Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinicopathologic Features
2.3. Breast MRI Analysis
2.4. Breast MRI Examination Technique
2.5. Region of Interest Annotation and Preprocessing
2.6. Model Architecture and Feature Extraction
2.7. Training and Evaluation
2.8. Statistical Analysis
3. Results
3.1. General Characteristics of Patients
3.2. Performance of the Model Predicting HER2-Low Breast Cancer Recurrence in the Training and Test Cohorts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HER2 | Human epidermal growth factor receptor 2 |
DFS | Disease-free survival |
DL | Deep learning |
MIP | Maximum intensity projection |
MR | Magnetic resonance |
ADC | Apparent diffusion coefficient |
DWI | Diffusion-weighted imaging |
CT | Computed tomography |
EIC | Extensive intraductal carcinoma |
ER | Estrogen receptor |
PR | Progesterone receptor |
IHC | Immunohistochemistry |
FISH | Fluorescence in situ hybridization |
BI-RADS | Breast Imaging Reporting and Data System |
BPE | Background parenchymal enhancement |
NME | Non-mass enhancement |
CAD | Computer-aided detection |
ROI | Region of interest |
MLP | Multilayer perceptron |
CNN | Convolutional neural network |
SELU | Self-normalizing neural network |
CI | Confidence intervals |
AUC | Area under the curve |
TNBC | Triple-negative breast cancer |
References
- Burstein, H.J. The distinctive nature of HER2-positive breast cancers. N. Engl. J. Med. 2005, 353, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, N.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Giordano, S.H.; Kirshner, J.J.; Krop, I.E.; Levinson, J.; et al. Recommendations on Disease Management for Patients With Advanced Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 2804–2807. [Google Scholar] [CrossRef]
- Giordano, S.H.; Franzoi, M.A.B.; Temin, S.; Anders, C.K.; Chandarlapaty, S.; Crews, J.R.; Kirshner, J.J.; Krop, I.E.; Lin, N.U.; Morikawa, A.; et al. Systemic Therapy for Advanced Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 2612–2635. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, M.; Honda, M. Multiparametric MRI and Radiomics to Predict HER2-Low Cancer: The Potential Therapeutic Impact. Radiology 2023, 308, e231649. [Google Scholar] [CrossRef]
- Wolff, A.C.; Somerfield, M.R.; Dowsett, M.; Hammond, M.E.H.; Hayes, D.F.; McShane, L.M.; Saphner, T.J.; Spears, P.A.; Allison, K.H. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: ASCO-College of American Pathologists Guideline Update. J. Clin. Oncol. 2023, 41, 3867–3872. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar] [CrossRef]
- Guven, D.C.; Kaya, M.B.; Fedai, B.; Ozden, M.; Yildirim, H.C.; Kosemehmetoglu, K.; Kertmen, N.; Dizdar, O.; Uner, A.; Aksoy, S. HER2-low breast cancer could be associated with an increased risk of brain metastasis. Int. J. Clin. Oncol. 2022, 27, 332–339. [Google Scholar] [CrossRef]
- Molinelli, C.; Jacobs, F.; Agostinetto, E.; Nader-Marta, G.; Ceppi, M.; Bruzzone, M.; Blondeaux, E.; Schettini, F.; Prat, A.; Viale, G.; et al. Prognostic value of HER2-low status in breast cancer: A systematic review and meta-analysis. ESMO Open 2023, 8, 101592. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Kang, Y.; Wang, X.; Yue, J.; Xu, B.; Yuan, P. Prognostic value and relapse pattern of HER2-low in hormone receptor-positive breast cancer. Thorac. Cancer 2024, 15, 550–558. [Google Scholar] [CrossRef]
- Yang, J.; Ju, J.; Guo, L.; Ji, B.; Shi, S.; Yang, Z.; Gao, S.; Yuan, X.; Tian, G.; Liang, Y.; et al. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Comput. Struct. Biotechnol. J. 2022, 20, 333–342. [Google Scholar] [CrossRef]
- Yu, X.; Xiang, J.; Zhang, Q.; Chen, S.; Tang, W.; Li, X.; Sui, Y.; Liu, W.; Kong, Q.; Guo, Y. Triple-negative breast cancer: Predictive model of early recurrence based on MRI features. Clin. Radiol. 2023, 78, e798–e807. [Google Scholar] [CrossRef] [PubMed]
- Phan, N.N.; Hsu, C.Y.; Huang, C.C.; Tseng, L.M.; Chuang, E.Y. Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling. Front. Oncol. 2021, 11, 734015. [Google Scholar] [CrossRef]
- Gastounioti, A.; Desai, S.; Ahluwalia, V.S.; Conant, E.F.; Kontos, D. Artificial intelligence in mammographic phenotyping of breast cancer risk: A narrative review. Breast Cancer Res. 2022, 24, 14. [Google Scholar] [CrossRef]
- Acciavatti, R.J.; Lee, S.H.; Reig, B.; Moy, L.; Conant, E.F.; Kontos, D.; Moon, W.K. Beyond Breast Density: Risk Measures for Breast Cancer in Multiple Imaging Modalities. Radiology 2023, 306, e222575. [Google Scholar] [CrossRef]
- Silveira, J.A.; da Silva, A.R.; de Lima, M.Z.T. Harnessing artificial intelligence for predicting breast cancer recurrence: A systematic review of clinical and imaging data. Discov. Oncol. 2025, 16, 135. [Google Scholar] [CrossRef]
- Yao, Y.; Lv, Y.; Tong, L.; Liang, Y.; Xi, S.; Ji, B.; Zhang, G.; Li, L.; Tian, G.; Tang, M.; et al. ICSDA: A multi-modal deep learning model to predict breast cancer recurrence and metastasis risk by integrating pathological, clinical and gene expression data. Brief. Bioinform. 2022, 23, bbac448. [Google Scholar] [CrossRef] [PubMed]
- El Haji, H.; Souadka, A.; Patel, B.N.; Sbihi, N.; Ramasamy, G.; Patel, B.K.; Ghogho, M.; Banerjee, I. Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning-Based Models. JCO Clin. Cancer Inform. 2023, 7, e2300049. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef]
- Dietzel, M.; Trimboli, R.M.; Zanardo, M.; Schultz-Wendtland, R.; Uder, M.; Clauser, P.; Sardanelli, F.; Baltzer, P.A.T. The potential of predictive and prognostic breast MRI (P2-bMRI). Eur. Radiol. Exp. 2022, 6, 42. [Google Scholar] [CrossRef]
- Mendelson, E.; Bohn-Velez, M.; Berg, W. ACR BI-RADS® ultrsound. In ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Baltzer, P.; Mann, R.M.; Iima, M.; Sigmund, E.E.; Clauser, P.; Gilbert, F.J.; Martincich, L.; Partridge, S.C.; Patterson, A.; Pinker, K.; et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur. Radiol. 2020, 30, 1436–1450. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Peng, Y. Current Biological, Pathological and Clinical Landscape of HER2-Low Breast Cancer. Cancers 2022, 15, 126. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, Y.; Fang, X.; Liu, X.; Meng, J.; Zhang, J. Efficacy and prognosis of HER2-Low and HER2-Zero in triple-negative breast cancer after neoadjuvant chemotherapy. Sci. Rep. 2024, 14, 16899. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Guo, Y.; Wesolowski, R.; Tozbikian, G.; O’Connell, N.S.; Niazi, M.K.K.; Gurcan, M.N. Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool. arXiv 2024, arXiv:2409.15491. [Google Scholar] [CrossRef]
- Nopour, R. Prediction of one-year recurrence among breast cancer patients undergone surgery using artificial intelligence-based algorithms: A retrospective study on prognostic factors. BMC Cancer 2025, 25, 940. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, Y.S.; Yu, J.; Park, Y.; Lee, S.K.; Lee, M.; Lee, J.E.; Kim, S.W.; Nam, S.J.; Park, Y.H.; et al. Deep Learning-Based Prediction Model for Breast Cancer Recurrence Using Adjuvant Breast Cancer Cohort in Tertiary Cancer Center Registry. Front. Oncol. 2021, 11, 596364. [Google Scholar] [CrossRef] [PubMed]
- Thawani, R.; Gao, L.; Mohinani, A.; Tudorica, A.; Li, X.; Mitri, Z.; Huang, W. Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: A preliminary study. BMC Med. Imaging 2022, 22, 182. [Google Scholar] [CrossRef]
- Hasan, S.; Padman, R. Analyzing the effect of data quality on the accuracy of clinical decision support systems: A computer simulation approach. AMIA Annu. Symp. Proc. 2006, 2006, 324–328. [Google Scholar]
- Dabbous, F.M.; Dolecek, T.A.; Berbaum, M.L.; Friedewald, S.M.; Summerfelt, W.T.; Hoskins, K.; Rauscher, G.H. Impact of a False-Positive Screening Mammogram on Subsequent Screening Behavior and Stage at Breast Cancer Diagnosis. Cancer Epidemiol. Biomark. Prev. 2017, 26, 397–403. [Google Scholar] [CrossRef]
- Chae, E.Y.; Jung, M.R.; Cha, J.H.; Shin, H.J.; Choi, W.J.; Kim, H.H. A predictive model using MRI and clinicopathologic features for breast cancer recurrence in young women treated with upfront surgery. Eur. Radiol. 2024, 34, 7092–7103. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, J.; Zhang, H.; Wang, X.; Zhang, H.; Yu, J.; Zhang, Q.; Song, D.; Guo, L.; Zhang, D.; et al. A Novel Combined Nomogram Model for Predicting the Pathological Complete Response to Neoadjuvant Chemotherapy in Invasive Breast Carcinoma of No Specific Type: Real-World Study. Front. Oncol. 2022, 12, 916526. [Google Scholar] [CrossRef]
- Shi, Z.; Huang, X.; Cheng, Z.; Xu, Z.; Lin, H.; Liu, C.; Chen, X.; Liu, C.; Liang, C.; Lu, C.; et al. MRI-based Quantification of Intratumoral Heterogeneity for Predicting Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiology 2023, 308, e222830. [Google Scholar] [CrossRef]
- Engelhardt, E.G.; Garvelink, M.M.; de Haes, J.H.; van der Hoeven, J.J.; Smets, E.M.; Pieterse, A.H.; Stiggelbout, A.M. Predicting and communicating the risk of recurrence and death in women with early-stage breast cancer: A systematic review of risk prediction models. J. Clin. Oncol. 2014, 32, 238–250. [Google Scholar] [CrossRef]
- Yu, Y.; Tan, Y.; Xie, C.; Hu, Q.; Ouyang, J.; Chen, Y.; Gu, Y.; Li, A.; Lu, N.; He, Z.; et al. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer. JAMA Netw. Open 2020, 3, e2028086. [Google Scholar] [CrossRef] [PubMed]
- Noman, S.M.; Fadel, Y.M.; Henedak, M.T.; Attia, N.A.; Essam, M.; Elmaasarawii, S.; Fouad, F.A.; Eltasawi, E.G.; Al-Atabany, W. Leveraging survival analysis and machine learning for accurate prediction of breast cancer recurrence and metastasis. Sci. Rep. 2025, 15, 3728. [Google Scholar] [CrossRef] [PubMed]
- Alkhawaldeh, I.M.; Albalkhi, I.; Naswhan, A.J. Challenges and limitations of synthetic minority oversampling techniques in machine learning. World J. Methodol. 2023, 13, 373–378. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Yeung, M.; Sala, E.; Schönlieb, C.B.; Rundo, L. Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 2022, 95, 102026. [Google Scholar] [CrossRef]
- Chen, W.; Yang, K.; Yu, Z.; Shi, Y.; Chen, C.L.P. A survey on imbalanced learning: Latest research, applications and future directions. Artif. Intell. Rev. 2024, 57, 137. [Google Scholar] [CrossRef]
Variables | Total (n = 453) | Training Cohort (n = 331) | Test Cohort (n = 122) | p Value |
---|---|---|---|---|
Clinicopathologic | ||||
Age (years) † | 54.2 ± 11.5 | 53.7 ± 11.6 | 55.5 ± 11.1 | 0.158 |
Menopausal state | 0.848 | |||
Pre | 202 (44.6) | 149 (45.0) | 53 (43.4) | |
Post | 251 (55.4) | 182 (55.0) | 69 (56.6) | |
Pathology result | 0.863 | |||
IDC | 403 (89) | 296 (89.4) | 107 (87.7) | |
ILC | 29 (6.4) | 20 (6.0) | 9 (7.4) | |
Mixed | 5 (1.1) | 3 (0.9) | 4 (3.3) | |
Others | 16 (3.5) | 12 (3.6) | ||
T stage | 0.098 | |||
1 | 325 (71.7) | 245 (74.0) | 80 (65.6) | |
2–3 | 128 (28.3) | 86 (26.0) | 42 (34.4) | |
N stage | 0.013 | |||
0 | 322 (71.1) | 242 (73.1) | 80 (65.6) | |
1–3 | 131 (28.9) | 89 (26.9) | 42 (35.4) | |
Multifocality | 0.059 | |||
Negative | 318 (70.2) | 242 (72.8) | 77 (63.1) | |
Positive | 135 (29.8) | 90 (27.2) | 45 (36.9) | |
Surgical margin | 0.777 | |||
Negative | 431 (95.1) | 316 (95.5) | 115 (94.3) | |
Positive | 22 (4.9) | 15 (4.5) | 7 (5.7) | |
EIC | 0.806 | |||
Negative | 351 (77.5) | 255 (77.0) | 96 (78.7) | |
Positive | 102 (22.5) | 76 (23.0) | 26 (21.3) | |
ER | 0.579 | |||
Negative | 62 (13.7) | 43 (13.0) | 19 (15.6) | |
Positive | 391 (86.3) | 288 (87.0) | 103 (84.4) | |
PR | 0.109 | |||
Negative | 101 (22.3) | 67 (20.2) | 34 (27.9) | |
Positive | 352 (77.7) | 264 (79.8) | 88 (72.1) | |
Ki67 | 1.000 | |||
Negative | 329 (72.6) | 247 (74.6) | 82 (67.2) | |
Positive | 121 (26.7) | 81 (24.5) | 40 (32.8) | |
Unknown | 3 (0.7) | 3 (0.9) | NA | |
p53 | 0.917 | |||
Negative | 81 (17.9) | 61 (18.4) | 20 (16.4) | |
Positive | 369 (81.5) | 267 (80.6) | 102 (83.6) | |
Unknown | 3 (0.7) | 3 (0.7) | ||
Histologic grade | 0.021 | |||
I/II | 268 (59.2) | 207 (62.5) | 61 (50.0) | |
III | 185 (40.8) | 124 (37.5) | 61 (50.5) | |
Nuclear grade | 0.215 | |||
I/II | 347 (76.6) | 259 (78.2) | 88 (82.1) | |
III | 106 (23.4) | 72 (21.8) | 34 (27.9) | |
MRI | ||||
BPE | 1.000 | |||
Minimal/mild | 239 (52.8) | 175 (52.9) | 64 (52.5) | |
Moderate/marked | 214 (47.2) | 156 (47.1) | 58 (47.5) | |
Mass shape | 0.110 | |||
Oval/round | 74 (16.3) | 48 (14.5) | 26 (21.3) | |
Irregular | 379 (83.7) | 283 (85.5) | 96 (78.7) | |
Mass margin | 0.332 | |||
Circumscribed | 63 (13,9) | 42 (12.7) | 21 (17.2) | |
Irregular | 305 (67.3) | 229 (69.2) | 76 (62.3) | |
Spiculated | 85 (18.8) | 60 (18.1) | 25 (20.5) | |
Non-mass enhancement | 0.516 | |||
Negative | 368 (81.2) | 266 (80.4) | 102 (83.6) | |
Positive | 85 (18.8) | 65 (19.6) | 20 (16.4) | |
Internal enhancement | 0.172 | |||
Homogeneous | 31 (6.8) | 26 (7.9) | 5 (4.1) | |
Heterogeneous | 341 (75.3) | 242 (73.1) | 99 (81.1) | |
Rim | 81 (17.9) | 63 (19.0) | 18 (14.8) | |
Initial phase | 0.697 | |||
Fast | 407 (89.8) | 299 (90.3) | 108 (88.5) | |
Medium/slow | 46 (10.2) | 32 (9.7) | 14 (11.5) | |
Late phase | 0.893 | |||
Persistent/plateau | 252 (55.6) | 183 (55.3) | 69 (56.6) | |
Washout | 201 (44.4) | 148 (44.7) | 53 (43.4) | |
DWI | ||||
Tumoral ADC † (10−6 mm2/s) † | 1035.8 (282.1) | 1026.6 (284.3) | 1057.8 (266.8) | 0.072 |
Peritumoral maximal ADC † (10−6 mm2/s) † | 1599.0 (379.0) | 1608.9 (387.5) | 1572.2 (355.2) | 0.475 |
Peritumoral-tumoral ADC ratio † | 1.6 (0.5) | 1.6 (0.6) | 1.5 (0.3) | 0.357 |
Variables | Non-recurrence (n = 297) | Recurrence (n = 34) | p Value |
---|---|---|---|
Clinicopathologic | |||
Age (years) † | 53.9 ± 11.3 | 51.8 ± 13.5 | 0.304 |
Menopausal state | 0.884 | ||
Pre | 131 (44.1) | 18 (52.9) | |
Post | 166 (55.9) | 16 (47.1) | |
Pathology result | 0.529 | ||
IDC | 265 (89.2) | 31 (91.2) | |
ILC | 17 (5.7) | 3 (8.8) | |
Mixed | 3 (1) | 0 | |
Others | 12 (4) | 0 | |
T stage | 0.001 | ||
1 | 228 (73.8) | 17 (50.0) | |
2–3 | 69 (26.2) | 17 (50.0) | |
N stage | <0.000 | ||
0 | 230 (77.4) | 12 (35.3) | |
1–3 | 67 (22.6) | 22 (64.7) | |
Multifocality | <0.000 | ||
Negative | 228 (76.8) | 13 (38.2) | |
Positive | 69 (23.2) | 21 (61.8) | |
Surgical margin | <0.000 | ||
Negative | 290 (97.6) | 26 (76.5) | |
Positive | 7 (2.4) | 8 (23.5) | |
EIC | 0.001 | ||
Negative | 239 (80.5) | 16 (47.1) | |
Positive | 58 (19.5) | 18 (52.9) | |
ER | 0.097 | ||
Negative | 35 (11.8) | 8 (23.5) | |
Positive | 262(88.2) | 26 (76.5) | |
PR | 0.003 | ||
Negative | 53 (17.8) | 14 (41.2) | |
Positive | 244(82.2) | 20 (58.8) | |
Ki67 | 0.069 | ||
Negative | 235 (79.1) | 12 (35.3) | |
Positive | 59 (19.9) | 22 (64.7) | |
Unknown | 3 (0.0) | 0 | |
p53 | 0.286 | ||
Negative | 53 (17.8) | 8 (23.5) | |
Positive | 241 (82.2) | 26 (76.5) | |
Unknown | 3 (0.0) | 0 | |
Histologic grade | <0.000 | ||
I/II | 197 (66.3) | 10 (29.4) | |
III | 100 (33.7) | 24 (70.6) | |
Nuclear grade | <0.000 | ||
I/II | 242 (81.5) | 17 (50.0) | |
III | 55 (18.5) | 17 (50.0) | |
MRI | |||
BPE | 0.592 | ||
Minimal/mild | 159 (53.5) | 16 (47.1) | |
Moderate/marked | 138 (46.5) | 18 (52.9) | |
Mass shape | 0.462 | ||
Oval/round | 45 (15.2) | 3 (8.8) | |
Irregular | 252 (84.8) | 31 (91.2) | |
Mass margin | 0.432 | ||
Circumscribed | 40 (13.5) | 2 (5.9) | |
Irregular | 203 (68.4) | 26 (76.5) | |
Spiculated | 54 (18.2) | 6 (17.6) | |
Non-mass enhancement | 0.198 | ||
Negative | 242 (81.5) | 24 (70.6) | |
Positive | 55 (18.5) | 10 (29.4) | |
Internal enhancement | 0.317 | ||
Homogeneous | 25 (8.4) | 1 (2.9) | |
Heterogeneous | 218 (73.4) | 24 (70.6) | |
Rim | 54 (18.2) | 9 (26.5) | |
Initial phase | 0.274 | ||
Fast | 266 (89.6) | 33 (97.1) | |
Medium/slow | 31 (10.4) | 1 (2.9) | |
Late phase | 0.403 | ||
Persistent/plateau | 167 (88.6) | 16 (52.9) | |
Washout | 130 (11.4) | 18 (52.9) | |
DWI | |||
Tumoral ADC † (10−6 mm2/s) † | 987.1 (283.5) | 981.9 (295.4) | 0.470 |
Peritumoral maximal ADC † (10−6 mm2/s) † | 1607.7 (390.4) | 1619.8 (366.5) | 0.955 |
Peritumoral-tumoral ADC ratio † | 1.7 (0.6) | 1.7 (0.5) | 0.910 |
MRI-alone Model (A) | Clinicopathologic-alone Model (B) | Combined Model (C) | p Value | ||
---|---|---|---|---|---|
A vs. C | B vs. C | ||||
Sensitivity (%) | 99.9 (99.8, 100.0) | 94.7 (94.0, 95.5) | 99.2 (98.9, 99.4) | <0.001 | <0.001 |
Specificity (%) | 98.9 (98.7, 99.0) | 82.9 (82.2, 83.5) | 95.0 (94.3, 95.7) | <0.001 | <0.001 |
Accuracy (%) | 99.4 (99.3, 99.5) | 88.8 (88.2, 89.4) | 97.1 (96.7, 97.4) | <0.001 | <0.001 |
AUC | 0.99 (0.99, 1.00) | 0.94 (0.94, 0.95) | 0.99 (0.99, 0.99) | <0.001 | <0.001 |
F1-score | 0.96 (0.94, 0.97) | 0.89 (0.89, 0.90) | 0.82 (0.80, 0.84) | <0.001 | <0.001 |
MRI-alone Model (A) | Clinicopathologic-alone Model (B) | Combined Model (C) | p Value | ||
---|---|---|---|---|---|
A vs. C | B vs. C | ||||
Sensitivity (%) | 37.6 (35.7, 39.4) | 93.6 (93.4, 93.8) | 80.0 (78.7, 81.3) | <0.001 | <0.001 |
Specificity (%) | 87.5 (86.9, 88.2) | 72.3 (71.8, 72.8) | 83.2 (82.7, 83.6) | <0.001 | <0.001 |
Accuracy (%) | 81.0 (80.5, 81.5) | 75.1 (74.6, 75.5) | 82.7 (82.4, 83.1) | <0.001 | <0.001 |
AUC | 0.69 (0.68, 0.69) | 0.92 (0.92, 0.92) | 0.90 (0.89, 0.91) | <0.001 | <0.001 |
F1-score | 0.34 (0.33, 0.35) | 0.50 (0.49, 0.50) | 0.55 (0.54, 0.57) | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Lee, Y.; Lee, M.; Byon, J.H.; Choi, E.J. Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models. Diagnostics 2025, 15, 1895. https://doi.org/10.3390/diagnostics15151895
Choi S, Lee Y, Lee M, Byon JH, Choi EJ. Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models. Diagnostics. 2025; 15(15):1895. https://doi.org/10.3390/diagnostics15151895
Chicago/Turabian StyleChoi, Seoyun, Youngmi Lee, Minwoo Lee, Jung Hee Byon, and Eun Jung Choi. 2025. "Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models" Diagnostics 15, no. 15: 1895. https://doi.org/10.3390/diagnostics15151895
APA StyleChoi, S., Lee, Y., Lee, M., Byon, J. H., & Choi, E. J. (2025). Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models. Diagnostics, 15(15), 1895. https://doi.org/10.3390/diagnostics15151895