Diagnostic Potential of Volatile Organic Compounds in Detecting Insulin Resistance Among Taiwanese Women
Abstract
1. Introduction
- To compare the performance of traditional multiple linear regression (MLR) and Mach-L.
- To use the Mach-L methods to identify the VOCs that are most relevant to HOMA-IR.
- To use Shapley addictive explanation (SHAP) to determine the impacts of distributions and directions of each feature in Taiwanese women.
2. Materials and Methods
2.1. Participants and Study Design
- Age between 19 and 84 years old (included).
- Women without significant medical diseases.
- Availability of all VOCs values and other demographic, biochemistry, and lifestyle information.
2.2. Traditional Statistics
2.3. Protocol for Breath Sample Collection
2.4. VOCs Analysis Using SIFT-MS
2.5. Mach-L Methods
3. Results
4. Discussion
- 1.
- 2.
- Lipid profile improvement: These compounds also positively affect lipid profiles by decreasing TG and LDL-C while increasing HDL-C levels [45].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Name | Molecular Formula | |
| 1 | 2,5-dimethylpyrazine (123-32-0) | C6H8N2 = 108.14 |
| 2 | 2,5-dimethylfuran (625-86-5) | C6H8O = 96.13 |
| 3 | 2-methylpyrazine (109-08-0) | C5H6N2 = 94.12 |
| 4 | acetophenone (98-86-2) | C8H8O = 120.15 |
| 5 | benzoic acid (65-85-0) | C7H6O2 = 122.12 |
| 6 | beta-caryophyllene (87-44-5) | C15H24 = 204.36 |
| 7 | 4-isopropyl toluene (99-87-6) | C10H14 = 134.22 |
| 8 | pyrrole (109-97-7) | C4H5N = 67.09 |
| 9 | (E)-2-nonenal (18829-56-6) | C9H16O = 140.23 |
| 10 | furfural (98-01-1) | C5H4O2 = 96.09 |
| 11 | propyne (74-99-7) | C3H4 = 40.07 |
| 12 | dodecane (112-40-3) | C12H26 = 170.34 |
| 13 | 6-methyl-5-hepten-2-one (110-93-0) | C8H14O = 126.20 |
| 14 | pyridine (110-86-1) | C5H5N = 79.10 |
| 15 | benzene (71-43-2) | C6H6 = 78.11 |
| 16 | (E)-2-hexenal (6728-26-3) | C6H10O = 98.15 |
| 17 | 2-hexanone (591-78-6) | C6H12O = 100.16 |
| 18 | 1,3-butadiene (106-99-0) | C4H6 = 54.09 |
| 19 | (E)-2-heptenal (18829-55-5) | C7H12O = 112.17 |
| 20 | eucalyptol (470-82-6) | C10H18O = 154.25 |
| 21 | 1-butyne (107-00-6) | C4H6 = 54.09 |
| 22 | 2-octanone (111-13-7) | C8H16O = 128.22 |
| 23 | octanal (124-13-0) | C8H16O = 128.22 |
| 24 | tridecane (629-50-5) | C13H28 = 184.37 |
| 25 | 1,4-butyrolactone (96-48-0) | C4H6O2 = 86.09 |
| 26 | styrene (100-42-5) | C8H8 = 104.15 |
| 27 | alpha-terpinene (99-86-5) | C10H16 = 136.24 |
| 28 | 2-methylpentane (107-83-5) | C6H14 = 86.18 |
| 29 | butyl 2-methylbutanoate (15706-73-7) | C9H18O2 = 158.24 |
| 30 | 3-pentanone (96-22-0) | C5H10O = 86.13 |
| 31 | 2-methyl-3-mercaptofuran (28588-74-1) | C5H6OS = 114.16 |
| 32 | diethylethanolamine (100-37-8) | C6H15NO = 117.18 |
| 33 | ethylcyclohexane (1678-91-7) | C8H16 = 112.22 |
| 34 | 1,2-propanediol (57-55-6) | C3H8O2 = 76.10 |
| 35 | undecane (1120-21-4) | C11H24 = 156.31 |
| 36 | oct-2-en-1-ol (18409-17-1) | C8H16O = 128.22 |
| 37 | decane (124-18-5) | C10H22 = 142.29 |
| 38 | 1-methyl-2-pyrrolidinone (872-50-4) | C5H9NO = 99.13 |
| 39 | 3-methyl-2-butenal (107-86-8) | C5H8O = 84.12 |
| 40 | norfuraneol (19322-27-1) | C5H6O3 = 114.10 |
| 41 | 4-methyloctanoic acid (54947-74-9) | C9H18O2 = 158.24 |
| 42 | 3-methyl-2-butanone (563-80-4) | C5H10O = 86.13 |
| 43 | cyclohexanone (108-94-1) | C6H10O = 98.15 |
| 44 | 1-octen-3-ol (3391-86-4) | C8H16O = 128.22 |
| 45 | propyl hexanoate (626-77-7) | C9H18O2 = 158.24 |
| 46 | diallyl sulfide (592-88-1) | C6H10S = 114.21 |
| 47 | indole (120-72-9) | C8H7N = 117.15 |
| 48 | nonalactone gamma (104-61-0) | C9H16O2 = 156.23 |
| 49 | 2,3-dimethylheptane (3074-71-3) | C9H20 = 128.26 |
| 50 | methylcyclopentane (96-37-7) | C6H12 = 84.16 |
| 51 | 1,5-pentanediol (111-29-5) | C5H12O2 = 104.15 |
| 52 | piperidine (110-89-4) | H8N6 = 92.10 |
| 53 | 2-methylbutanal (96-17-3) | C5H10O = 86.13 |
| 54 | 2-methoxyethanol (109-86-4) | C3H8O2 = 76.10 |
| 55 | 3-buten-2-one (78-94-4) | C4H6O = 70.09 |
| 56 | 1-penten-3-one (1629-58-9) | C5H8O = 84.12 |
| 57 | 3-methylbutanal (590-86-3) | C5H10O = 86.13 |
| 58 | pentanal (110-62-3) | C5H10O = 86.13 |
| 59 | methyl butanoate (623-42-7) | C5H10O2 = 102.13 |
| 60 | butanal (123-72-8) | C4H8O = 72.11 |
| 61 | 2-vinylpyridine (100-69-6) | C7H7N = 105.14 |
| 62 | dipropenyl sulfide (627-51-0) | C4H6S = 86.16 |
| 63 | 2-decanone (693-54-9) | C10H20O = 156.26 |
| 64 | 2-pentanone new (107-87-9) | C5H10O = 86.13 |
| 65 | 2-methyl-3-pentanone (565-69-5) | C6H12O = 100.16 |
| 66 | (E)-2-hexene (4050-45-7) | C6H12 = 84.16 |
| 67 | heptanal (111-71-7) | C7H14O = 114.19 |
| 68 | thiazole (288-47-1) | C3H3NS = 85.12 |
| 69 | 2-methylpropanal (78-84-2) | C4H8O = 72.11 |
| 70 | dimethoxymethane (109-87-5) | C3H8O2 = 76.10 |
| 71 | butyl propanoate (590-01-2) | C7H14O2 = 130.19 |
| 72 | ethyl isopropyl amine (19961-27-4) | C5H13N = 87.17 |
| 73 | decanal (112-31-2) | C10H20O = 156.27 |
| 74 | 1,4-thioxane (15980-15-1) | C4H8OS = 104.17 |
| 75 | methacrylic acid (79-41-4) | C4H6O2 = 86.09 |
| 76 | 2-hexene (592-43-8) | C6H12 = 84.16 |
| 77 | Z-2-hexene (7688-21-3) | C6H12 = 84.16 |
| 78 | 3-methyl-2-butanol (598-75-4) | C5H12O = 88.15 |
| 79 | 2-butene (107-01-7) | C47H51NO14 = 853.92 |
| 80 | (S)-2-methyl-1-butanol (1565-80-6) | C5H12O = 88.15 |
| 81 | 2-methylbutanoic acid (116-53-0) | C5H10O2 = 102.13 |
| 82 | isobutyl butanoate (539-90-2) | C8H16O2 = 144.21 |
| 83 | propylbenzene (103-65-1) | C9H12 = 120.20 |
| 84 | 2-octene (111-67-1) | C8H16 = 112.22 |
| 85 | (E)-2-octene (13389-42-9) | C8H16 = 112.22 |
| 86 | 3,3-dimethyl-2-butanone (75-97-8) | C6H12O = 100.16 |
| 87 | propyl propanoate (106-36-5) | C6H12O2 = 116.16 |
| 88 | 3-methyl-3-buten-1-ol (763-32-6) | C5H10O = 86.13 |
| 89 | 3-methylbutanoic acid (503-74-2) | C5H10O2 = 102.13 |
| 90 | 2-methyl-1-butanol (137-32-6) | C5H12O = 88.15 |
| 91 | limonene (138-86-3; 7705-14-8) | C10H16 = 136.23 |
| 92 | methyl diethanolamine (105-59-9) | C5H13NO2 = 119.16 |
| 93 | benzaldehyde (100-52-7) | C7H6O = 106.12 |
| 94 | nonanal (124-19-6) | C9H18O = 142.24 |
| 95 | methyl methacrylate (80-62-6) | CH2 = 100.12 |
| 96 | methyl isobutyrate (547-63-7) | C5H10O2 = 102.13 |
| 97 | cyclohexanol (108-93-0) | C6H11OH = 100.16 |
| 98 | (Z)-2-octene (7642-04-8) | C8H16 = 112.22 |
| 99 | nitromethane (75-52-5) | CH3NO2 = 61.04 |
| 100 | 1-methoxybutane (628-28-4) | C5H12O = 88.15 |
| 101 | tetrahydropyrrole (123-75-1) | C4H9N = 71.12 |
| 102 | (S)-2-pentanol (26184-62-3) | C5H12O = 88.15 |
| 103 | (R)-2-pentanol (31087-44-2) | C5H12O = 88.15 |
| 104 | 2-pentanol (6032-29-7) | C5H12O = 88.15 |
| 105 | allyl cyanide (109-75-1) | C4H5N = 67.09 |
| 106 | terpinolene (586-62-9) | C10H16 = 136.24 |
| 107 | cyclopropanecarboxylic acid (1759-53-1) | C4H6O2 = 86.09 |
| 108 | 1,3-propanediol (504-63-2) | C3H8O2 = 76.10 |
| 109 | beta-propiolactone (57-57-8) | C3H4O2 = 72.06 |
| 110 | 3-methylthiophene (616-44-4) | C5H6S = 98.16 |
| 111 | dimethyl isopropyl amine (996-35-0) | C5H13N = 87.17 |
| 112 | 3-pentanol (584-02-1) | C5H12O = 88.15 |
| 113 | 2-methyl-2-butanol (75-85-4) | C5H12O = 88.15 |
| 114 | 3-methyl-1-butanol (123-51-3) | C5H12O = 88.15 |
| 115 | 1-pentanol (71-41-0) | C5H12O = 88.15 |
| 116 | methanamide (75-12-7) | CH3NO = 45.04 |
| 117 | ethanolamine (141-43-5) | C2H7NO = 61.08 |
| 118 | 1,2,4-trimethylbenzene (95-63-6) | C9H12 = 120.20 |
| 119 | 3-methylpentane (96-14-0) | C6H14 = 86.18 |
| 120 | ethyl propanoate (105-37-3) | C5H10O2 = 102.13 |
| 121 | 2-propyl acetate (108-21-4) | C5H10O2 = 102.13 |
| 122 | acrylamide (79-06-1) | C3H5NO = 71.08 |
| 123 | allyl ethyl ether (557-31-3) | C5H10O = 86.13 |
| 124 | methyl acrylate (96-33-3) | C4H6O2 = 86.09 |
| 125 | pentanoic acid (109-52-4) | C5H10O2 = 102.13 |
| 126 | (+/−)-2-pentanamine (63493-28-7) | C5H13N = 87.17 |
| 127 | (S)-2-octanol (6169-06-8) | C8H18O = 130.23 |
| 128 | (R)-2-octanol (5978-70-1) | C8H18O = 130.23 |
| 129 | 2-methoxy-2-methyl butane (994-05-8) | C6H14O = 102.17 |
| 130 | methyl hexanoate (106-70-7) | C7H14O2 = 130.19 |
| 131 | 3-methyl-2-buten-1-ol (556-82-1; 60766-00-9) | C5H10O = 86.13 |
| 132 | 1-octanol (111-87-5) | C8H18O = 130.23 |
| 133 | 2,2-dimethyl-1-propanol (75-84-3) | C5H12O = 88.15 |
| 134 | cyclohexanamine (108-91-8) | C6H13N = 99.18 |
| 135 | 2-hexen-1-ol (2305-21-7) | C6H12O = 100.160 |
| 136 | 3-methylthio-2-butanone (53475-15-3) | C5H10OS = 118.19 |
| 137 | isobutene (115-11-7) | C4H8 = 56.11 |
| 138 | trans-2-penten-1-ol (1576-96-1) | C2H5CH = 86.13 |
| 139 | dimethylacetamide (127-19-5) | C4H9NO = 87.12 |
| 140 | 3-methyl-2-butanamine (598-74-3) | C5H13N = 87.16 |
| 141 | 2-thioethanol (60-24-2) | C2H6OS = 78.13 |
| 142 | isopropyl methyl sulfide (1551-21-9) | C4H10S = 90.18 |
| 143 | 2-octanol (123-96-6; 4128-31-8) | C8H18O = 130.23 |
| 144 | cis-2-penten-1-ol (1576-95-0) | C5H10O = 86.13 |
| 145 | methyl diethyl amine (616-39-7) | C5H13N = 87.17 |
| 146 | 2-penten-1-ol (20273-24-9) | C5H10O = 86.13 |
| 147 | propyl butanoate (105-66-8) | C7H14O2 = 130.19 |
| 148 | 2-pentanamine (625-30-9) | C5H13N = 87.16 |
| 149 | methyl pentanoate (624-24-8) | C6H12O2 = 116.16 |
| 150 | tertiary butyl acetate (540-88-5) | C6H12O2 = 116.16 |
| 151 | 1,5-pentanedial (111-30-8) | C5H8O2 = 100.12 |
| 152 | methyl butyl amine (110-68-9) | C5H13N = 87.17 |
| 153 | 1-octene (111-66-0) | C8H16 = 112.22 |
| 154 | (Z)-2-hexen-1-ol (928-94-9) | C6H12O = 100.16 |
| 155 | 1,5-diaminopentane (462-94-2) | C5H14N2 = 102.18 |
| 156 | 2-methyl-2-propenal (78-85-3) | C4H6O = 70.09 |
| 157 | (Z)-2-pentene (627-20-3) | C5H10 = 70.14 |
| 158 | 3-methyltetrahydrofuran-3-one (3188-00-9) | C5H8O2 = 100.12 |
| 159 | isopropyl propanoate (637-78-5) | C6H12O2 = 116.16 |
| 160 | 2-methyl-2-butene (513-35-9) | C5H10 = 70.14 |
| 161 | 2,3-butanedione (431-03-8) | C4H6O2 = 86.09 |
| 162 | 2-methyl-1-butanamine (96-15-1) | C5H13N = 87.17 |
| 163 | butanal oxime (110-69-0) | C4H9NO = 87.12 |
| 164 | butanone (78-93-3) | C4H8O = 72.11 |
| 165 | 1-pentanamine (110-58-7) | C5H13N = 87.17 |
| 166 | 2-pentene (109-68-2) | C5H10 = 70.14 |
| 167 | s-butylamine (13952-84-6) | C4H11N = 73.14 |
| 168 | 3-mercapto-3-methylbutyl formate (50746-10-6) | C6H12O2S = 148.22 |
| 169 | diisopropyl ether (108-20-3) | C6H14O = 102.18 |
| 170 | butyl methanoate (592-84-7) | C5H10O2 = 102.13 |
| 171 | hexanal (66-25-1) | C6H12O = 100.16 |
| 172 | 1-penten-3-ol (616-25-1) | C5H10O = 86.13 |
| 173 | (E)-2-pentene (646-04-8) | C5H10 = 70.14 |
| 174 | ethyl butanoate (105-54-4) | C6H12O2 = 116.16 |
| 175 | L-lactic acid (79-33-4) | C3H6O3 = 90.08 |
| 176 | 1-octen-3-one (4312-99-6) | C8H14O = 126.20 |
| 177 | 1,4-butanediol (110-63-4) | C4H10O2 = 90.12 |
| 178 | 1-heptene (592-76-7) | C7H14 = 98.19 |
| 179 | isoamyl amine (107-85-7) | C5H13N = 87.17 |
| 180 | 1-butanamine (109-73-9) | C4H11N = 73.14 |
| 181 | furfuryl alcohol (98-00-0) | C5H6O2 = 98.10 |
| 182 | 2-methyl-3-buten-2-ol (115-18-4) | C5H10O = 86.13 |
| 183 | acrylic acid (79-10-7) | C3H4O2 = 72.06 |
| 184 | (E)-2-hexen-1-ol (928-95-0) | C6H12O = 100.16 |
| 185 | methyl n-propyl sulfide (3877-15-4) | C4H10S = 90.18 |
| 186 | ethyl methanoate (109-94-4) | C3H6O2 = 74.08 |
| 187 | gamma-terpinene (99-85-4) | C10H16 = 136.24 |
| 188 | (S)-limonene (5989-54-8) | C10H16 = 136.24 |
| 189 | dimethyl sulfate (77-78-1) | C2H6O4S = 126.13 |
| 190 | dimethyl sulfide (75-18-3) | C2H6S = 62.13 |
| 191 | 2-phenylethanol (60-12-8) | C8H10O = 122.17 |
| 192 | methyl 2-methylbutanoate (868-57-5) | C6H12O2 = 116.16 |
| 193 | 2,2-dimethyl propanoic acid (75-98-9) | C5H10O2 = 102.13 |
| 194 | methyl acetate (79-20-9) | C3H6O2 = 74.08 |
| 195 | isopropyl benzene (98-82-8) | C9H12 = 120.20 |
| 196 | 2-methyl-2-nitropropane (594-70-7) | C4H9NO2 = 103.12 |
| 197 | octanoic acid (124-07-2) | C8H16O2 = 144.21 |
| 198 | acrylonitrile (107-13-1) | C3H3N = 53.06 |
| 199 | 1-hexene (592-41-6) | C6H12 = 84.16 |
| 200 | acetic anhydride (108-24-7) | C4H6O3 = 102.09 |
| 201 | phenylacetic acid (103-82-2) | C8H8O2 = 136.15 |
| 202 | propyl acetate (109-60-4) | C5H10O2 = 102.13 |
| 203 | ethyl benzoate (93-89-0) | C9H10O2 = 150.18 |
| 204 | 2-propanethiol (75-33-2) | C3H8S = 76.16 |
| 205 | 2,3-pentanedione (600-14-6) | C5H8O2 = 100.12 |
| 206 | 1-butanethiol (109-79-5) | C4H10S = 90.18 |
| 207 | propanoic acid (79-09-4) | C3H6O2 = 74.08 |
| 208 | (R)-1-phenylethanol (1517-69-7) | C8H10O = 122.17 |
| 209 | 2,3-dimethylpentane (565-59-3) | C7H16 = 100.21 |
| 210 | 1-phenylethanol (98-85-1) | C8H10O = 122.17 |
| 211 | alpha-pinene (80-56-8; 2437-95-8) | C10H16 = 136.23 |
| 212 | beta-pinene (127-91-3) | C10H16 = 136.23 |
| 213 | (S)-1-phenylethanol (1445-91-6) | C8H10O = 122.17 |
| 214 | diethyl ether (60-29-7) | C4H10O = 74.12 |
| 215 | 3-butyn-2-ol new (2028-63-9) | C4H6O = 70.09 |
| 216 | 1R-(+)-alpha-pinene (7785-70-8) | C10H16 = 136.24 |
| 217 | 2-nitropropane (79-46-9) | C3H7NO2 = 89.09 |
| 218 | ethyl mercaptan (75-08-1) | C2H6S = 62.13 |
| 219 | isopentane (78-78-4) | C5H12 = 72.15 |
| 220 | dipropenyl disulfide (629-19-6) | C6H14S2 =150.3 |
| 221 | 1,4-dioxane (123-91-1) | C4H8O2 = 88.11 |
| 222 | butanoic acid (107-92-6) | C4H8O2 = 88.11 |
| 223 | 1-nitropropane (108-03-2) | C3H7NO2 = 89.09 |
| 224 | 3-pentanamine (616-24-0) | C5H13N = 87.17 |
| 225 | 1,4-diaminobutane (110-60-1) | C4H12N2 = 88.15 |
| 226 | isobutyl alcohol (78-83-1) | C4H10O = 74.12 |
| 227 | 2-butoxyethanol (111-76-2) | C6H14O2 = 118.18 |
| 228 | 1-propanethiol (107-03-9) | C3H8S = 76.16 |
| 229 | 1-nonene (124-11-8) | C9H18 = 126.24 |
| 230 | hexanoic acid (142-62-1) | C6H12O2 = 116.16 |
| 231 | methionol (505-10-2) | C4H10OS = 106.18 |
| 232 | methylhydrazine (60-34-4) | CH6N2 = 46.072 |
| 233 | 1-butanol (71-36-3) | C4H10O = 74.12 |
| 234 | isopropylamine (75-31-0) | C3H9N = 59.11 |
| 235 | 3-mercapto-1-propanol (19721-22-3) | C3H8OS = 92.16 |
| 236 | (S)-(+)-3-methylhexane (6131-24-4) | C7H16 = 100.20 |
| 237 | acrolein (107-02-8) | C3H4O = 56.06 |
| 238 | 1,3-butanediol (107-88-0) | C4H10O2 = 90.12 |
| 239 | aniline (62-53-3) | C6H7N = 93.13 |
| 240 | 1-butene (106-98-9) | C7H5ClO3 = 172.56 |
| 241 | p-xylene (106-42-3) | C8H10 = 106.17 |
| 242 | ethylbenzene (100-41-4) | C8H10 = 106.17 |
| 243 | farnesol (4602-84-0) | C15H26O = 222.37 |
| 244 | xylenes + ethylbenzene (1330-20-7) | C8H10 = 106.16 |
| 245 | 1,2-diaminocyclohexane (694-83-7) | C6H14N2 = 114.19 |
| 246 | 2-methyl-2-butanamine (594-39-8) | C5H13N = 87.17 |
| 247 | trans-farnesol (4602-84-0) | C15H26O = 222.37 |
| 248 | (RS)-1,3-butanediol (18826-95-4) | C4H10O2 = 90.12 |
| 249 | vinyl acetate (108-05-4) | C4H6O2 = 86.09 |
| 250 | beta-ocimene (13877-91-3) | C10H16 = 136.23 |
| 251 | (E)-beta-ocimene (3779-61-1) | C10H16 = 136.23 |
| 252 | beta-farnesol (58181-76-3) | C15H24O = 20.35 |
| 253 | 2-butanol (78-92-2) | C4H10O = 74.12 |
| 254 | 1-pentene (109-67-1) | C5H10 = 70.14 |
| 255 | 2,2-dimethylhexane (590-73-8) | C8H18 = 114.23 |
| 256 | butyl hexanoate (626-82-4) | C10H20O2 = 172.27 |
| 257 | 3-methylhexane (589-34-4) | C7H16 = 100.21 |
| 258 | isooctane (540-84-1) | C8H18 = 114.23 |
| 259 | (Z)-beta-ocimene (3338-55-4) | C10H16 = 136.23 |
| 260 | cis-alpha-ocimene (6874-44-8) | C10H16 = 136.23 |
| 261 | propanal (123-38-6) | C3H6O = 58.08 |
| 262 | nonane (111-84-2) | C9H20 = 128.26 |
| 263 | isobutyl acetate (110-19-0) | C6H12O2 = 116.16 |
| 264 | tertiary butyl propanoate (20487-40-5) | C7H14O2 = 130.19 |
| 265 | urethane (51-79-6) | C3H7NO2 = 89.09 |
| 266 | cyanoacetylene (1070-71-9) | C3HN = 51.05 |
| 267 | 2-methyl-2-propanethiol (75-66-1) | C4H10S = 90.18 |
| 268 | octane (111-65-9) | C8H18 = 114.23 |
| 269 | isobutanoic acid (79-31-2) | C4H8O2 = 88.11 |
| 270 | 3-vinylpyridine (1121-55-7) | C7H7N = 105.14 |
| 271 | dipropyl sulfide (111-47-7) | C6H14S = 118.24 |
| 272 | ethene (74-85-1) | CH2 = 28.05 |
| 273 | 1-phenyl-2-propanol (14898-87-4; 698-87-3) | C9H12O = 136.19 |
| 274 | 2-(dimethylamino)ethanol (108-01-0) | C4H11NO = 89.14 |
| 275 | 2-methyl-2-propanol (75-65-0) | C4H10O = 74.12 |
| 276 | 2-methylthioacetic acid (2444-37-3) | C3H6O2S = 106.15 |
| 277 | butyl acetate (123-86-4) | C6H12O2 = 116.16 |
| 278 | carbon disulfide (75-15-0) | CS2 = 76.13 |
| 279 | [R,R]-2,3-butanediol (24347-58-8) | C4H10O2 = 90.12 |
| 280 | (R,S)-butan-2,3-diol (5341-95-7) | C4H10O2 = 90.12 |
| 281 | 2,3-butanediol (513-85-9; 513-89-3) | C4H10O2 = 90.12 |
| 282 | 2,2-dimethylbutane (75-83-2) | C6H14 = 86.18 |
| 283 | cyclohexane (110-82-7) | C6H12 = 84.16 |
| 284 | propene (115-07-1) | C3H6 = 42.08 |
| 285 | [S,S]-2,3-butanediol (19132-06-0) | C4H10O2 = 90.12 |
| 286 | diethyl amine (109-89-7) | C4H11N = 73.14 |
| 287 | 1-methoxy-2-propanol (107-98-2) | C4H10O2 = 90.12 |
| 288 | ethylene oxide (75-21-8) | C2H4O = 44.05 |
| 289 | thiolacetic acid (507-09-5) | C2H4OS = 76.11 |
| 290 | methyl isocyanate (624-83-9) | C2H3NO = 57.05 |
| 291 | cyclopropane (75-19-4) | C3H6 = 42.08 |
| 292 | methyl propanoate (554-12-1) | C4H8O2 = 88.11 |
| 293 | 2-butyl acetate (105-46-4) | C6H12O2 = 116.16 |
| 294 | 1,2-butanediol (584-03-2) | C4H10O2 = 90.12 |
| 295 | cyclopentane (287-92-3) | C5H10 = 70.14 |
| 296 | 1-propanamine (107-10-8) | C3H9N = 59.11 |
| 297 | 2-ethoxyethanol (110-80-5) | C4H10O2 = 90.12 |
| 298 | 2-methyl-2-pentanamine (53310-02-4) | C6H15N = 101.19 |
| 299 | ethyl propyl amine (20193-20-8) | C5H13N = 87.17 |
| 300 | ethanamide (60-35-5) | C2H5NO = 59.07 |
| 301 | acetic acid (64-19-7) | C2H4O2 = 60.05 |
| 302 | methyl ethyl amine (624-78-2) | C3H9N = 59.11 |
| 303 | 1,2-dimethoxy ethane (110-71-4) | C4H10O2 = 90.12 |
| 304 | thiolactic acid (79-42-5) | C3H6O2S = 106.14 |
| 305 | acetonitrile (75-05-8) | C2H3N = 41.05 |
| 306 | ethyldiethanolamine (139-87-7) | C6H15NO2 = 133.19 |
| 307 | dimethyl ether (115-10-6) | C2H6O = 46.07 |
| 308 | o-xylene (95-47-6) | C8H10 = 106.17 |
| 309 | dimethylamine (124-40-3) | C2H7N = 45.09 |
| 310 | furan (110-00-9) | C4H4O = 68.08 |
| 311 | methylamine (74-89-5) | CH5N = 31.06 |
| 312 | 1,3-butadiyne (460-12-8) | C4H2 = 50.06 |
| 313 | methyl methanoate (107-31-3) | C2H4O2 = 60.05 |
| 314 | 2-propanol (67-63-0) | C3H8O = 60.10 |
| 315 | isobutane (75-28-5) | C4H10 = 58.12 |
| 316 | ammonia (7664-41-7) | NH3 = 17.03 |
| 317 | heptane (142-82-5) | C7H16 = 100.21 |
| 318 | allyl methyl sulfide (10152-76-8) | C4H8S = 88.17 |
| 319 | trimethylamine (75-50-3) | C3H9N = 59.11 |
| 320 | acetaldehyde (75-07-0) | C2H4O = 44.05 |
| 321 | pentane (109-66-0) | C5H12 = 72.15 |
| 322 | isopropyl butanoate (638-11-9) | C7H14O2 = 130.19 |
| 323 | formaldehyde (50-00-0) | CH2O = 30.03 |
| 324 | propane (74-98-6) | C3H8 = 44.1 |
| 325 | isoprene (78-79-5) | C5H8 = 68.12 |
| 326 | toluene (108-88-3) | C7H8 = 92.14 |
| 327 | acetoin (513-86-0) | C4H8O2 = 88.11 |
| 328 | ethane (74-84-0) | C6H5NO2S = 155.17 |
| 329 | ethyl acetate (141-78-6) | C4H8O2 = 88.11 |
| 330 | hexane (110-54-3) | C6H14 = 86.18 |
| 331 | 1-propanol (71-23-8) | C3H8O = 60.10 |
| 332 | butane (106-97-8) | C4H10 = 58.12 |
| 333 | pyruvic acid (127-17-3) | C3H4O3 = 88.06 |
| 334 | hydrogen peroxide (7722-84-1) | H2O2 = 34.01 |
| 335 | 2-mercapto-3-butanol (37887-04-0) | C4H10OS = 106.19 |
| 336 | acetone (67-64-1) | C3H6O = 58.08 |
| 337 | formic acid (64-18-6) | CH2O2 = 46.03 |
| 338 | ethyl methyl sulfide (624-89-5) | C3H8S = 76.16 |
| 339 | ethanol (64-17-5) | C2H6O = 46.07 |
| 340 | methanol (67-56-1) | CH4O = 32.04 |
| 341 | propylene oxide (75-56-9) | C3H6O = 58.08 |
| 342 | ethanedial (107-22-2) | C2H2O2 = 58.04 |
| 343 | nitric oxide (10102-43-9) | NO = 30.00 |
| 344 | methane (74-82-8) | CH4 = 16.04 |
References
- Institute for Health Metrics and Evaluation. Global Diabetes Cases to Soar from 529 Million to 1.3 Billion by 2050. 2023. Available online: https://www.healthdata.org/news-events/newsroom/news-releases/global-diabetes-cases-soar-529-million-13-billion-2050 (accessed on 22 June 2023).
- World Health Organization. Diabetes. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 14 November 2024).
- Scanlan, S. Diabetes Affects 11.8% of Taiwan’s Population-National Health Promotion Agency Urges Public to Get Blood Tests to Identify Pre-Diabetes. Taiwan News, 24 April 2023. Available online: https://www.taiwannews.com.tw/news/4872827 (accessed on 24 April 2023).
- Khardori, R. Type 2 Diabetes Mellitus; Medscape: New York, NY, USA, 2024; Available online: https://emedicine.medscape.com/article/117853-overview?st=fpf&scode=msp&socialSite=google&icd=login_success_gg_match_fpf&form=fpf&isSocialFTC=true (accessed on 16 December 2024).
- Guo, H.; Wu, H.; Li, Z. The Pathogenesis of Diabetes. Int. J. Mol. Sci. 2023, 24, 6978. [Google Scholar] [CrossRef] [PubMed]
- Patarrao, R.S.; Lautt, W.W.; Macedo, M.P. Assessment of methods and indexes of insulin sensitivity. Rev. Port. Endocrinol. Diabetes Metab. 2014, 9, 65–73. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef]
- Janssens, E.; van Meerbeeck, J.P.; Lamote, K. Volatile organic compounds in human matrices as lung cancer biomarkers: A systematic review. Crit. Rev. Oncol. Hematol. 2020, 153, 103037. [Google Scholar] [CrossRef]
- Samudrala, D.; Lammers, G.; Mandon, J.; Blanchet, L.; Schreuder, T.H.; Hopman, M.T.; Harren, F.J.; Tappy, L.; Cristescu, S.M. Breath acetone to monitor life style interventions in field conditions: An exploratory study. Obesity 2014, 22, 980–983. [Google Scholar] [CrossRef]
- Markar, S.R.; Chin, S.T.; Romano, A.; Wiggins, T.; Antonowicz, S.; Paraskeva, P.; Ziprin, P.; Darzi, A.; Hanna, G.B. Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann. Surg. 2019, 269, 903–910. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Ligor, T.; Bocos-Bintintan, V.; Mayhew, C.A.; Buszewski, B. Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD. J. Clin. Med. 2020, 10, 32. [Google Scholar] [CrossRef]
- Keogh, R.J.; Riches, J.C. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr. Oncol. 2022, 29, 7355–7378. [Google Scholar] [CrossRef]
- Chung, J.; Akter, S.; Han, S.; Shin, Y.; Choi, T.G.; Kang, I.; Kim, S.S. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int. J. Mol. Sci. 2022, 24, 129. [Google Scholar] [CrossRef]
- Tsou, P.H.; Lin, Z.L.; Pan, Y.C.; Yang, H.C.; Chang, C.J.; Liang, S.K.; Wen, Y.F.; Chang, C.H.; Chang, L.Y.; Yu, K.L.; et al. Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer. Cancers 2021, 13, 1431. [Google Scholar] [CrossRef]
- Rocco, R.; Incalzi, R.A.; Pennazza, G.; Santonico, M.; Pedone, C.; Bartoli, I.R.; Vernile, C.; Mangiameli, G.; La Rocca, A.; De Luca, G.; et al. BIONOTE e-nose technology may reduce false positives in lung cancer screening programmes? Eur. J. Cardio Thorac. Surg. 2016, 49, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Tzou, S.J.; Peng, C.H.; Huang, L.Y.; Chen, F.Y.; Kuo, C.H.; Wu, C.Z.; Chu, T.W. Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort. J. Chin. Med. Assoc. 2023, 86, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tsai, S.P.; Tsao, C.K.; Chiu, M.L.; Tsai, M.K.; Lu, P.J.; Lee, J.H.; Chen, C.H.; Wen, C.; Chang, S.S.; et al. Cohort Profile: The Taiwan MJ Cohort: Half a million Chinese with repeated health surveillance data. Int. J. Epidemiol. 2017, 46, 1744–1744g. [Google Scholar] [CrossRef] [PubMed]
- MJ Health Research Foundation. The Introduction of MJ Health Database. MJ Health Research Foundation Technical Report 2016, MJHRF-TR-01. Available online: http://www.mjhrf.org/upload/user/files/MJHRF-TR-01%20MJ%20Health%20Database.pdf (accessed on 22 August 2016).
- Lin, S.Y.; Li, W.C.; Yang, T.A.; Chen, Y.C.; Yu, W.; Huang, H.Y.; Xiong, X.J.; Chen, J.Y. Optimal threshold of homeostasis model assessment of insulin resistance to identify metabolic syndrome in a Chinese population aged 45 years or younger. Front. Endocrinol. 2022, 12, 746747. [Google Scholar] [CrossRef]
- Wu, C.Z.; Huang, L.Y.; Chen, F.Y.; Kuo, C.H.; Yeih, D.F. Using Machine Learning to Predict Abnormal Carotid Intima-Media Thickness in Type 2 Diabetes. Diagnostics 2023, 13, 1834. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: http://www.R-project.org (accessed on 11 June 2024).
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2024; Available online: http://www.rstudio.com/ (accessed on 11 June 2024).
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. RandomForest: Breiman and Cutler’s Random Forests for Classification and Regression. R Package Version 4.6-14 [Computer software]. 2018. Available online: https://CRAN.R-project.org/package=randomForest (accessed on 22 September 2024).
- Greenwell, B.; Boehmke, B.; Cunningham, J.; GBM Developers. Gbm: Generalized Boosted Regression Models. R Package Version 2.1.8. 2020. Available online: https://CRAN.R-project.org/package=gbm (accessed on 30 July 2020).
- Therneau, T.; Atkinson, B. Rpart: Recursive Partitioning and Regression Trees. R Package Version 4.1-15. 2019. Available online: https://CRAN.R-project.org/package=rpart (accessed on 12 April 2019).
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme Gradient Boosting. R Package Version 1.5.0.2. Available online: https://CRAN.R-project.org/package=xgboost (accessed on 1 January 2022).
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-90. 2022. Available online: https://CRAN.R-project.org/package=caret (accessed on 1 January 2022).
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol 2023, 14, 1149239. [Google Scholar] [CrossRef]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef]
- Aedh, A.I.; Alshahrani, M.S.; Huneif, M.A.; Pryme, I.F.; Oruch, R. A Glimpse into Milestones of Insulin Resistance and an Updated Review of Its Management. Nutrients 2023, 15, 921. [Google Scholar] [CrossRef]
- Tauzin, L.; Graf, C.; Sun, M.; Rovina, P.; Bouveyron, N.; Jaritz, M.; Winiski, A.; Hartmann, N.; Staedtler, F.; Billich, A.; et al. Effects of ceramide-1-phosphate on cultured cells: Dependence on dodecane in the vehicle. J. Lipid Res. 2007, 48, 66–76. [Google Scholar] [CrossRef]
- Wijesinghe, D.S.; Subramanian, P.; Lamour, N.F.; Gentile, L.B.; Granado, M.H.; Bielawska, A.; Szulc, Z.; Gomez-Munoz, A.; Chalfant, C.E. Chain length specificity for activation of cPLA2alpha by C1P: Use of the dodecane delivery system to determine lipid-specific effects. J. Lipid Res. 2009, 50, 1986–1995. [Google Scholar] [CrossRef]
- Patlolla, R.R.; Mallampati, R.; Fulzele, S.V.; Babu, R.J.; Singh, M. Dermal microdialysis of inflammatory markers induced by aliphatic hydrocarbons in rats. Toxicol. Lett. 2009, 185, 168–174. [Google Scholar] [CrossRef]
- The Institute for Functional Medicine. Connections Between Inflammation and Insulin Resistance. 2023. Available online: https://www.ifm.org/articles/inflammation-insulin-resistance (accessed on 17 January 2023).
- Coleman, E. Understanding Inflammation’s Role in Insulin Resistance; Rupa Health: San Francisco, CA, USA, 2025; Available online: https://www.rupahealth.com/post/inflammation-and-insulin-resistance (accessed on 14 January 2025).
- Available online: https://en.wikipedia.org/wiki/2,5-Dimethylfuran (accessed on 11 March 2025).
- Bakhiya, N.; Appel, K.E. Toxicity and carcinogenicity of furan in human diet. Arch. Toxicol. 2010, 84, 563–578. [Google Scholar] [CrossRef]
- Moro, S.; Chipman, J.K.; Wegener, J.W.; Hamberger, C.; Dekant, W.; Mally, A. Furan in heat-treated foods: Formation, exposure, toxicity, and aspects of risk assessment. Mol. Nutr. Food Res. 2012, 56, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Laselva, O.; Allegretta, C.; Di Gioia, S.; Avolio, C.; Conese, M. Anti-Inflammatory and anti-oxidant effect of dimethyl fumarate in cystic fibrosis bronchial epithelial cells. Cells 2021, 10, 2132. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kamendulis, L.M.; Klaunig, J.E. Mechanisms of 2-butoxyethanol carcinogenicity: Studies on Syrian Hamster Embryo (SHE) cell transformation. Toxicol. Sci. 2002, 68, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Siesky, A.M.; Kamendulis, L.M.; Klaunig, J.E. Hepatic effects of 2-butoxyethanol in rodents. Toxicol. Sci. 2002, 70, 252–260. [Google Scholar] [CrossRef]
- Park, J.; Kamendulis, L.M.; Klaunig, J.E. Effects of 2-butoxyethanol on hepatic oxidative damage. Toxicol. Lett. 2002, 126, 19–29. [Google Scholar] [CrossRef]
- CN105267191A; Application of Propanamide Compound. Tianjin Institute of Pharmaceutical Research: Tianjin, China, 2016.
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities. Diabetes 2001, 50, 1901–1910. [Google Scholar] [CrossRef]
- Waller, A.P.; Burns, T.A.; Mudge, M.C.; Belknap, J.K.; Lacombe, V.A. Insulin resistance selectively alters cell-surface glucose transporters but not their total protein expression in equine skeletal muscle. J. Vet. Intern. Med. 2011, 25, 315–321. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Na, X.L.; Dong, S.Y.; Dong, H.W.; Yu, J.; Jia, L.; Wu, Y.H. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes. Int. J. Environ. Res. Public Health 2016, 13, 1188. [Google Scholar] [CrossRef]
- Aguayo-Mazzucato, C.; Andle, J.; Lee, T.B., Jr.; Midha, A.; Talemal, L.; Chipashvili, V.; Hollister-Lock, J.; van Deursen, J.; Weir, G.; Bonner-Weir, S. Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metab. 2019, 30, 129–142.e4. [Google Scholar] [CrossRef]
- Baker, N.A.; Karounos, M.; English, V.; Fang, J.; Wei, Y.; Stromberg, A.; Sunkara, M.; Morris, A.J.; Swanson, H.I.; Cassis, L.A. Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ Health Perspect. 2013, 121, 105–110. [Google Scholar] [CrossRef]
- Lim, S.; Cho, Y.M.; Park, K.S.; Lee, H.K. Persistent organic pollutants, mitochondrial dysfunction, and metabolic syndrome. Ann. N. Y. Acad. Sci. 2010, 1201, 166–176. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Dick, A.L.W.; Simpson, A.; Qama, A.; Andrews, Z.; Lawrence, A.J.; Duncan, J.R. Chronic intermittent toluene inhalation in adolescent rats results in metabolic dysfunction with altered glucose homeostasis. Br. J. Pharmacol. 2015, 172, 5174–5187. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, T.; Ramos, J.L. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J. Bacteriol. 2007, 189, 6602–6610. [Google Scholar] [CrossRef] [PubMed]









| Characteristic | Mean ± SD |
|---|---|
| N number | 1432 |
| Age (yr) | 44.98 ± 12.27 |
| Waist circumference (cm) | 73.10 ± 8.36 |
| Systolic blood pressure (mmHg) | 108.97 ± 15.51 |
| Diastolic blood pressure (mmHg) | 70.13 ± 9.61 |
| Serum glutamic oxaloacetic transaminase (IU/L) | 20.98 ± 8.75 |
| Serum glutamic pyruvic transaminase (IU/L) | 20.44 ± 15.48 |
| Estimated Glomerular filtration rate (mL/min/1.73 m2) | 86.61 ± 13.89 |
| Uric acid (mg/dL) | 4.83 ± 1.02 |
| Triglyceride (mg/dL) | 85.25 ± 56.32 |
| High-density lipoprotein cholesterol (mg/dL) | 62.37 ± 15.56 |
| Low-density lipoprotein cholesterol (mg/dL) | 114.17 ± 31.01 |
| Homeostasis Model Assessment for Insulin Resistance | 1.61 ± 1.31 |
| Alcohol consumption | 2.33 ± 11.09 |
| Tobacco consumption | 1.11 ± 6.30 |
| Betel nut consumption | 0.00 ± 0.00 |
| Exercise habits | 5.41 ± 7.39 |
| Sleep habits | 2.97 ± 0.86 |
| Marital status, n (%) | |
| Unmarried | 519 (38.91) |
| Married | 815 (61.09) |
| Education, n (%) | |
| (1) No formal schooling | 3 (0.23) |
| (2) Elementary school | 24 (1.82) |
| (3) Junior high school | 35 (2.66) |
| (4) High school (vocational) | 207 (15.72) |
| (5) Junior college | 230 (17.46) |
| (6) University | 601 (45.63) |
| (7) Graduate school or above | 217(16.48) |
| Annual Income level (IL) (TWD) | |
| (1) Below USD200,000 | 191 (15.09) |
| (2) USD200,001–USD400,000 | 173 (13.67) |
| (3) USD400,001–USD800,000 | 478 (37.76) |
| (4) USD800,001–USD1,200,000 | 250 (19.75) |
| (5) USD1200,001–USD1,600,000 | 90 (7.11) |
| (6) USD1,600,001–USD2,000,000 | 40 (3.16) |
| (7) More than USD2,000,000 | 44 (3.48) |
| Metrics | Description | Calculation |
|---|---|---|
| MAPE | Mean Absolute Percentage Error | |
| SMAPE | Symmetric Mean Absolute Percentage Error | |
| RAE | Relative Absolute Error | |
| RRSE | Root Relative Squared Error | |
| RMSE | Root Mean Squared Error |
| Characteristic | Without IR Mean ± SD | With IR Mean ± SD | p-Value |
|---|---|---|---|
| N number | 1036 | 396 | |
| Age (yr) | 44.39 ± 11.74 | 46.49 ± 13.44 | 0.003 |
| Waist circumference (cm) | 70.58 ± 6.64 | 79.66 ± 8.82 | 0.000 |
| Systolic blood pressure (mmHg) | 106.66 ± 14.78 | 114.99 ± 15.78 | 0.000 |
| Diastolic blood pressure (mmHg) | 68.97 ± 9.36 | 73.13 ± 9.58 | 0.000 |
| Serum glutamic oxaloacetic transaminase (IU/L) | 20.41 ± 7.38 | 22.44 ± 11.47 | 0.000 |
| Serum glutamic pyruvic transaminase (IU/L) | 18.08 ± 11.95 | 26.61 ± 21.00 | 0.000 |
| Estimated Glomerular filtration rate (mL/min/1.73 m2) | 86.54 ± 13.46 | 86.77 ± 14.94 | 0.776 |
| Uric acid (mg/dL) | 4.65 ± 0.95 | 5.27 ± 1.04 | 0.000 |
| Triglyceride (mg/dL) | 72.72 ± 37.64 | 118.01 ± 79.31 | 0.000 |
| High-density lipoprotein cholesterol (mg/dL) | 65.48 ± 15.22 | 54.20 ± 13.31 | 0.000 |
| Low-density lipoprotein cholesterol (mg/dL) | 111.00 ± 29.35 | 122.44 ± 33.63 | 0.000 |
| Homeostasis Model Assessment for Insulin Resistance | 1.07 ± 0.33 | 2.99 ± 1.80 | 0.000 |
| Alcohol consumption | 2.55 ± 11.96 | 1.74 ± 8.39 | 0.217 |
| Tobacco consumption | 1.15 ± 6.45 | 0.99 ± 5.89 | 0.676 |
| Betel nut consumption | 0.00 ± 0.00 | 0.00 ± 0.00 | - |
| Exercise habits | 5.99 ± 7.89 | 3.87 ± 5.62 | 0.000 |
| Sleep habits | 2.98 ± 0.84 | 2.92 ± 0.88 | 0.222 |
| Marital status, n (%) | |||
| Unmarried | 371 (38.57) | 148 (39.78) | 0.682 |
| Married | 591 (61.43) | 224 (60.22) | |
| Education, n (%) | |||
| (1) No formal schooling | 2 (0.21) | 1 (0.27) | 0.003 |
| (2) Elementary school | 13 (1.36) | 11 (3.02) | |
| (3) Junior high school | 18 (1.89) | 17 (4.67) | |
| (4) High school (vocational) | 136 (14.27) | 71 (19.51) | |
| (5) Junior college | 169 (17.73) | 61 (16.76) | |
| (6) University | 452 (47.43) | 149 (40.93) | |
| (7) Graduate school or above | 163 (17.10) | 54 (14.84) | |
| Annual Income level (IL) (TWD) | |||
| (1) Below USD200,000 | 129 (14.07) | 62 (17.77) | 0.423 |
| (2) USD200,001–USD400,000 | 120 (13.09) | 53 (15.19) | |
| (3) USD400,001–USD800,000 | 352 (38.39) | 126 (36.10) | |
| (4) USD800,001–USD1,200,000 | 190 (20.72) | 60 (17.19) | |
| (5) USD1,200,001–USD1,600,000 | 68 (7.42) | 22 (6.30) | |
| (6) USD1,600,001–USD2,000,000 | 28 (3.05) | 12 (3.44) | |
| (7) More than USD2,000,000 | 30 (3.27) | 14 (4.01) | |
| Dimethylfuran | Isopropyltoluene | Dodecane | ||||
|---|---|---|---|---|---|---|
| HOMA-IR | 0.004 | 0.000 | 0.050 | |||
| butoxyethanol | aniline | propanamine | ||||
| HOMA-IR | −0.023 | −0.010 | −0.021 | |||
| age | WC | GOT | GPT | eGFR | UA | |
| HOMA-IR | 0.090 ** | 0.515 *** | 0.224 *** | 0.326 *** | −0.015 | 0.270 *** |
| TG | HDL-C | LDL-C | SBP | DBP | ||
| HOMA-IR | 0.454 *** | −0.349 *** | 0.173 *** | 0.248 *** | 0.186 *** | |
| MAPE | SMAPE | RAE | RRSE | RMSE | |
|---|---|---|---|---|---|
| MLR | 0.8003 | 0.5802 | 1.2768 | 1.29 | 1.6983 |
| SGB | 0.402 | 0.3311 | 0.7237 | 0.7489 | 0.986 |
| XGBoost | 0.4225 | 0.3334 | 0.7407 | 0.7508 | 0.9884 |
| EN | 0.4368 | 0.3458 | 0.7524 | 0.7757 | 1.0212 |
| MLR | SGB | XGBoost | EN | Mean | ||
|---|---|---|---|---|---|---|
| 1 | WC | 100 | 100 | 100 | 100 | 100 |
| 2 | TG | 73.79 | 49.07 | 63.83 | 10.15 | 47.45 |
| 3 | HDL-C | 35.67 | 56.84 | 34.54 | 15.33 | 34.535 |
| 4 | GPT | 30.42 | 40.86 | 25.37 | 24.57 | 28.6525 |
| 5 | GOT | 3.62 | 8.95 | 4.52 | 0 | 7.9325 |
| 6 | LDL-C | 4.67 | 3.24 | 5.14 | 0 | 6.39 |
| 7 | Dodecane | 30.79 | 0.86 | 5.09 | 0 | 4.8775 |
| 8 | UA | 6.19 | 4.23 | 1.26 | 9.16 | 4.62 |
| 9 | SBP | 17.1 | 2.62 | 2.29 | 3.22 | 2.9225 |
| 10 | Dimethylfuran | 33.34 | 8.65 | 0 | 0 | 2.8425 |
| 11 | Marital status | 11.69 | 0 | 0 | 7.62 | 2.0775 |
| 12 | Propanamine | 0.66 | 3.64 | 3.59 | 0 | 2.0575 |
| 13 | Aniline | 10.6 | 3.37 | 0 | 0 | 1.745 |
| 14 | Age | 30.51 | 0 | 1.06 | 0 | 1.55 |
| 15 | Butoxyethanol | 18.09 | 4.8 | 0 | 0 | 1.445 |
| 16 | Isopropyltoluene | 8.7 | 1.51 | 0 | 0 | 1.4325 |
| AUC | Sensitivity | Specificity | PPV | NPV | |
|---|---|---|---|---|---|
| Model 1 | 0.8863 | 60.87% | 92.56% | 75.80% | 86.07% |
| Model 2 | 0.8484 | 51.80% | 92.93% | 73.93% | 83.28% |
| Model 3 | 0.9860 | 89.97% | 96.47% | 90.80% | 96.13% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.-M.; Xu, J.-H.; Shen, C.-H.; Wu, S.-T.; Chu, T.-W. Diagnostic Potential of Volatile Organic Compounds in Detecting Insulin Resistance Among Taiwanese Women. Diagnostics 2025, 15, 1817. https://doi.org/10.3390/diagnostics15141817
Lin F-M, Xu J-H, Shen C-H, Wu S-T, Chu T-W. Diagnostic Potential of Volatile Organic Compounds in Detecting Insulin Resistance Among Taiwanese Women. Diagnostics. 2025; 15(14):1817. https://doi.org/10.3390/diagnostics15141817
Chicago/Turabian StyleLin, Fan-Min, Jin-Hao Xu, Chih-Hao Shen, Sheng-Tang Wu, and Ta-Wei Chu. 2025. "Diagnostic Potential of Volatile Organic Compounds in Detecting Insulin Resistance Among Taiwanese Women" Diagnostics 15, no. 14: 1817. https://doi.org/10.3390/diagnostics15141817
APA StyleLin, F.-M., Xu, J.-H., Shen, C.-H., Wu, S.-T., & Chu, T.-W. (2025). Diagnostic Potential of Volatile Organic Compounds in Detecting Insulin Resistance Among Taiwanese Women. Diagnostics, 15(14), 1817. https://doi.org/10.3390/diagnostics15141817

