Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. SAVE (Spectrum-Aided Vision Enhancer)
2.3. ML Algorithms
2.3.1. Yolo V8
2.3.2. Yolo V7
2.3.3. YOLOV6
2.3.4. YoloV5
2.3.5. ScaledYoloV4
2.3.6. YoloV3
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conteduca, V.; Sansonno, D.; Ingravallo, G.; Marangi, S.; Russi, S.; Lauletta, G.; Dammacco, F. Barrett’s esophagus and esophageal cancer: An overview. Int. J. Oncol. 2012, 41, 414–424. [Google Scholar] [CrossRef]
- Fatehi Hassanabad, A.; Chehade, R.; Breadner, D.; Raphael, J. Esophageal carcinoma: Towards targeted therapies. Cell. Oncol. 2020, 43, 195–209. [Google Scholar] [CrossRef]
- Waters, J.K.; Reznik, S.I. Update on Management of Squamous Cell Esophageal Cancer. Curr. Oncol. Rep. 2022, 24, 375–385. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Hong, P.; Xu, W.W.; He, Q.-Y.; Li, B. Advances in targeted therapy for esophageal cancer. Signal Transduct. Target. Ther. 2020, 5, 229. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Cao, S.; Dong, X.; Rao, S.; Cai, K. Understanding Esophageal Cancer: The Challenges and Opportunities for the Next Decade. Front. Oncol. 2020, 10, 1727. [Google Scholar] [CrossRef]
- Vizcaino, A.P.; Moreno, V.; Lambert, R.; Parkin, D.M. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973–1995. Int. J. Cancer 2002, 99, 860–868. [Google Scholar] [CrossRef]
- Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol. 2020, 13, 1010–1021. [Google Scholar] [CrossRef]
- Dubielzig, R.R.; Ketring, K.; McLellan, G.J.; Albert, D.M. Chapter 2—Pathologic mechanisms in ocular disease. In Veterinary Ocular Pathology; Dubielzig, R.R., Ketring, K., McLellan, G.J., Albert, D.M., Eds.; W.B. Saunders: Edinburgh, UK, 2010; pp. 9–27. [Google Scholar] [CrossRef]
- Nowak, J. Surgical Pathology of Inflammatory Conditions of the Gastrointestinal Tract. In Pathobiology of Human Disease; McManus, L.M., Mitchell, R.N., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 3490–3509. [Google Scholar] [CrossRef]
- Harrison, M.; Allen, J.E.; Gorrepati, V.S.; López-Jamar, J.M.E.; Sharma, P. Management of Barrett’s esophagus with low-grade dysplasia. Dis. Esophagus 2018, 31, doy004. [Google Scholar] [CrossRef]
- Shaheen, N.J.; Sharma, P.; Overholt, B.F.; Wolfsen, H.C.; Sampliner, R.E.; Wang, K.K.; Galanko, J.A.; Bronner, M.P.; Goldblum, J.R.; Bennett, A.E.; et al. Radiofrequency Ablation in Barrett’s Esophagus with Dysplasia. N. Engl. J. Med. 2009, 360, 2277–2288. [Google Scholar] [CrossRef]
- Chen, K.-B.; Xuan, Y.; Lin, A.-J.; Guo, S.-H. Esophageal cancer detection based on classification of gastrointestinal CT images using improved Faster RCNN. Comput. Methods Programs Biomed. 2021, 207, 106172. [Google Scholar] [CrossRef]
- de Groof, A.J.; Struyvenberg, M.R.; van der Putten, J.; van der Sommen, F.; Fockens, K.N.; Curvers, W.L.; Zinger, S.; Pouw, R.E.; Coron, E.; Baldaque-Silva, F.; et al. Deep-Learning System Detects Neoplasia in Patients with Barrett’s Esophagus with Higher Accuracy than Endoscopists in a Multistep Training and Validation Study with Benchmarking. Gastroenterology 2020, 158, 915–929.e4. [Google Scholar] [CrossRef]
- Cai, S.-L.; Li, B.; Tan, W.-M.; Niu, X.-J.; Yu, H.-H.; Yao, L.-Q.; Zhou, P.-H.; Yan, B.; Zhong, Y.-S. Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video). Gastrointest. Endosc. 2019, 90, 745–753.e2. [Google Scholar] [CrossRef]
- Ghatwary, N.; Zolgharni, M.; Ye, X. Early esophageal adenocarcinoma detection using deep learning methods. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 611–621. [Google Scholar] [CrossRef]
- Wu, Z.; Ge, R.; Wen, M.; Liu, G.; Chen, Y.; Zhang, P.; He, X.; Hua, J.; Luo, L.; Li, S. ELNet:Automatic classification and segmentation for esophageal lesions using convolutional neural network. Med. Image Anal. 2021, 67, 101838. [Google Scholar] [CrossRef]
- Lodhi, V.; Chakravarty, D.; Mitra, P. Hyperspectral Imaging System: Development Aspects and Recent Trends. Sens. Imaging 2019, 20, 35. [Google Scholar] [CrossRef]
- Ahmad, M.; Shabbir, S.; Roy, S.K.; Hong, D.; Wu, X.; Yao, J.; Khan, A.M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 968–999. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Briottet, X.; Boucher, Y.; Dimmeler, A.; Malaplate, A.; Cini, A.; Diani, M.; Bekman, H.; Schwering, P.; Skauli, T.; Kasen, I. Military applications of hyperspectral imagery. In Proceedings of the Targets and Backgrounds XII: Characterization and Representation, Kissimmee, FL, USA, 17–18 April 2006; pp. 82–89. [Google Scholar]
- Ma, J.; Sun, D.-W.; Pu, H.; Cheng, J.-H.; Wei, Q. Advanced techniques for hyperspectral imaging in the food industry: Principles and recent applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef]
- Nishii, T.; Matsuzaki, K.; Morita, S. Real-time determination and visualization of two independent quantities during a manufacturing process of pharmaceutical tablets by near-infrared hyperspectral imaging combined with multivariate analysis. Int. J. Pharm. 2020, 590, 119871. [Google Scholar] [CrossRef]
- Messinger, D.W.; Salvaggio, C.; Sinisgalli, N.M. Detection of Gaseous Effluents from Airborne Lwir Hyperspectral Imagery Using Physics-Based Signatures. Int. J. High Speed Electron. Syst. 2007, 17, 801–812. [Google Scholar] [CrossRef]
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 2007, 33, 145–151. [Google Scholar] [CrossRef]
- Mizuno, H.; Gono, K.; Takehana, S.; Nonami, T.; Nakamura, K. Narrow band imaging technique. Tech. Gastrointest. Endosc. 2003, 5, 78–81. [Google Scholar] [CrossRef]
- Gono, K. Narrow Band Imaging: Technology Basis and Research and Development History. Clin. Endosc. 2015, 48, 476–480. [Google Scholar] [CrossRef]
- Barrueto, F.F.; Audlin, K.M.; Gallicchio, L.; Miller, C.; MacDonald, R.; Alonsozana, E.; Johnston, M.; Helzlsouer, K.J. Sensitivity of Narrow Band Imaging Compared With White Light Imaging for the Detection of Endometriosis. J. Minim. Invasive Gynecol. 2015, 22, 846–852. [Google Scholar] [CrossRef]
- Ezoe, Y.; Muto, M.; Horimatsu, T.; Minashi, K.; Yano, T.; Sano, Y.; Chiba, T.; Ohtsu, A. Magnifying narrow-band imaging versus magnifying white-light imaging for the differential diagnosis of gastric small depressive lesions: A prospective study. Gastrointest. Endosc. 2010, 71, 477–484. [Google Scholar] [CrossRef]
Framework | Model | Classes | Metrics | |||
---|---|---|---|---|---|---|
Precision in % | Recall in % | F1-Score in % | mAP50 in % | |||
YOLOV8 | WLI | Dysplasia | 80.900 | 70.400 | 75.200 | 68.300 |
SCC | 93.400 | 75.800 | 83.700 | 76.500 | ||
Normal | 89.200 | 77.000 | 82.600 | 73.300 | ||
SAVE | Dysplasia | 82.100 | 79.500 | 80.800 | 84.100 | |
SCC | 93.600 | 81.300 | 87.000 | 86.700 | ||
Normal | 94.000 | 78.800 | 85.800 | 89.600 | ||
YoloV7 | WLI | Dysplasia | 72.000 | 47.500 | 57.238 | 46.500 |
SCC | 84.400 | 66.000 | 74.074 | 68.600 | ||
Normal | 70.289 | 70.951 | 70.440 | 69.761 | ||
SAVE | Dysplasia | 76.400 | 50.000 | 60.443 | 53.900 | |
SCC | 84.000 | 69.400 | 76.005 | 72.300 | ||
Normal | 72.411 | 65.371 | 68.554 | 65.627 | ||
YOLOV5 | WLI | Dysplasia | 70.200 | 42.000 | 52.556 | 48.200 |
SCC | 71.200 | 69.700 | 70.442 | 73.600 | ||
Normal | 63.213 | 54.929 | 58.579 | 57.324 | ||
SAVE | Dysplasia | 66.400 | 43.400 | 52.491 | 44.800 | |
SCC | 85.100 | 69.000 | 76.209 | 75.100 | ||
Normal | 60.558 | 53.012 | 56.367 | 55.210 | ||
YoloV6 | WLI | Dysplasia | 72.300 | 49.400 | 58.700 | 53.100 |
SCC | 88.600 | 69.200 | 77.700 | 73.200 | ||
Normal | 63.628 | 59.818 | 61.521 | 60.812 | ||
SAVE | Dysplasia | 73.800 | 49.200 | 59.100 | 55.800 | |
SCC | 86.000 | 68.200 | 76.100 | 76.800 | ||
Normal | 65.428 | 55.229 | 59.618 | 58.076 | ||
ScaledYoloV4 | WLI | Dysplasia | 74.900 | 47.500 | 58.133 | 41.200 |
SCC | 91.900 | 65.400 | 76.418 | 63.300 | ||
Normal | 65.351 | 56.178 | 60.256 | 49.968 | ||
SAVE | Dysplasia | 76.400 | 53.400 | 62.862 | 48.600 | |
SCC | 82.400 | 71.800 | 76.736 | 68.800 | ||
Normal | 63.997 | 57.428 | 60.448 | 51.824 | ||
YOLOV3 | WLI | Dysplasia | 69.500 | 38.800 | 39.400 | 49.800 |
SCC | 88.600 | 60.000 | 63.900 | 71.600 | ||
Normal | 56.713 | 57.065 | 53.674 | 56.369 | ||
SAVE | Dysplasia | 74.700 | 45.100 | 45.800 | 56.200 | |
SCC | 87.400 | 65.900 | 71.300 | 75.100 | ||
Normal | 56.282 | 52.865 | 51.158 | 53.969 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, W.-C.; Huang, C.-W.; Su, C.-C.; Mukundan, A.; Karmakar, R.; Chen, T.-H.; Avhad, A.R.; Chou, C.-K.; Wang, H.-C. Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging. Diagnostics 2025, 15, 1686. https://doi.org/10.3390/diagnostics15131686
Weng W-C, Huang C-W, Su C-C, Mukundan A, Karmakar R, Chen T-H, Avhad AR, Chou C-K, Wang H-C. Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging. Diagnostics. 2025; 15(13):1686. https://doi.org/10.3390/diagnostics15131686
Chicago/Turabian StyleWeng, Wei-Chun, Chien-Wei Huang, Chang-Chao Su, Arvind Mukundan, Riya Karmakar, Tsung-Hsien Chen, Amey Rajesh Avhad, Chu-Kuang Chou, and Hsiang-Chen Wang. 2025. "Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging" Diagnostics 15, no. 13: 1686. https://doi.org/10.3390/diagnostics15131686
APA StyleWeng, W.-C., Huang, C.-W., Su, C.-C., Mukundan, A., Karmakar, R., Chen, T.-H., Avhad, A. R., Chou, C.-K., & Wang, H.-C. (2025). Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging. Diagnostics, 15(13), 1686. https://doi.org/10.3390/diagnostics15131686