The Big Data Era in Cardiology and Cardiovascular Medicine: Advanced Analytics for Truly Personalized Care
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Benjamin, E.J.; MacMahon, S. Prevention and Control of Cardiovascular Disease in the Rapidly Changing Economy of China. Circulation 2016, 133, 2545–2560. [Google Scholar] [CrossRef]
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global burden of cardiovascular diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Yeh, R.W.; Kramer, D.B. Decision Tools to Improve Personalized Care in Cardiovascular Disease: Moving the Art of Medicine Toward Science. Circulation 2017, 135, 1097–1100. [Google Scholar] [CrossRef]
- Abrahams, E. Right drug-right patient-right time: Personalized medicine coalition. Clin. Transl. Sci. 2008, 1, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.A.; Loscalzo, J. Emerging Role of Precision Medicine in Cardiovascular Disease. Circ. Res. 2018, 122, 1302–1315. [Google Scholar] [CrossRef] [PubMed]
- Giugni, F.R.; Berry, J.D.; Khera, A.; Shah, A.M.; de Lemos, J.A. Precision Medicine for Cardiovascular Prevention and Population Health: A Bridge Too Far? Circulation 2024, 150, 1720–1731. [Google Scholar] [CrossRef]
- Tarazona, S.; Arzalluz-Luque, A.; Conesa, A. Undisclosed, unmet and neglected challenges in multi-omics studies. Nat. Comput. Sci. 2021, 1, 395–402. [Google Scholar] [CrossRef]
- Horgan, D.; Hackett, J.; Westphalen, C.B.; Kalra, D.; Richer, E.; Romao, M.; Andreu, A.L.; Lal, J.A.; Bernini, C.; Tumiene, B.; et al. Digitalisation and COVID-19: The Perfect Storm. Biomed. Hub. 2020, 5, 1341–1363. [Google Scholar] [CrossRef]
- Sauer, C.M.; Chen, L.C.; Hyland, S.L.; Girbes, A.; Elbers, P.; Celi, L.A. Leveraging electronic health records for data science: Common pitfalls and how to avoid them. Lancet Digit. Health 2022, 4, e893–e898. [Google Scholar] [CrossRef]
- Weintraub, W.S. Role of Big Data in Cardiovascular Research. J. Am. Heart Assoc. 2019, 8, e012791. [Google Scholar] [CrossRef] [PubMed]
- Topaloglu, U.; Palchuk, M.B. Using a Federated Network of Real-World Data to Optimize Clinical Trials Operations. JCO Clin. Cancer Inform. 2018, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kishimori, T.; Kato, T.; Wada, A.; Tani, A.; Yamaji, R.; Koike, J.; Iwasaki, Y.; Matsumoto, T.; Yagi, T.; Okada, M. Comparative Outcomes of Glucagon-Like Peptide-1 Receptor Agonists to Dipeptidyl Peptidase 4 Inhibitors in Patients with Heart Failure and Type 2 Diabetes. J. Am. Heart Assoc. 2025, 14, e037510. [Google Scholar] [CrossRef]
- Wu, J.Y.; Tseng, K.J.; Kao, C.L.; Hung, K.C.; Yu, T.; Lin, Y.M. Clinical effectiveness of tirzepatide for patients with atrial fibrillation and type 2 diabetes: A retrospective cohort study. Diabetes Res. Clin. Pract. 2025, 225, 112279. [Google Scholar] [CrossRef]
- Kornelius, E.; Lo, S.C.; Huang, C.N.; Wang, C.C.; Wang, Y.H.; Yang, Y.S. Association of herpes zoster vaccination and cardiovascular risk in patients with diabetes: Long-term insights from a retrospective cohort study. BMJ Open 2025, 15, e090428. [Google Scholar] [CrossRef] [PubMed]
- Goldar, G.; Sifuentes, A.A.; Gokul, K.; ElBakkush, U.M.; Mhanna, M.; Farjo, P.; Dominic, P. Raising the Alarm: Underdiagnosis of Cardiac Sarcoidosis in Young Patients with Unexplained Heart Block. JACC Adv. 2025, 4, 101890. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.M.; Buckley, B.J.R.; Austin, P.; Lip, G.Y.H.; Oni, L.; McDowell, G.; Rao, A. Routine cardiac biomarkers for the prediction of incident major adverse cardiac events in patients with glomerulonephritis: A real-world analysis using a global federated database. BMC Nephrol. 2024, 25, 233. [Google Scholar] [CrossRef]
- Meltzer, S.N.; Weintraub, W.S. The Role of National Registries in Improving Quality of Care and Outcomes for Cardiovascular Disease. Methodist. Debakey Cardiovasc. J. 2020, 16, 205–211. [Google Scholar] [CrossRef]
- Carroll, J.D.; Edwards, F.H.; Marinac-Dabic, D.; Brindis, R.G.; Grover, F.L.; Peterson, E.D.; Tuzcu, E.M.; Shahian, D.M.; Rumsfeld, J.S.; Shewan, C.M.; et al. The STS-ACC transcatheter valve therapy national registry: A new partnership and infrastructure for the introduction and surveillance of medical devices and therapies. J. Am. Coll. Cardiol. 2013, 62, 1026–1034. [Google Scholar] [CrossRef]
- Masoudi, F.A.; Ponirakis, A.; Yeh, R.W.; Maddox, T.M.; Beachy, J.; Casale, P.N.; Curtis, J.P.; De Lemos, J.; Fonarow, G.; Heidenreich, P.; et al. Cardiovascular care facts: A report from the national cardiovascular data registry: 2011. J. Am. Coll. Cardiol. 2013, 62, 1931–1947. [Google Scholar] [CrossRef]
- Ellrodt, A.G.; Fonarow, G.C.; Schwamm, L.H.; Albert, N.; Bhatt, D.L.; Cannon, C.P.; Hernandez, A.F.; Hlatky, M.A.; Luepker, R.V.; Peterson, P.N.; et al. Synthesizing lessons learned from get with the guidelines: The value of disease-based registries in improving quality and outcomes. Circulation 2013, 128, 2447–2460. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.J.; Al-Baraikan, A.; Rademakers, F.E.; Ciravegna, F.; van de Vosse, F.N.; Lawrie, A.; Rothman, A.; Ashley, E.A.; Wilkins, M.R.; Lawford, P.V.; et al. Wearable technology and the cardiovascular system: The future of patient assessment. Lancet Digit. Health 2023, 5, e467–e476. [Google Scholar] [CrossRef]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef]
- Hughes, A.; Shandhi, M.M.H.; Master, H.; Dunn, J.; Brittain, E. Wearable Devices in Cardiovascular Medicine. Circ. Res. 2023, 132, 652–670. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.; Wu, J.C. Omics, Big Data, and Precision Medicine in Cardiovascular Sciences. Circ. Res. 2018, 122, 1165–1168. [Google Scholar] [CrossRef] [PubMed]
- Stamate, E.; Piraianu, A.I.; Ciobotaru, O.R.; Crassas, R.; Duca, O.; Fulga, A.; Grigore, I.; Vintila, V.; Fulga, I.; Ciobotaru, O.C. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics 2024, 14, 1103. [Google Scholar] [CrossRef]
- Kolk, M.Z.H.; Ruiperez-Campillo, S.; Allaart, C.P.; Wilde, A.A.M.; Knops, R.E.; Narayan, S.M.; Tjong, F.V.Y.; DEEP RISK investigators. Multimodal explainable artificial intelligence identifies patients with non-ischaemic cardiomyopathy at risk of lethal ventricular arrhythmias. Sci. Rep. 2024, 14, 14889. [Google Scholar] [CrossRef]
- Armoundas, A.A.; Narayan, S.M.; Arnett, D.K.; Spector-Bagdady, K.; Bennett, D.A.; Celi, L.A.; Friedman, P.A.; Gollob, M.H.; Hall, J.L.; Kwitek, A.E.; et al. Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement from the American Heart Association. Circulation 2024, 149, e1028–e1050. [Google Scholar] [CrossRef]
- Elias, P.; Jain, S.S.; Poterucha, T.; Randazzo, M.; Lopez Jimenez, F.; Khera, R.; Perez, M.; Ouyang, D.; Pirruccello, J.; Salerno, M.; et al. Artificial Intelligence for Cardiovascular Care-Part 1: Advances: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2024, 83, 2472–2486. [Google Scholar] [CrossRef]
- Prakosa, A.; Arevalo, H.J.; Deng, D.; Boyle, P.M.; Nikolov, P.P.; Ashikaga, H.; Blauer, J.J.E.; Ghafoori, E.; Park, C.J.; Blake, R.C., 3rd; et al. Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat. Biomed. Eng. 2018, 2, 732–740. [Google Scholar] [CrossRef]
- Khera, R.; Oikonomou, E.K.; Nadkarni, G.N.; Morley, J.R.; Wiens, J.; Butte, A.J.; Topol, E.J. Transforming Cardiovascular Care with Artificial Intelligence: From Discovery to Practice: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 84, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Holste, G.; Oikonomou, E.K.; Mortazavi, B.J.; Coppi, A.; Faridi, K.F.; Miller, E.J.; Forrest, J.K.; McNamara, R.L.; Ohno-Machado, L.; Yuan, N.; et al. Severe aortic stenosis detection by deep learning applied to echocardiography. Eur. Heart J. 2023, 44, 4592–4604. [Google Scholar] [CrossRef] [PubMed]
- Witharana, P.; Chang, L.; Maier, R.; Ogundimu, E.; Wilkinson, C.; Athanasiou, T.; Akowuah, E. Feasibility study of rehabilitation for cardiac patients aided by an artificial intelligence web-based programme: A randomised controlled trial (RECAP trial)-a study protocol. BMJ Open 2024, 14, e079404. [Google Scholar] [CrossRef] [PubMed]
- Sotirakos, S.; Fouda, B.; Mohamed Razif, N.A.; Cribben, N.; Mulhall, C.; O’Byrne, A.; Moran, B.; Connolly, R. Harnessing artificial intelligence in cardiac rehabilitation, a systematic review. Future Cardiol. 2022, 18, 154–164. [Google Scholar] [CrossRef]
- Torres, R.; Zurita, C.; Mellado, D.; Nicolis, O.; Saavedra, C.; Tuesta, M.; Salinas, M.; Bertini, A.; Pedemonte, O.; Querales, M.; et al. Predicting Cardiovascular Rehabilitation of Patients with Coronary Artery Disease Using Transfer Feature Learning. Diagnostics 2023, 13, 508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosino, P.; Manzo, F.; Candia, C.; Spedicato, G.A.; Grassi, G.; Maniscalco, M. The Big Data Era in Cardiology and Cardiovascular Medicine: Advanced Analytics for Truly Personalized Care. Diagnostics 2025, 15, 1705. https://doi.org/10.3390/diagnostics15131705
Ambrosino P, Manzo F, Candia C, Spedicato GA, Grassi G, Maniscalco M. The Big Data Era in Cardiology and Cardiovascular Medicine: Advanced Analytics for Truly Personalized Care. Diagnostics. 2025; 15(13):1705. https://doi.org/10.3390/diagnostics15131705
Chicago/Turabian StyleAmbrosino, Pasquale, Fabio Manzo, Claudio Candia, Giorgio Alfredo Spedicato, Guido Grassi, and Mauro Maniscalco. 2025. "The Big Data Era in Cardiology and Cardiovascular Medicine: Advanced Analytics for Truly Personalized Care" Diagnostics 15, no. 13: 1705. https://doi.org/10.3390/diagnostics15131705
APA StyleAmbrosino, P., Manzo, F., Candia, C., Spedicato, G. A., Grassi, G., & Maniscalco, M. (2025). The Big Data Era in Cardiology and Cardiovascular Medicine: Advanced Analytics for Truly Personalized Care. Diagnostics, 15(13), 1705. https://doi.org/10.3390/diagnostics15131705