Machine Learning-Based Prediction of Postoperative Deep Vein Thrombosis Following Tibial Fracture Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Data Collection and Variable Definitions
2.4. Outcome Definition and Ascertainment
2.5. Machine Learning Selection
2.6. Feature Selection
2.7. Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APTT | Activated Partial Thromboplastin Time |
AUC | Area Under the Curve |
BMI | Body Mass Index |
CCI | Charlson Comorbidity Index |
CI | Confidence Interval |
COPD | Chronic Obstructive Pulmonary Disease |
CRP | C-Reactive Protein |
DVT | Deep Vein Thrombosis |
ICD-10 | International Classification of Diseases, 10th Revision |
IQR | Interquartile Range |
LASSO | Least Absolute Shrinkage and Selection Operator |
LightGBM | Light Gradient Boosting Machine |
LogReg | Logistic Regression |
ML | Machine Learning |
PE | Pulmonary Embolism |
RFE | Recursive Feature Elimination |
RF | Random Forest |
SD | Standard Deviation |
SHAP | SHapley Additive exPlanations |
SVM | Support Vector Machine |
VTE | Venous Thromboembolism |
XGBoost | Extreme Gradient Boosting |
References
- Wang, P.; Yan, X.; Fei, C.; Zhang, B.; Xing, J.; Zhang, K.; Kandemir, U. Incidence and Risk Factors of Clinically Important Venous Thromboembolism in Tibial Plateau Fractures. Sci. Rep. 2022, 12, 20206. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.F.; Naqvi, M.; Miller, P.E.; Feldman, L.; Shore, B.J. Pediatric Orthopaedic Lower Extremity Trauma and Venous Thromboembolism. J. Child. Orthop. 2015, 9, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, E. The Benefits and Imperative of Venous Thromboembolism Risk Screening for Hospitalized Patients: A Systematic Review. J. Clin. Med. 2023, 12, 7009. [Google Scholar] [CrossRef] [PubMed]
- The ICM-VTE Trauma Delegates. Recommendations from the ICM-VTE: Trauma. J. Bone Jt. Surg. Am. 2022, 104, 280–308. [Google Scholar] [CrossRef]
- Ma, J.; Qin, J.; Shang, M.; Zhou, Y.; Zhang, Y.; Zhu, Y. Incidence and Risk Factors of Preoperative Deep Venous Thrombosis in Closed Tibial Shaft Fracture: A prospective cohort study. Arch. Orthop. Trauma. Surg. 2022, 142, 247–253. [Google Scholar] [CrossRef]
- Wu, L.; Cheng, B. A Nomogram to Predict Postoperative Deep Vein Thrombosis in Patients with Femoral Fracture: A Retrospective Study. J. Orthop. Surg. Res. 2023, 18, 463. [Google Scholar] [CrossRef]
- Zhang, B.-F.; Wang, P.-F.; Fei, C.; Shang, K.; Qu, S.-W.; Li, J.-H.; Ke, C.; Xu, X.; Yang, K.; Liu, P.; et al. Perioperative Deep Vein Thrombosis in Patients with Lower Extremity Fractures: An Observational Study. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620930272. [Google Scholar] [CrossRef]
- Whiting, P.S.; White-Dzuro, G.A.; Greenberg, S.E.; VanHouten, J.P.; Avilucea, F.R.; Obremskey, W.T.; Sethi, M.K. Risk Factors for Deep Venous Thrombosis Following Orthopaedic Trauma Surgery: An Analysis of 56,000 Patients. Arch. Trauma. Res. 2016, 5, e32915. [Google Scholar] [CrossRef]
- Sheng, W.; Wang, X.; Xu, W.; Hao, Z.; Ma, H.; Zhang, S. Development and Validation of Machine Learning Models for Venous Thromboembolism Risk Assessment at Admission: A Retrospective Study. Front. Cardiovasc. Med. 2023, 10, 1198526. [Google Scholar] [CrossRef]
- Shohat, N.; Ludwick, L.; Sherman, M.B.; Fillingham, Y.; Parvizi, J. Using Machine Learning to Predict Venous Thromboembolism and Major Bleeding Events Following Total Joint Arthroplasty. Sci. Rep. 2023, 13, 2197. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.-Q.; Liu, S.-H.; Hong, X.-Y.; Sun, X.-F.; Shi, J.-H. Comparing Different Venous Thromboembolism Risk Assessment Machine Learning Models in Chinese Patients. J. Eval. Clin. Pract. 2020, 26, 26–34. [Google Scholar] [CrossRef]
- Huang, Z.; Buddhiraju, A.; Chen, T.L.-W.; RezazadehSaatlou, M.; Chen, S.F.; Bacevich, B.M.; Xiao, P.; Kwon, Y.-M. Machine Learning Models Based on a National-Scale Cohort Accurately Identify Patients at High Risk of Deep Vein Thrombosis Following Primary Total Hip Arthroplasty. Orthop. Traumatol. Surg. Res. 2025, 111, 104238. [Google Scholar] [CrossRef]
- Ge, X.; Yao, L.; Liu, Y.; Wang, Y.; Zhang, F. Comparing Machine Learning Models for Predicting Preoperative DVT Incidence in Elderly Hypertensive Patients with Hip Fractures: A Retrospective Analysis. Sci. Rep. 2025, 15, 13206. [Google Scholar] [CrossRef]
- Lopez, C.D.; Constant, M.; Anderson, M.J.J.; Confino, J.E.; Heffernan, J.T.; Jobin, C.M. Using Machine Learning Methods to Predict Nonhome Discharge after Elective Total Shoulder Arthroplasty. JSES Int. 2021, 5, 692–698. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, X.; Cao, Z.; Lin, J.; Huang, W.; Zhuang, Y.; Xiao, L.; Guan, X.; Wang, Y.; Xia, X.; et al. Prediction of Red Blood Cell Transfusion after Orthopedic Surgery Using an Interpretable Machine Learning Framework. Front. Surg. 2023, 10, 1047558. [Google Scholar] [CrossRef]
- Dijkstra, H.; Kuit, A.v.d.; Groot, T.M.d.; Canta, O.; Groot, O.Q.; Oosterhoff, J.H.; Doornberg, J.N. Systematic Review of Machine-Learning Models in Orthopaedic Trauma: An Overview and Quality Assessment of 45 Studies. Bone Jt. Open 2024, 5, 9–19. [Google Scholar] [CrossRef]
- Davoudi, A.; Sajdeya, R.; Ison, R.; Hagen, J.; Rashidi, P.; Price, C.C.; Tighe, P.J. Fairness in the Prediction of Acute Postoperative Pain Using Machine Learning Models. Front. Digit. Health 2023, 4, 970281. [Google Scholar] [CrossRef]
- Kunze, K.N.; Krivicich, L.M.; Clapp, I.M.; Bodendorfer, B.M.; Nwachukwu, B.U.; Chahla, J.; Nho, S.J. Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review. Arthroscopy 2022, 38, 2090–2105. [Google Scholar] [CrossRef]
- Stone, J.; Hangge, P.; Albadawi, H.; Wallace, A.; Shamoun, F.; Knuttien, M.G.; Naidu, S.; Oklu, R. Deep Vein Thrombosis: Pathogenesis, Diagnosis, and Medical Management. Cardiovasc. Diagn. Ther. 2017, 7, S276–S284. [Google Scholar] [CrossRef]
- Shi, D.; Bao, B.; Zheng, X.; Wei, H.; Zhu, T.; Zhang, Y.; Zhao, G. Risk Factors for Deep Vein Thrombosis in Patients with Pelvic or Lower-Extremity Fractures in the Emergency Intensive Care Unit. Front. Surg. 2023, 10, 1115920. [Google Scholar] [CrossRef]
- Rostagno, C.; Gatti, M.; Cartei, A.; Civinini, R. Early Deep Venous Thrombosis After Hip Fracture Surgery in Patients in Pharmacological Prophylaxis. J. Clin. Med. 2025, 14, 726. [Google Scholar] [CrossRef]
- Wei, C.; Wang, J.; Yu, P.; Li, A.; Xiong, Z.; Yuan, Z.; Yu, L.; Luo, J. Comparison of Different Machine Learning Classification Models for Predicting Deep Vein Thrombosis in Lower Extremity Fractures. Sci. Rep. 2024, 14, 6901. [Google Scholar] [CrossRef] [PubMed]
- Heo, K.Y.; Rajan, P.V.; Khawaja, S.; Barber, L.A.; Yoon, S.T. Machine Learning Approach to Predict Venous Thromboembolism among Patients Undergoing Multi-Level Spinal Posterior Instrumented Fusion. J. Spine Surg. 2024, 10, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Qiao, W.; Song, S.; Guan, Y.; Zhu, C.; Yang, Q.; Gu, Q.; Sun, L.; Liu, S. The Use of Machine Learning Techniques to Predict Deep Vein Thrombosis in Rehabilitation Inpatients. Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231179438. [Google Scholar] [CrossRef] [PubMed]
Variable | No DVT (n = 391) | DVT (n = 80) | p |
---|---|---|---|
Age, years | 55.3 ± 13.3 | 68.2 ± 8.8 | <0.001 |
Sex, female | 153 (39.1%) | 44 (55.0%) | 0.013 |
BMI | 26.7 ± 4.1 | 29.3 ± 5.1 | <0.001 |
Smoking—never | 225 (57.5%) | 29 (36.2%) | |
Smoking—former | 90 (23.0%) | 21 (26.2%) | |
Smoking—current | 76 (19.4%) | 30 (37.5%) | <0.001 |
History of VTE | 9 (2.3%) | 4 (5.0%) | 0.250 |
Active malignancy | 12 (3.1%) | 5 (6.2%) | 0.289 |
Cardiovascular disease | 65 (16.6%) | 27 (33.8%) | <0.001 |
Diabetes mellitus | 71 (18.2%) | 21 (26.2%) | 0.131 |
Chronic kidney disease | 21 (5.4%) | 18 (22.5%) | <0.001 |
COPD | 33 (8.4%) | 14 (17.5%) | 0.024 |
Charlson Comorbidity Index | 2 [1–3] | 3 [2–4] | <0.001 |
Pre-injury mobility—Independent | 212 (54.2%) | 19 (23.8%) | |
Pre-injury mobility—Assisted | 169 (43.2%) | 52 (65.0%) | |
Pre-injury mobility—Bedridden | 10 (2.6%) | 9 (11.2%) | <0.001 |
Albumin, g/dL | 3.03 [2.74–3.27] | 2.75 [2.50–2.92] | <0.001 |
Lymphocyte count | 2.36 ± 0.46 | 2.07 ± 0.44 | <0.001 |
Hemoglobin, g/dL | 12.9 ± 0.8 | 12.8 ± 0.84 | 0.387 |
D-dimer (preop), mg/L | 1.4 [0.85–2.4] | 1.8 [1.08–2.83] | 0.010 |
APTT (preop), s | 29.4 ± 1.03 | 29.8 ± 1.09 | 0.002 |
Fibrinogen, mg/dL | 421.0 ± 56.5 | 436.5 ± 48.9 | 0.013 |
Leukocyte count | 9.36 ± 1.33 | 10.0 ± 1.45 | <0.001 |
Platelet count | 255.7 ± 30.0 | 254.6 ± 29.7 | 0.763 |
Variable | No DVT (n = 391) | DVT (n = 80) | p | Δ Mean (95% CI) |
---|---|---|---|---|
Operative time, min | 101.8 ± 23.8 | 134.2 ± 29.8 | <0.001 | 32.4 (25.6–39.2) |
Tourniquet use | 344 (88.0%) | 50 (62.5%) | <0.001 | |
Blood loss, mL | 238.8 ± 97.1 | 264.2 ± 115.3 | 0.068 | |
Anesthesia—spinal | 211 (54.0%) | 60 (75.0%) | 0.002 | |
Anesthesia—general | 141 (36.1%) | 15 (18.8%) | ||
Anesthesia—combined | 39 (10.0%) | 5 (6.2%) | ||
Implant—IM nail | 246 (62.9%) | 41 (51.2%) | 0.002 | |
Implant—plate | 119 (30.4%) | 24 (30.0%) | ||
Implant—external fixator | 26 (6.6%) | 15 (18.8%) | ||
Fracture—proximal | 207 (52.9%) | 34 (42.5%) | 0.015 | |
Fracture—diaphyseal | 121 (30.9%) | 38 (47.5%) | ||
Fracture—distal | 63 (16.1%) | 8 (10.0%) | ||
Open fracture | 80 (20.5%) | 32 (40.0%) | <0.001 | |
Gustilo—closed | 281 (71.9%) | 46 (57.5%) | <0.001 | |
Gustilo—Type I | 77 (19.7%) | 14 (17.5%) | ||
Gustilo—Type II | 22 (5.6%) | 15 (18.8%) | ||
Gustilo—Type III | 11 (2.8%) | 5 (6.2%) | ||
Injury to surgery, days | 2.05 ± 1.08 | 2.69 ± 1.16 | <0.001 | 0.64 (0.37–0.91) |
Postop immobilization > 7 d | 71 (18.2%) | 47 (58.8%) | <0.001 | |
Mobilization delay > 48 h | 100 (25.6%) | 65 (81.2%) | <0.001 | |
Preop immobilization > 48 h | 66 (16.9%) | 52 (65.0%) | <0.001 | |
Any postop complication | 88 (22.5%) | 53 (66.2%) | <0.001 | |
Blood transfusion | 91 (23.3%) | 27 (33.8%) | 0.067 | |
CRP (postop), mg/L | 39.7 ± 21.7 | 74.4 ± 21.1 | <0.001 | 34.7 (29.6–39.8) |
ESR (postop), mm/h | 23.4 ± 11.1 | 25.1 ± 10.1 | 0.199 | |
APTT (postop), s | 35.9 ± 0.53 | 36.2 ± 0.58 | <0.001 | 0.3 (0.16–0.44) |
Disturbance of consciousness | 26 (6.6%) | 21 (26.2%) | <0.001 | |
Vasoactive drug use | 29 (7.4%) | 18 (22.5%) | <0.001 | |
Length of stay, days | 8 [6–9] | 11 [10–12] | <0.001 |
Rank | Feature Selection Method | Model Type | AUC (95% CI) |
---|---|---|---|
1 | RFE (RF) | RF | 0.9948 (0.9875–1.0000) |
2 | SHAP | RF | 0.9936 (0.9848–1.0000) |
3 | All Features | RF | 0.9925 (0.9833–1.0000) |
4 | Univariate (p < 0.20) | RF | 0.9913 (0.9809–1.0000) |
5 | SHAP | LGBM | 0.9905 (0.9789–1.0000) |
6 | SHAP | XGB | 0.9905 (0.9791–1.0000) |
7 | RFE (RF) | LGBM | 0.9901 (0.9786–1.0000) |
8 | All Features | LGBM | 0.9888 (0.9750–1.0000) |
9 | LASSO | LGBM | 0.9876 (0.9735–1.0000) |
10 | Boruta | RF | 0.9872 (0.9728–1.0000) |
11 | LASSO | RF | 0.9872 (0.9717–1.0000) |
12 | Boruta | LGBM | 0.9867 (0.9704–1.0000) |
13 | Univariate (p < 0.20) | LGBM | 0.9859 (0.9700–1.0000) |
14 | All Features | XGB | 0.9855 (0.9697–1.0000) |
15 | RFE (RF) | XGB | 0.9847 (0.9692–1.0000) |
16 | Boruta | XGB | 0.9834 (0.9633–1.0000) |
17 | LASSO | XGB | 0.9822 (0.9644–0.9999) |
18 | LASSO | SVM | 0.9785 (0.9580–0.9989) |
19 | Univariate (p < 0.20) | SVM | 0.9747 (0.9524–0.9971) |
20 | SHAP | SVM | 0.9743 (0.9513–0.9973) |
21 | Boruta | SVM | 0.9689 (0.9399–0.9979) |
22 | RFE (LogReg) | LGBM | 0.9461 (0.8890–1.0000) |
23 | RFE (LogReg) | XGB | 0.9387 (0.8677–1.0000) |
24 | RFE (LogReg) | RF | 0.9128 (0.8184–1.0000) |
Model | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | F1 Score (95% CI) |
---|---|---|---|---|
Boruta + SVM | 0.79 (0.61–0.95) | 0.95 (0.91–0.98) | 0.93 (0.89–0.97) | 0.75 (0.59–0.87) |
LASSO + SVM | 0.74 (0.53–0.92) | 0.98 (0.95–1.00) | 0.95 (0.90–0.98) | 0.78 (0.61–0.91) |
SHAP + SVM | 0.74 (0.53–0.92) | 0.98 (0.95–1.00) | 0.95 (0.90–0.98) | 0.78 (0.61–0.91) |
Univariate + SVM | 0.74 (0.53–0.93) | 0.96 (0.93–0.99) | 0.93 (0.89–0.97) | 0.73 (0.55–0.88) |
LASSO + SVM | 0.74 (0.53–0.92) | 0.98 (0.95–1.00) | 0.95 (0.90–0.98) | 0.78 (0.61–0.91) |
SHAP + SVM | 0.74 (0.53–0.92) | 0.98 (0.95–1.00) | 0.95 (0.90–0.98) | 0.78 (0.61–0.91) |
Univariate + SVM | 0.74 (0.53–0.93) | 0.96 (0.93–0.99) | 0.93 (0.89–0.97) | 0.73 (0.55–0.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baki, H.; Özçelik, İ.B. Machine Learning-Based Prediction of Postoperative Deep Vein Thrombosis Following Tibial Fracture Surgery. Diagnostics 2025, 15, 1787. https://doi.org/10.3390/diagnostics15141787
Baki H, Özçelik İB. Machine Learning-Based Prediction of Postoperative Deep Vein Thrombosis Following Tibial Fracture Surgery. Diagnostics. 2025; 15(14):1787. https://doi.org/10.3390/diagnostics15141787
Chicago/Turabian StyleBaki, Humam, and İsmail Bülent Özçelik. 2025. "Machine Learning-Based Prediction of Postoperative Deep Vein Thrombosis Following Tibial Fracture Surgery" Diagnostics 15, no. 14: 1787. https://doi.org/10.3390/diagnostics15141787
APA StyleBaki, H., & Özçelik, İ. B. (2025). Machine Learning-Based Prediction of Postoperative Deep Vein Thrombosis Following Tibial Fracture Surgery. Diagnostics, 15(14), 1787. https://doi.org/10.3390/diagnostics15141787