic Human Subjects. PLoS ONE 2016, 11, e0161548. [Google Scholar] [CrossRef] [PubMed]
- Steer, S.A.; Scarim, A.L.; Chambers, K.T.; Corbett, J.A. Interleukin-1 Stimulates β-Cell Necrosis and Release of the Immunological Adjuvant HMGB1. PLoS Med. 2006, 3, e17. [Google Scholar] [CrossRef] [PubMed]
- Maedler, K.; Sergeev, P.; Ris, F.; Oberholzer, J.; Joller-Jemelka, H.I.; Spinas, G.A.; Kaiser, N.; Halban, P.A.; Donath, M.Y. Glucose-Induced β Cell Production of IL-1β Contributes to Glucotoxicity in Human Pancreatic Islets. J. Clin. Investig. 2002, 110, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Özer, G.; Teker, Z.; Çetiner, S.; Yilmaz, M.; Topaloglu, A.K.; Önenli-Mungan, N.; Yüksel, B. Serum IL-1, IL-2, TNFα and INFγ Levels of Patients with Type 1 Diabetes Mellitus and Their Siblings. J. Pediatr. Endocrinol. Metab. 2003, 16, 203–210. [Google Scholar] [CrossRef]
- Suri, S.; Mitra, P.; Abhilasha, A.; Saxena, I.; Garg, M.K.; Bohra, G.K.; Sharma, P. Role of Interleukin-2 and Interleukin-18 in Newly Diagnosed Type 2 Diabetes Mellitus. J. Basic Clin. Physiol. Pharmacol. 2022, 33, 185–190. [Google Scholar] [CrossRef]
- Ito, A.; Aoyanagi, N.; Maki, T. Regulation of Autoimmune Diabetes by Interleukin 3-Dependent Bone Marrow-Derived Cells in NOD Mice. J. Autoimmun. 1997, 10, 331–338. [Google Scholar] [CrossRef]
- Berman, M.; Sandborg, C.; Wang, Z.; Imfeld, K.; Zaldivar, F.J.; Dadufalza, V.; Buckingham, B. Decreased IL-4 Production in New Onset Type I Insulin-Dependent Diabetes Mellitus. J. Immunol. 1996, 15, 4690–4696. [Google Scholar] [CrossRef]
- Bahgat, M.M.; Ibrahim, D.R. Proinflammatory Cytokine Polarization in Type 2 Diabetes. Cent. Eur. J. Immunol. 2020, 45, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, W.; Yang, S.; Niu, T.; Farooqui, H.F.M.; Song, B.; Wang, H.; Li, S.; Wang, J.; Xu, L.; et al. Interleukin-5: An Indicator of Mild Cognitive Impairment in Patients with Type 2 Diabetes Mellitus-a Comprehensive Investigation Ranging from Bioinformatics Analysis to Clinical Research. J. Endocrinol. Investig. 2024, 48, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, O.P.; Mandrup-Poulsen, T. Interleukin-6 and Diabetes. Diabetes 2005, 54, S114–S124. [Google Scholar] [CrossRef] [PubMed]
- Al-hasso, I.K.Q.; Al-hasso, I.K.Q. Role of Interleukin-6 in Type 1 Diabetes Mellitus (Review of Articles). Ann. Coll. Med. Mosul. 2023, 45, 92–97. [Google Scholar] [CrossRef]
- Hoffmann, M.; Enczmann, J.; Balz, V.; Kummer, S.; Reinauer, C.; Döing, C.; Förtsch, K.; Welters, A.; Vasconcelos, M.K.; Mayatepek, E.; et al. Interleukin-7 and Soluble Interleukin-7 Receptor Levels in Type 1 Diabetes–Impact of IL7RA Polymorphisms, HLA Risk Genotypes and Clinical Features. Clin. Immunol. 2022, 235, 108928. [Google Scholar] [CrossRef]
- Khaja, A.S.S.; Binsaleh, N.K.; Beg, M.M.A.; Ashfaq, F.; Khan, M.I.; Almutairi, M.G.; Qanash, H.; Saleem, M.; Ginawi, I.A.M. Clinical Importance of Cytokine (IL-6, IL-8, and IL-10) and Vitamin D Levels among Patients with Type-1 Diabetes. Sci. Rep. 2024, 14, 24225. [Google Scholar] [CrossRef]
- Mohammed, I.N.F.; Motawa, I.A.; Aly, M.A.E.M.; Metwally, M.M.M. Assessment of Interleukin (8) in Type 2 Diabetes Mellitus. Egypt. J. Hosp. Med. 2018, 72, 4403–4406. [Google Scholar] [CrossRef]
- Semenchuk, J.; Sullivan, K.; Moineddin, R.; Mahmud, F.; Dart, A.; Wicklow, B.; Xiao, F.; Medeiros, T.; Scholey, J.; Burger, D. Urinary Interleukin-9 in Youth with Type 1 Diabetes Mellitus. Acta Diabetol. 2022, 59, 939–947. [Google Scholar] [CrossRef]
- Vasanthakumar, R.; Mohan, V.; Anand, G.; Deepa, M.; Babu, S.; Aravindhan, V. Serum IL-9, IL-17, and TGF-β levels in subjects with diabetic kidney disease (CURES-134). Cytokine 2019, 72, 109–112. [Google Scholar] [CrossRef]
- dos Santos Haber, J.F.; Barbalho, S.M.; Sgarbi, J.A.; de Argollo Haber, R.S.; de Labio, R.W.; Laurindo, L.F.; Chagas, E.F.B.; Payão, S.L.M. The Relationship between Type 1 Diabetes Mellitus, TNF-α, and IL-10 Gene Expression. Biomedicines 2023, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Shafique, N.; Sharif, S.; Manzoor, F.; Saifi, S.; Firasat, S.; Kaul, H. Association of Interleukin 10 (IL-10) Gene with Type 2 Diabetes Mellitus by Single Nucleotide Polymorphism of Its Promotor Region G/A 1082. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Davoodi-semiromi, A.; Yang, J.J.; She, J. IL-12p40 Is Associated with Type 1 Diabetes in Caucasian-American Families. Diabetes 2002, 51, 2334–2336. [Google Scholar] [CrossRef] [PubMed][Green Version]
- AbdElneam, A.I.; Al-Dhubaibi, M.S.; Bahaj, S.S.; Mohammed, G.F.; Alantry, A.K.; Atef, L.M. Effect of Interleukin-12 Gene Expression on Insulin Resistance in Patients with Acne Vulgaris. Ski. Res. Technol. 2023, 29, e13503. [Google Scholar] [CrossRef]
- Honkanen, J.; Nieminen, J.K.; Gao, R.; Luopajarvi, K.; Salo, H.M.; Ilonen, J.; Knip, M.; Otonkoski, T.; Vaarala, O. IL-17 Immunity in Human Type 1 Diabetes. J. Immunol. 2010, 185, 1959–1967. [Google Scholar] [CrossRef]
- Zareian, P.; Dizgah, I.M. Serum Interleukin 17 in Type 2 Diabetes Mellitus. J. Arch. Mil. Med. 2014, 4, e24689. [Google Scholar] [CrossRef]
- Altinova, A.E.; Yetkin, I.; Akbay, E.; Bukan, N.; Arslan, M. Serum IL-18 Levels in Patients with Type 1 Diabetes: Relations to Metabolic Control and Microvascular Complications. Cytokine 2008, 42, 217–221. [Google Scholar] [CrossRef]
- Zhuang, H.; Han, J.; Cheng, L.; Liu, S.L. A Positive Causal Influence of IL-18 Levels on the Risk of T2DM: A Mendelian Randomization Study. Front. Genet. 2019, 10, 295. [Google Scholar] [CrossRef]
- Khalil, R.G.; Abdel-Moneim, A.; Yousef, A.I.; Abdel-Rahman, H.; Zanaty, M.I.; El-Sayed, A. Association of Interleukin-2, Interleukin-21 and Interleukin-23 with Hyperlipidemia in Pediatric Type 1 Diabetes. Mol. Biol. Rep. 2021, 48, 5421–5433. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.; Abd El-Twab, S.M.; Nabil, A.; El Kazafy, S.A. Effect of Antidiabetic Therapy on TNF-α, IL-18, IL-23 and IL-35 Levels in T2DM Patients with Coincidental Helicobacter Pylori Infection. J. Taibah Univ. Sci. 2020, 14, 1377–1385. [Google Scholar] [CrossRef]
- Al-Hashemi, W.K.H.; Taha, G.I.; Aldhaher, Z.A.; Mutlak, S.S. Interleukin 23 and Hsv in Diabetic and Non-Diabetic Obese Females. Biochem. Cell. Arch. 2022, 22, 2009–2011. [Google Scholar]
- Parackova, Z.; Vrabcova, P.; Zentsova, I.; Kayserova, J.; Richtrova, I.; Sojka, L.; Stechova, K.; Sumnik, Z.; Sediva, A. Enhanced STAT3 Phosphorylation and PD-L1 Expression in Myeloid Dendritic Cells Indicate Impaired IL-27Ralpha Signaling in Type 1 Diabetes. Sci. Rep. 2020, 10, 8–15. [Google Scholar] [CrossRef]
- An, J.; Fu, D.; Chen, X.; Guan, C.; Li, L.; Bai, J.; Lv, H. Revisiting the Role of IL-27 in Obesity-Related Metabolic Diseases: Safeguard or Perturbation? Front. Immunol. 2024, 15, 1498288. [Google Scholar] [CrossRef] [PubMed]
- Ryba-Stanisławowska, M.; Werner, P.; Skrzypkowska, M.; Brandt, A.; Myśliwska, J. IL-33 Effect on Quantitative Changes of CD4+CD25highFOXP3+ Regulatory T Cells in Children with Type 1 Diabetes. Mediat. Inflamm. 2016, 2016, 9429760. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Khadanga, S.; Goel, S.K.; Majumder, S.; Baig, M.S.; Bhatia, V.; Neha, C.; Saluja, R. Evaluation of Interleukin-33 & SST2 Levels in Type-2 Diabetic Mellitus Patients with or without Metabolic Syndrome. Indian J. Med. Res. 2018, 157, 470–476. [Google Scholar] [CrossRef]
- Chakraborty, R.; Mukherjee, A.K.; Bala, A. Interleukin-35: A Key Player Managing Pre-Diabetes and Chronic Inflammatory Type 1 Autoimmune Diabetes. World J. Diabetes 2024, 15, 2147–2151. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Li, H.; Xia, L. IL-35 Alleviates Inflammation Progression in a Rat Model of Diabetic Neuropathic Pain via Inhibition of JNK Signaling. J. Inflamm. 2019, 16, 19. [Google Scholar] [CrossRef]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), Interferons, Transforming Growth Factor β, and TNF-α: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef]
- Bent, R.; Moll, L.; Grabbe, S.; Bros, M. Interleukin-1 Beta—A Friend or Foe in Malignancies? Int. J. Mol. Sci. 2018, 19, 2155. [Google Scholar] [CrossRef]
- Arend, W.P.; Guthridge, C.J. Biological Role of Interleukin 1 Receptor Antagonist Isoforms. Ann. Rheum. Dis. 2000, 59, 60–64. [Google Scholar] [CrossRef]
- Banerjee, M.; Saxena, M. Interleukin-1 (IL-1) Family of Cytokines: Role in Type 2 Diabetes. Clin. Chim. Acta 2012, 413, 1163–1170. [Google Scholar] [CrossRef]
- Larsen, C.M.; Faulenbach, M.; Vaag, A.; Vølund, A.; Ehses, J.A.; Seifert, B.; Mandrup-Poulsen, T.; Donath, M.Y. Interleukin-1–Receptor Antagonist in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2007, 356, 1517–1526. [Google Scholar] [CrossRef]
- Dinarello, C.A.; Donath, M.Y.; Mandrup-Poulsen, T. Role of IL-1β in Type 2 Diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 314–321. [Google Scholar] [CrossRef]
- Ma, L.; Su, H.; Wang, Y.; Zhou, Y.; Kang, Z.; Xu, Y.; Gao, J. Interleukin-1β (IL-1β) C-511T Polymorphism Is Associated with Susceptibility to Coronary Artery Disease in Type 2 Diabetic Patients. Eur. J. Inflamm. 2020, 18, 2058739220918047. [Google Scholar] [CrossRef]
- Navarro-González, J.F.; Mora-Fernández, C. The Role of Inflammatory Cytokines in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2008, 19, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhou, J.; Zhang, L.; Du, Y.; Jiang, M.; Xie, L.; Ma, Z.; Chen, F. The Association between Serum Interleukin-1 Beta and Heparin Sulphate in Diabetic Nephropathy Patients. Glycoconj. J. 2021, 38, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Odenbach, S. Role of Interleukin-1β in the Pathogenesis of Diabetic Retinopathy. Br. J. Ophthalmol. 2004, 88, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Dharmadhikari, G.; Maedler, K.; Meyer-Hermann, M. Possible Role of Interleukin-1β in Type 2 Diabetes Onset and Implications for Anti-Inflammatory Therapy Strategies. PLoS Comput. Biol. 2014, 10, e1003798. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Voronova, N.V.; Chistiakov, P.A. The Crucial Role of IL-2/IL-2RA-Mediated Immune Regulation in the Pathogenesis of Type 1 Diabetes, an Evidence Coming from Genetic and Animal Model Studies. Immunol. Lett. 2008, 118, 1–5. [Google Scholar] [CrossRef]
- Hulme, M.A.; Wasserfall, C.H.; Atkinson, M.A.; Brusko, T.M. Central Role for Interleukin-2 in Type 1 Diabetes. Diabetes 2012, 61, 14–22. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y. Low-Dose IL-2 in the Treatment of Immune-Related Diseases. Eur. J. Inflamm. 2021, 19, 20587392211039935. [Google Scholar] [CrossRef]
- Ward, N.C.; Lui, J.B.; Hernandez, R.; Yu, L.; Struthers, M.; Xie, J.; Savio, A.S.; Dwyer, C.J.; Hsiung, S.; Yu, A.; et al. Persistent Il-2 Receptor Signaling by Il-2/Cd25 Fusion Protein Controls Diabetes in Nod Mice by Multiple Mechanisms. Diabetes 2020, 69, 2400–2413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Hamey, F.; Trzupek, D.; Mickunas, M.; Lee, M.; Godfrey, L.; Yang, J.H.M.; Pekalski, M.L.; Kennet, J.; Waldron-Lynch, F.; et al. Low-Dose IL-2 Reduces IL-21+ T Cell Frequency and Induces Anti-Inflammatory Gene Expression in Type 1 Diabetes. Nat. Commun. 2022, 13, 7324. [Google Scholar] [CrossRef] [PubMed]
- Rosenzwajg, M.; Salet, R.; Lorenzon, R.; Tchitchek, N.; Roux, A.; Bernard, C.; Carel, J.C.; Storey, C.; Polak, M.; Beltrand, J.; et al. Low-Dose IL-2 in Children with Recently Diagnosed Type 1 Diabetes: A Phase I/II Randomised, Double-Blind, Placebo-Controlled, Dose-Finding Study. Diabetologia 2020, 63, 1808–1821. [Google Scholar] [CrossRef]
- Marcovecchio, M.L.; Wicker, L.S.; Dunger, D.B.; Dutton, S.J.; Kopijasz, S.; Scudder, C.; Todd, J.A.; Johnson, P.R.V. Interleukin-2 Therapy of Autoimmunity in Diabetes (ITAD): A Phase 2, Multicentre, Double-Blind, Randomized, Placebo-Controlled Trial. Wellcome Open Res. 2020, 5, 49. [Google Scholar] [CrossRef]
- Nagy, N.; Kaber, G.; Kratochvil, M.J.; Kuipers, H.F.; Ruppert, S.M.; Yadava, K.; Yang, J.; Heilshorn, S.C.; Long, S.A.; Pugliese, A.; et al. Weekly Injection of IL-2 Using an Injectable Hydrogel Reduces Autoimmune Diabetes Incidence in NOD Mice. Diabetologia 2021, 64, 152–158. [Google Scholar] [CrossRef]
- Qureshi, F.M.; Panzer, J.K.; Põder, J.; Malek, T.R.; Caicedo, A. Immunotherapy with Low-Dose IL-2/CD25 Prevents ß-Cell Dysfunction and Dysglycemia in Prediabetic NOD Mice. Diabetes 2023, 72, 769–780. [Google Scholar] [CrossRef]
- Dong, S.; Hiam-Galvez, K.J.; Mowery, C.T.; Herold, K.C.; Gitelman, S.E.; Esensten, J.H.; Liu, W.; Lares, A.P.; Leinbach, A.S.; Lee, M.; et al. The Effect of Low-Dose IL-2 and Treg Adoptive Cell Therapy in Patients with Type 1 Diabetes. JCI Insight 2021, 6, e147474. [Google Scholar] [CrossRef]
- Öncül, O.; Top, C.; Özkan, S.; Cavuşlu, Ş.; Danaci, M. Serum Interleukin 2 Levels in Patients with Rheumatoid Arthritis and Correlation with Insulin Sensitivity. J. Int. Med. Res. 2002, 30, 386–390. [Google Scholar] [CrossRef]
- Bosek, I.; Kuczerowski, R.; Miłek, T.; Rabijewski, M.; Kaleta, B.; Kniotek, M.; Ciostek, P.; Piątkiewicz, P. The Levels of Interleukin-2 and Interleukin-10 in Patients with Type 2 Diabetes and Colon Cancer. Clin. Diabetol. 2018, 7, 114–121. [Google Scholar] [CrossRef]
- Ali, A.; Shaheen, S.; Imran, M.Z.; Memon, Z.; Zahid, N.; Ahmad, F.; Hameed, A. Modulation of Altered Immune Parameters IL-2 and TNF-α in Diabetic Animal Models: A Therapeutic Insinuation of Metformin Beyond Diabetes. Cureus 2023, 15, e45216. [Google Scholar] [CrossRef]
- Podolska, M.J.; Grützmann, R.; Pilarsky, C.; Bénard, A. IL-3: Key Orchestrator of Inflammation. Front. Immunol. 2024, 15, 1411047. [Google Scholar] [CrossRef]
- Enzler, T.; Gillessen, S.; Dougan, M.; Allison, J.P.; Neuberg, D.; Oble, D.A.; Mihm, M.; Dranoff, G. Functional Deficiencies of Granulocyte-Macrophage Colony Stimulating Factor and Interleukin-3 Contribute to Insulitis and Destruction of β Cells. Blood 2007, 110, 954–961. [Google Scholar] [CrossRef]
- Kent, S.C.; Chen, Y.; Clemmings, S.M.; Viglietta, V.; Kenyon, N.S.; Ricordi, C.; Hering, B.; Hafler, D.A. Loss of IL-4 Secretion from Human Type 1a Diabetic Pancreatic Draining Lymph Node NKT Cells. J. Immunol. 2005, 175, 4458–4464. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gonzalez, A.; Höglund, P.; Katz, J.D.; Benoist, C.; Mathis, D. Interleukin-4 Deficiency Does Not Exacerbate Disease in NOD Mice. Diabetes 1998, 47, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, M.J.; Jaramillo, A.; Zipris, D.; Lazarus, A.H.; Serreze, D.V.; Leiter, E.H.; Cyopick, P.; Danska, J.S.; Delovitch, T.L. Interleukin 4 Reverses T Cell Proliferative Unresponsiveness and Prevents the Onset of Diabetes in Nonobese Diabetic Mice. J. Exp. Med. 1993, 178, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Mueller, L.; von Seggern, L.; Schumacher, J.; Goumas, F.; Wilms, C.; Braun, F.; Broering, D.C. TNF-α Similarly Induces IL-6 and MCP-1 in Fibroblasts from Colorectal Liver Metastases and Normal Liver Fibroblasts. Biochem. Biophys. Res. Commun. 2010, 397, 586–591. [Google Scholar] [CrossRef]
- Cameron, M.; Arreaza, G.; Zucker, P.; Chensue, S.; Strieter, R.; Chakrabarti, S.; Delovitch, T. IL-4 Prevents Insulitis and Insulin-Dependent Diabetes Mellitus in Nonobese Diabetic Mice by Potentiation of Regulatory T Helper-2 Cell Function. J. Immunol. 1997, 15, 4686–4692. [Google Scholar] [CrossRef]
- Cameron, M.J.; Arreaza, G.A.; Waldhauser, L.; Gauldie, J.; Delovitch, T.L. Immunotherapy of Spontaneous Type 1 Diabetes in Nonobese Diabetic Mice by Systemic Interleukin-4 Treatment Employing Adenovirus Vector-Mediated Gene Transfer. Gene Ther. 2000, 7, 1840–1846. [Google Scholar] [CrossRef][Green Version]
- Ruffner, M.A.; Robbins, P.D. Dendritic Cells Transduced to Express Interleukin 4 Reduce Diabetes Onset in Both Normoglycemic and Prediabetic Nonobese Diabetic Mice. PLoS ONE 2010, 5, e11848. [Google Scholar] [CrossRef]
- Rehman, K.K.; Trucco, M.; Wang, Z.; Xiao, X.; Robbins, P.D. AAV8-Mediated Gene Transfer of IInterleukin-4 to Endogenous β-Cells Prevents the Onset of Diabetes in NOD Mice. Mol. Ther. 2008, 16, 1409–1416. [Google Scholar] [CrossRef]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. J. Am. Med. Assoc. 2001, 286, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Kreiner, F.F.; Kraaijenhof, J.M.; von Herrath, M.; Hovingh, G.K.K.; von Scholten, B.J. Interleukin 6 in Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: Mechanisms and Therapeutic Perspectives. Expert Rev. Clin. Immunol. 2022, 18, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.F.; Logronio, K.; Tu, G.H.; Zhai, W.; Ni, I.; Mei, L.; Dilley, J.; Yu, J.; Rajpal, A.; Brown, C.; et al. Anti-IL-7 Receptor-α Reverses Established Type 1 Diabetes in Nonobese Diabetic Mice by Modulating Effector T-Cell Function. Proc. Natl. Acad. Sci. USA 2012, 109, 12674–12679. [Google Scholar] [CrossRef] [PubMed]
- Penaranda, C.; Kuswanto, W.; Hofmann, J.; Kenefeck, R.; Narendran, P.; Walker, L.S.K.; Bluestone, J.A.; Abbas, A.K.; Dooms, H. IL-7 Receptor Blockade Reverses Autoimmune Diabetes by Promoting Inhibition of Effector/Memory T Cells. Proc. Natl. Acad. Sci. USA 2012, 109, 12668–12673. [Google Scholar] [CrossRef]
- Li, C.R.; Deiro, M.F.; Godebu, E.; Bradley, L.M. IL-7 Uniquely Maintains FoxP3+ Adaptive Treg Cells That Reverse Diabetes in NOD Mice via Integrin-Β7-Dependent Localization. J. Autoimmun. 2011, 37, 217–227. [Google Scholar] [CrossRef]
- Harnaha, J.; Machen, J.; Wright, M.; Lakomy, R.; Styche, A.; Trucco, M.; Makaroun, S.; Giannoukakis, N. Interleukin-7 Is a Survival Factor for CD4+ CD25+ T-Cells and Is Expressed by Diabetes-Suppressive Dendritic Cells. Diabetes 2006, 55, 158–170. [Google Scholar] [CrossRef]
- Calzascia, T.; Pellegrini, M.; Lin, A.; Garza, K.M.; Elford, A.R.; Shahinian, A.; Ohashi, P.S.; Mak, T.W. CD4 T Cells, Lymphopenia, and IL-7 in a Multistep Pathway to Autoimmunity. Proc. Natl. Acad. Sci. USA 2008, 105, 2999–3004. [Google Scholar] [CrossRef]
- Cimini, F.A.; Barchetta, I.; Porzia, A.; Mainiero, F.; Costantino, C.; Bertoccini, L.; Ceccarelli, V.; Morini, S.; Baroni, M.G.; Lenzi, A.; et al. Circulating IL-8 Levels Are Increased in Patients with Type 2 Diabetes and Associated with Worse Inflammatory and Cardiometabolic Profile. Acta Diabetol. 2017, 54, 961–967. [Google Scholar] [CrossRef]
- Shirzaiy, M.; Dalirsani, Z.; Peymankar, P.; Taherizadeh, M. Relationship between Salivary Levels of Interleukin-8 and HbA1c in Patients with Type 2 Diabetes. Endocrinol. Diabetes Metab. 2023, 6, 6–10. [Google Scholar] [CrossRef]
- Loretelli, C.; Rocchio, F.; D’Addio, F.; Ben Nasr, M.; Castillo-Leon, E.; Dellepiane, S.; Vergani, A.; Abdelsalam, A.; Assi, E.; Maestroni, A.; et al. The IL-8-CXCR1/2 Axis Contributes to Diabetic Kidney Disease. Metabolism. 2021, 121, 154804. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Li, Y. Clinical Significance of Serum Interleukin-8 and Soluble Tumor Necrosis Factor-like Weak Inducer of Apoptosis Levels in Patients with Diabetic Nephropathy. J. Diabetes Investig. 2018, 9, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Linhartova, P.B.; Kavrikova, D.; Tomandlova, M.; Poskerova, H.; Rehka, V.; Dušek, L.; Holla, L.I. Differences in Interleukin-8 Plasma Levels between Diabetic Patients and Healthy Individuals Independently on Their Periodontal Status. Int. J. Mol. Sci. 2018, 19, 3214. [Google Scholar] [CrossRef] [PubMed]
- Tavangar, A.; Khozeimeh, F.; Ghoreishian, F.; Boroujeni, M.A. Serum Level of Interleukin-8 in Subjects with Diabetes, Diabetes plus Oral Lichen Planus, and Oral Lichen Planus: A Biochemical Study. Dent. Res. J. 2016, 13, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Stoica, R.A.; Drăgana, N.; Ancuceanu, R.; Geicu, O.I.; Guja, C.; Pantea-Stoian, A.; Gheorghe, D.C.; Stefan-van Staden, R.I.; Serafinceanu, C.; Costache, A.; et al. Interleukin-8, CXCL10, CXCL11 and Their Role in Insulin Resistance in Adult Females with Subclinical Hypothyroidism and Prediabetes. J. Clin. Transl. Endocrinol. 2022, 28, 100299. [Google Scholar] [CrossRef]
- Shruthi, S.; Mohan, V.; Amutha, A.; Aravindhan, V. Increased Serum Levels of Novel T Cell Cytokines IL-33, IL-9 and IL-17 in Subjects with Type-1 Diabetes. Cytokine 2016, 86, 6–9. [Google Scholar] [CrossRef]
- Naing, C.; Htet, N.H.; Basavaraj, A.K.; Nalliah, S. An Association between IL-10 Promoter Polymorphisms and Diabetic Nephropathy: A Meta-Analysis of Case-Control Studies. J. Diabetes Metab. Disord. 2018, 17, 333–343. [Google Scholar] [CrossRef]
- Rios-arce, N.D.; Dagenais, A.; Feenstra, D.; Coughlin, B.; Kang, J.; Mohr, S.; Mccabe, L.R.; Parameswaran, N.; Lansing, E.; Program, I.B.; et al. Loss of interleukin-10 exacerbates early Type-1 diabetes-induced bone loss. J. Cell. Physiol. 2021, 235, 2350–2365. [Google Scholar] [CrossRef]
- Huang, J.; Tan, Q.; Tai, N.; Pearson, J.A.; Li, Y.; Chao, C.; Zhang, L.; Peng, J.; Xing, Y.; Zhang, L.; et al. IL-10 Deficiency Accelerates Type 1 Diabetes Development via Modulation of Innate and Adaptive Immune Cells and Gut Microbiota in BDC2.5 NOD Mice. Front. Immunol. 2021, 12, 702955. [Google Scholar] [CrossRef]
- Yanik, B.M.; Dauch, J.R.; Cheng, H.T. Interleukin-10 Reduces Neurogenic Inflammation and Pain Behavior in a Mouse Model of Type 2 Diabetes. J. Pain Res. 2020, 13, 3499–3512. [Google Scholar] [CrossRef]
- Trembleau, S.; Ferma, G.; Bosi, E.; Mortara, A.; Gately, M.K.; Adorini, L. Interleukin 12 Administration Induces T Helper Type 1 Cells and Accelerates Autoimmune Diabetes in NOD Mice. J. Exp. Med. 1995, 181, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.R.; Grzesik, W.; Taylor-Fishwick, D.A. Inhibition of NADPH Oxidase-1 Preserves Beta Cell Function. Diabetologia 2015, 58, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Z.; Sun, R.; Tian, Z.; Wei, H. IFN-γ Induced by IL-12 Administration Prevents Diabetes by Inhibiting Pathogenic IL-17 Production in NOD Mice. J. Autoimmun. 2012, 38, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Gu, J.; Li, S.L.; Reddy, M.A.; Natarajan, R.; Nadler, J.L. Elevated Glucose and Diabetes Promote Interleukin-12 Cytokine Gene Expression in Mouse Macrophages. Endocrinology 2006, 147, 2518–2525. [Google Scholar] [CrossRef]
- Ali, M.; Mali, V.; Haddox, S.; AbdelGhany, S.M.; El-deek, S.E.M.; Abulfadl, A.; Matrougui, K.; Belmadani, S. Essential Role of IL-12 in Angiogenesis in Type 2 Diabetes. Am. J. Pathol. 2017, 187, 2590–2601. [Google Scholar] [CrossRef]
- Radwan, E.; Belmadani, S.; Matrougui, K. Disrupting Interleukin 12 Improves Microvascular Endothelial Function in Type 2 Diabetes Through ER Stress CHOP and Oxidative Stress Mechanisms. Diabetes Metab. Syndr. Obes. 2022, 15, 2633–2642. [Google Scholar] [CrossRef]
- Luo, J.; Ning, T.; Li, X.; Jiang, T.; Tan, S.; Ma, D. Targeting IL-12 Family Cytokines: A Potential Strategy for Type 1 and Type 2 Diabetes Mellitus. Biomed. Pharmacother. 2024, 170, 115958. [Google Scholar] [CrossRef]
- Elahi, R.; Nazari, M.; Mohammadi, V.; Esmaeilzadeh, K.; Esmaeilzadeh, A. IL-17 in Type II Diabetes Mellitus (T2DM) Immunopathogenesis and Complications; Molecular Approaches. Mol. Immunol. 2024, 171, 66–76. [Google Scholar] [CrossRef]
- Qiu, A.W.; Cao, X.; Zhang, W.W.; Liu, Q.H. IL-17A Is Involved in Diabetic Inflammatory Pathogenesis by Its Receptor IL-17RA. Exp. Biol. Med. 2021, 246, 57–65. [Google Scholar] [CrossRef]
- Rajendran, S.; Quesada-Masachs, E.; Zilberman, S.; Graef, M.; Kiosses, W.B.; Chu, T.; Benkahla, M.A.; Lee, J.H.M.; von Herrath, M. IL-17 Is Expressed on Beta and Alpha Cells of Donors with Type 1 and Type 2 Diabetes. J. Autoimmun. 2021, 123, 102708. [Google Scholar] [CrossRef]
- Borilova Linhartova, P.; Kastovsky, J.; Lucanova, S.; Bartova, J.; Poskerova, H.; Vokurka, J.; Fassmann, A.; Kankova, K.; Izakovicova Holla, L. Interleukin-17A Gene Variability in Patients with Type 1 Diabetes Mellitus and Chronic Periodontitis: Its Correlation with IL-17 Levels and the Occurrence of Periodontopathic Bacteria. Mediat. Inflamm. 2016, 2016, 2979846. [Google Scholar] [CrossRef]
- Parhi, A.; Das, S.; Mahapatra, S.; Pradhan, N.; Behera, M.; Patnaik, B.; Rattan, R. The Level and Role of Interleukin-17 in Patients of Type 2 Diabetes Mellitus with and without Complications. J. Diabetes Mellit. 2019, 9, 176–185. [Google Scholar] [CrossRef]
- Ohshima, K.; Mogi, M.; Jing, F.; Iwanami, J.; Tsukuda, K.; Min, L.J.; Higaki, J.; Horiuchi, M. Roles of Interleukin 17 in Angiotensin II Type 1 Receptor-Mediated Insulin Resistance. Hypertension 2012, 59, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, Y.J.; Chen, X.; Kwan, T.; Chadban, S.J.; Wu, H. Interleukin 17A Promotes Diabetic Kidney Injury. Sci. Rep. 2019, 9, 2264. [Google Scholar] [CrossRef] [PubMed]
- Zak, K.P.; Popova, V.V. The role of IL-17 in the pathogenesis of type 1 and type 2 diabetes mellitus in humans. Int. J. Endocrinol. 2021, 14, 514–521. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.; Bakery, H.H.; Allam, G. The Potential Pathogenic Role of IL-17/Th17 Cells in Both Type 1 and Type 2 Diabetes Mellitus. Biomed. Pharmacother. 2018, 101, 287–292. [Google Scholar] [CrossRef]
- Vasilev, G.; Kokudeva, M.; Siliogka, E.; Padilla, N.; Shumnalieva, R.; Della-Morte, D.; Ricordi, C.; Mihova, A.; Infante, M.; Velikova, T. T Helper 17 Cells and Interleukin-17 Immunity in Type 1 Diabetes: From Pathophysiology to Targeted Immunotherapies. World J. Diabetes 2025, 16, 99936. [Google Scholar] [CrossRef]
- Harms, R.Z.; Yarde, D.N.; Guinn, Z.; Lorenzo-Arteaga, K.M.; Corley, K.P.; Cabrera, M.S.; Sarvetnick, N.E. Increased Expression of IL-18 in the Serum and Islets of Type 1 Diabetics. Mol. Immunol. 2015, 64, 306–312. [Google Scholar] [CrossRef]
- Kretowski, A.; Mironczuk, K.; Karpinska, A.; Bojaryn, U.; Kinalski, M.; Puchalski, Z.; Kinalska, I. Interleukin-18 Promoter Polymorphisms in Type 1 Diabetes. Diabetes 2002, 51, 1599–1602. [Google Scholar] [CrossRef]
- Baky, A.M.N.E.D.A.E.; Dayem, S.M.A.E.; Atwa, H.A.; Rasmy, H. Assesment of Interleukin 18 in Children with Type 1 Diabetes End Their Relatives: Its Relation to Autoantibodies. J. Med. Sci. 2006, 6, 603–608. [Google Scholar]
- Nicoletti, F.; Di Marco, R.; Papaccio, G.; Conget, I.; Gomis, R.; Bernardini, R.; Sims, J.E.; Shoenfeld, Y.; Bendtzen, K. Essential Pathogenic Role of Endogenous IL-18 in Murine Diabetes Induced by Multiple Low Doses of Streptozotocin. Prevention of Hyperglycemia and Insulitis by a Recombinant IL-18-Binding Protein: Fc Construct. Eur. J. Immunol. 2003, 33, 2278–2286. [Google Scholar] [CrossRef]
- Elsherbiny, N.M.; Al-Gayyar, M.M.H. The Role of IL-18 in Type 1 Diabetic Nephropathy: The Problem and Future Treatment. Cytokine 2016, 81, 15–22. [Google Scholar] [CrossRef]
- Gui, R.; Ren, Y.; Wang, Z.; Li, Y.; Wu, C.; Li, X.; Li, M.; Li, Y.; Qian, L.; Xiong, Y. Deciphering Interleukin-18 in Diabetes and Its Complications: Biological Features, Mechanisms, and Therapeutic Perspectives. Obes. Rev. 2024, 25, e13818. [Google Scholar] [CrossRef]
- Zaharieva, E.; Kamenov, Z.; Velikova, T.; Tsakova, A.; El-Darawish, Y.; Okamura, H. Interleukin-18 Serum Level Is Elevated in Type 2 Diabetes and Latent Autoimmune Diabetes. Endocr. Connect. 2018, 7, 179–185. [Google Scholar] [CrossRef]
- Thorand, B.; Kolb, H.; Baumert, J.; Koenig, W.; Chambless, L.; Meisinger, C.; Illig, T.; Martin, S.; Herder, C. Elevated Levels of Interleukin-18 Predict the Development of Type 2 Diabetes: Results from the MONICA/KORA Augsburg Study, 1984–2002. Diabetes 2005, 54, 2932–2938. [Google Scholar] [CrossRef]
- Zilverschoon, G.R.C.; Tack, C.J.; Joosten, L.A.B.; Kullberg, B.J.; Van Der Meer, J.W.M.; Netea, M.G. Interleukin-18 Resistance in Patients with Obesity and Type 2 Diabetes Mellitus. Int. J. Obes. 2008, 32, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Younus, A.H.; Al-Faisal, A.H.M. Investigating the Association between Interleukin 18 and Type 2 Diabetes Mellitus in the Iraqi Population. IOP Conf. Ser. Earth Environ. Sci. 2024, 1325, 012022. [Google Scholar] [CrossRef]
- Mensah-Brown, E.P.K.; Shahin, A.; Al-Shamisi, M.; Wei, X.; Lukic, M.L. IL-23 Leads to Diabetes Induction after Subdiabetogenic Treatment with Multiple Low Doses of Streptozotocin. Eur. J. Immunol. 2006, 36, 216–223. [Google Scholar] [CrossRef]
- Costa, V.S.; Santos, A.S.; Fukui, R.T.; Mattana, T.C.C.; Matioli, S.R.; Silva, M.E.R. Protective Effect of Interleukin-23A (IL23A) Haplotype Variants on Type 1A Diabetes Mellitus in a Brazilian Population. Cytokine 2013, 62, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Milajerdi, A.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. The Effect of Dietary Glycemic Index and Glycemic Load on Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Am. J. Clin. Nutr. 2018, 107, 593–606. [Google Scholar] [CrossRef]
- Rezaeepoor, M.; Hoseini-Aghdam, M.; Sheikh, V.; Eftekharian, M.M.; Behzad, M. Evaluation of Interleukin-23 and JAKs/STATs/SOCSs/ROR-Ct Expression in Type 2 Diabetes Mellitus Patients Treated with or without Sitagliptin. J. Interf. Cytokine Res. 2020, 40, 515–523. [Google Scholar] [CrossRef]
- Krueger, J.G.; Eyerich, K.; Kuchroo, V.K.; Ritchlin, C.T.; Abreu, M.T.; Elloso, M.M.; Fourie, A.; Fakharzadeh, S.; Sherlock, J.P.; Yang, Y.W.; et al. IL-23 Past, Present, and Future: A Roadmap to Advancing IL-23 Science and Therapy. Front. Immunol. 2024, 15, 1331217. [Google Scholar] [CrossRef]
- Roohi, A.; Tabrizi, M.; Abbasi, F.; Ataie-Jafari, A.; Nikbin, B.; Larijani, B.; Qorbani, M.; Meysamie, A.; Asgarian-Omran, H.; Nikmanesh, B.; et al. Serum IL-17, IL-23, and TGF-β Levels in Type 1 and Type 2 Diabetic Patients and Age-Matched Healthy Controls. BioMed Res. Int. 2014, 2014, 718946. [Google Scholar] [CrossRef]
- Fatima, N.; Faisal, S.M.; Zubair, S.; Siddiqui, S.S.; Moin, S.; Owais, M. Emerging Role of Interleukins IL-23/IL-17 Axis and Biochemical Markers in the Pathogenesis of Type 2 Diabetes: Association with Age and Gender in Human Subjects. Int. J. Biol. Macromol. 2017, 105, 1279–1288. [Google Scholar] [CrossRef]
- Ciecko, A.E.; Foda, B.; Barr, J.Y.; Ramanathan, S.; Atkinson, M.A.; Serreze, D.V.; Geurts, A.M.; Lieberman, S.M.; Chenn, Y.-G. Interleukin-27 Is Essential for Type 1 Diabetes Development and Sjögren Syndrome-like Inflammation. Cell Rep. 2019, 29, 3073–3086. [Google Scholar] [CrossRef]
- Wang, R.; Han, G.; Wang, J.; Chen, G.; Xu, R.; Wang, L.; Li, X.; Shen, B.; Li, Y. The Pathogenic Role of Interleukin-27 in Autoimmune Diabetes. Cell. Mol. Life Sci. 2008, 65, 3851–3860. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, A.; Nemati, M.; Rezayati, M.T. Circulating Interleukin-27 Levels in Helicobacter Pylori-Infected Patients with Gastric or Duodenal Ulcers, Independent of the Bacterial Cytotoxin-Associated Gene a Virulence Factor. J. Dig. Dis. 2011, 12, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, H.; Hirase, T.; Miyazaki, Y.; Hara, H.; Ide-Iwata, N.; Nishimoto-Hazuku, A.; Saris, C.J.M.; Yoshida, H.; Node, K. IL-27 Inhibits Hyperglycemia and Pancreatic Islet Inflammation Induced by Streptozotocin in Mice. Am. J. Pathol. 2011, 179, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; Melo, M.E.; Crisóstomo, L.G.; Fukui, R.T.; Matioli, S.R.; Silva, M.E.R. Lack of Association between IL27 Gene Variants and Type 1 Diabetes Susceptibility. Cytokine 2013, 61, 349–352. [Google Scholar] [CrossRef]
- Haridoss, M.; Viswanathan, M.; Subash, B.; Vivekanandhan, A. TLR-Induced Secretion of Novel Cytokine IL-27 Is Defective in Newly Diagnosed Type-2 Diabetic Subjects. Cytokine 2018, 104, 65–71. [Google Scholar] [CrossRef]
- Yazdanpanah, E.; Pazoki, A.; Dadfar, S.; Nemati, M.H.; Siadati, S.M.S.; Tarahomi, M.; Orooji, N.; Haghmorad, D.; Oksenych, V. Interleukin-27 and Autoimmune Disorders: A Compressive Review of Immunological Functions. Biomolecules 2024, 14, 1489. [Google Scholar] [CrossRef]
- Lin, J.; Lan, Y.; Xiang, D.; Ma, R.; Chen, Q.; Ding, K.; Lu, J. IL-33 Promotes Pancreatic β-Cell Survival and Insulin Secretion under Diabetogenic Conditions through PPARγ. Eur. J. Pharmacol. 2023, 959, 176059. [Google Scholar] [CrossRef]
- Pavlovic, S.; Petrovic, I.; Jovicic, N.; Ljujic, B.; Kovacevic, M.M.; Arsenijevic, N.; Lukic, M.L. IL-33 Prevents MLD-STZ Induction of Diabetes and Attenuate Insulitis in Prediabetic NOD Mice. Front. Immunol. 2018, 9, 2646. [Google Scholar] [CrossRef]
- Lu, J.; Liang, Y.; Zhao, J.; Meng, H.; Zhang, X. Interleukin-33 Prevents the Development of Autoimmune Diabetes in NOD Mice. Int. Immunopharmacol. 2019, 70, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hofherr, A.; Marin, E.L.; Musial, B.; Seth, A.; Slidel, T.; Conway, J.; Baker, D.; Hansen, P.B.L.; Challis, B.; Bartesaghi, S.; et al. Inhibition of Interleukin-33 to Reduce Glomerular Endothelial Inflammation in Diabetic Kidney Disease. Kidney Int. Rep. 2024, 9, 1876–1891. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.J.; Azim, A.; Hetty, S.; Jui, B.N.; Kullberg, J.; Lundqvist, M.H.; Eriksson, J.W. Interleukin-33 Inhibits Glucose Uptake in Human Adipocytes and Its Expression in Adipose Tissue Is Elevated in Insulin Resistance and Type 2 Diabetes. Cytokine 2023, 161, 156080. [Google Scholar] [CrossRef] [PubMed]
- Missous, G.; Van Panhuys, N. Circulating Interleukin-33 Levels in Obesity and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Am. J. Physiol.-Endocrinol. Metab. 2024, 327, E686–E699. [Google Scholar] [CrossRef]
- Shelest, B.; Kovalova, Y.; Voitovych, A. Il-33 Role in the Pulmonary Hypertension Development in Diabetic Patients with Coronary Artery Disease. Eur. Respir. J. 2022, 66, 1801. [Google Scholar] [CrossRef]
- Bakery, H.H.; Hussein, H.A.A.; Ahmed, O.M.; Abuelsaad, A.S.A.; Khalil, R.G. The Potential Therapeutic Role of IL-35 in Pathophysiological Processes in Type 1 Diabetes Mellitus. Cytokine 2024, 182, 156732. [Google Scholar] [CrossRef]
- Zhang, S.M.; Liang, J.; Xia, J.P.; Li, L.; Zheng, L.; Wang, Y.L.; Li, Y.H.; Li, Y.; Lu, Y. Interleukin 35: Protective Role and Mechanism in Type 1 Diabetes. Cent. Eur. J. Immunol. 2023, 48, 48–53. [Google Scholar] [CrossRef]
- Espes, D.; Singh, K.; Sandler, S.; Carlsson, P.O. Increased Interleukin-35 Levels in Patients with Type 1 Diabetes with Remaining c-Peptide. Diabetes Care 2017, 40, 1090–1095. [Google Scholar] [CrossRef]
- Luo, Z.; Lundin, S.; Mejia-Cordova, M.; Hassani, I.; Blixt, M.; Hjelmqvist, D.; Lau, J.; Espes, D.; Carlsson, P.O.; Sandler, S.; et al. Interleukin-35 Prevents Development of Autoimmune Diabetes Possibly by Maintaining the Phenotype of Regulatory b Cells. Int. J. Mol. Sci. 2021, 22, 2988. [Google Scholar] [CrossRef]
Interleukins | Main Findings from Clinical Studies | |
---|---|---|
T1D | T2D | |
Interleukin-1 | Elevated IL-1β levels suggest its utility as a biomarker of disease activity and progression [14,15,16]. IL-1β contributes to the destruction of pancreatic β-cells by inducing nitric oxide-mediated necrosis, leading to autoimmunity [17]. | IL-1β is primarily induced by chronic hyperglycemia resulting in β-cell apoptosis and reduced insulin secretion [18]. |
Interleukin-2 | IL-2 levels were high in T1D, which may reflect an early immune imbalance, potentially before the onset of T1D, supporting its role as a marker of immune dysregulation [19]. | Suri et al. [20] observed anti-inflammatory IL-2 activity in newly diagnosed T2D patients, pointing to its potential as a diagnostic biomarker. |
Interleukin-3 | T1D patients have weakened hematopoietic responses to IL-3 and GM-CSF, suggesting a shared dysfunction in these pathways that may contribute to disease development [21]. | Unknown role yet. |
Interleukin-4 | Reduced IL-4 in T1D patients at disease onset could contribute to unrestricted inflammation within the pancreatic islets, thereby accelerating the autoimmune process [22]. | A positive correlation between IL-4 in T2D diabetic patients contributes to metabolic inflammation and insulin resistance [23]. |
Interleukin-5 | Unknown role yet. | Elevated IL-5 levels could even serve as a biomarker for brain-related complications in diabetes and also contribute to neuroinflammation [24]. |
Interleukin-6 | Elevated IL-6 levels have been observed in T1D patients that may contribute to autoimmunity [25]. | Elevated IL-6 levels, contributes to insulin resistance, by interfering with insulin signaling and promoting inflammatory responses [26]. |
Interleukin-7 | Elevated IL-7 levels suggest a possible delayed effect or compensation mechanism in chronic disease [27]. | Unknown role yet. |
Interleukin-8 | Elevated IL-8 levels could be used as a predictive marker of disease progression or severity in T1D [28]. | Elevated IL-8 levels suggested as a biomarker of poor metabolic control and also increased risk of diabetic complications [29]. |
Interleukin-9 | Elevated IL-9 levels correlated with the albumin-to-creatinine ratio, suggesting it as a marker to detect early signs of kidney stress in T1D [30]. | Lower IL-9 levels suggest a regulatory or protective role in the later stages of kidney disease [31]. |
Interleukin-10 | Elevated IL-10 levels lead to severe presentations such as diabetic ketoacidosis, suggesting that high IL-10 could reflect more active or prolonged inflammation in younger individuals [32]. | IL-10 gene has been linked to higher T2D risk, possibly through its impact on insulin signaling and immune regulation [33]. |
Interleukin-12 | 1159A allele is linked to increased gene expression, suggesting that elevated IL-12p40 levels may contribute to the genetic risk for T1D [34]. | High IL-12 levels, strongly linked to insulin resistance, were also associated with chronic inflammation and various health conditions [35]. |
Interleukin-17 | Elevated levels of Th17 cells and IL-17 in children with newly diagnosed T1D and IL-17 enhanced inflammatory signaling and increased pro-apoptotic responses in human islet cells, suggesting a direct contribution of IL-17 to islet cell destruction in the early stages of the disease [36]. | Higher IL-17 levels in T2D patients, are connected to both inflammation and metabolic problems [37]. |
Interleukin-18 | Higher IL-18 levels involved active inflammation then long-term tissue damage [38]. | Higher IL-18 levels may actively contribute to the disease’s pathogenesis [39]. |
Interleukin-23 | Elevated IL-23 suggests imbalance linked with poor lipid profiles [40]. | Elevated IL-23 levels suggest a role in low-grade systemic inflammation [41,42]. |
Interleukin-27 | myeloid dendritic cells showed increased IL-27 receptor expression and stronger downstream signaling, along with high levels of inhibitory checkpoint molecules like PD-L1 and PD-1 [43]. | Early T2D may involve immune dysregulation due to insufficient IL-27, while later stages involve compensatory inflammation [44]. |
Interleukin-33 | IL-33 increases Tregs and FOXP3 expression in T1D patients, suggesting IL-33’s potential in enhancing immune tolerance and serving as a target for immunotherapy [45]. | T2D patients have lower serum IL-33 and higher soluble ST2 (sST2) levels compared to healthy controls, with IL-33 negatively correlating with blood glucose levels. This suggests that IL-33 might be linked to better glucose control and insulin sensitivity, independent of lipid levels [46]. |
Interleukin-35 | Low IL-35 levels with more severe T1D and greater β-cell destruction; and significantly lower IL-35 levels and reduced populations of IL-35+ immune cells (Tregs, Bregs, and CD8+FoxP3+ cells) [47]. | IL-35 can reduce diabetic neuropathic pain (DNP) by lowering inflammation and nerve cell death in the spinal cord, likely through the inhibition of the JNK pathway, a major signaling route involved in inflammation and pain perception [48]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, R.; Khalid, A.; Mercantepe, T.; Klisic, A.; Rafaqat, S.; Rafaqat, S.; Mercantepe, F. Role of Interleukins in Type 1 and Type 2 Diabetes. Diagnostics 2025, 15, 1906. https://doi.org/10.3390/diagnostics15151906
Asif R, Khalid A, Mercantepe T, Klisic A, Rafaqat S, Rafaqat S, Mercantepe F. Role of Interleukins in Type 1 and Type 2 Diabetes. Diagnostics. 2025; 15(15):1906. https://doi.org/10.3390/diagnostics15151906
Chicago/Turabian StyleAsif, Roha, Ammara Khalid, Tolga Mercantepe, Aleksandra Klisic, Sana Rafaqat, Saira Rafaqat, and Filiz Mercantepe. 2025. "Role of Interleukins in Type 1 and Type 2 Diabetes" Diagnostics 15, no. 15: 1906. https://doi.org/10.3390/diagnostics15151906
APA StyleAsif, R., Khalid, A., Mercantepe, T., Klisic, A., Rafaqat, S., Rafaqat, S., & Mercantepe, F. (2025). Role of Interleukins in Type 1 and Type 2 Diabetes. Diagnostics, 15(15), 1906. https://doi.org/10.3390/diagnostics15151906