Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Image Acquisition
2.3. Deep Learning-Accelerated VIBEDL Sequence
2.4. Image Analysis
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Qualitative Image Evaluation
3.2.1. Qualitative Image Evaluation for T1w VIBE Pre-Contrast
3.2.2. Qualitative Image Evaluation for T1w VIBE Post-Contrast
3.3. Qualitative Image Evaluation for Post-Contrast Subtraction Images (SUB)
3.4. Quantitative Image Evaluation: Lesion Visibility and Diameter
4. Discussion
4.1. Limitations
4.2. Scientific Contribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BI-RADS | Breast Imaging Reporting and Data System |
BRCA | Breast cancer gene |
CAIPIRINHA | Controlled aliasing in parallel imaging results in higher acceleration |
CNR | Contrast-to-noise ratio |
DL | Deep learning |
DCIS | Ductal carcinoma in situ |
DCE MRI | Dynamic contrast-enhanced MRI |
EUSOBI | European Society of Breast Imaging |
ILC | Invasive lobular breast carcinoma |
NST | No special type |
ROI | Region of interest |
SNR | Signal–to-noise ratio |
SUB | Subtraction |
TA | Acquisition time |
TE | Echo time |
TR | Repetition time |
VIBE | Volumetric interpolated breath-hold |
W | Weighted |
WIP | Work-in-progress |
References
- Mann, R.M.; Balleyguier, C.; Baltzer, P.A.; Bick, U.; Colin, C.; Cornford, E.; Evans, A.; Fallenberg, E.; Forrai, G.; Fuchsjager, M.H.; et al. Breast MRI: EUSOBI recommendations for women’s information. Eur. Radiol. 2015, 25, 3669–3678. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Kuhl, C.K.; Moy, L. Contrast-enhanced MRI for breast cancer screening. J. Magn. Reson. Imaging 2019, 50, 377–390. [Google Scholar] [CrossRef]
- Sharma, S.; Vicenty-Latorre, F.G.; Elsherif, S.; Sharma, S. Role of MRI in Breast Cancer Staging: A Case-Based Review. Cureus 2021, 13, e20752. [Google Scholar] [CrossRef] [PubMed]
- Teichgraeber, D.C.; Guirguis, M.S.; Whitman, G.J. Breast Cancer Staging: Updates in the AJCC Cancer Staging Manual, 8th Edition, and Current Challenges for Radiologists, From the AJR Special Series on Cancer Staging. Am. J. Roentgenol. 2021, 217, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the Art. Radiology 2019, 292, 520–536. [Google Scholar] [CrossRef]
- Radak, M.; Lafta, H.Y.; Fallahi, H. Machine learning and deep learning techniques for breast cancer diagnosis and classification: A comprehensive review of medical imaging studies. J. Cancer Res. Clin. Oncol. 2023, 149, 10473–10491. [Google Scholar] [CrossRef]
- Le, E.P.V.; Wang, Y.; Huang, Y.; Hickman, S.; Gilbert, F.J. Artificial intelligence in breast imaging. Clin. Radiol. 2019, 74, 357–366. [Google Scholar] [CrossRef]
- Din, N.M.U.; Dar, R.A.; Rasool, M.; Assad, A. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Comput. Biol. Med. 2022, 149, 106073. [Google Scholar] [CrossRef]
- Jiang, B.; Bao, L.; He, S.; Chen, X.; Jin, Z.; Ye, Y. Deep learning applications in breast cancer histopathological imaging: Diagnosis, treatment, and prognosis. Breast Cancer Res. 2024, 26, 137. [Google Scholar] [CrossRef]
- Chen, Z.; Pawar, K.; Ekanayake, M.; Pain, C.; Zhong, S.; Egan, G.F. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges. J. Digit. Imaging 2023, 36, 204–230. [Google Scholar] [CrossRef]
- Bayareh-Mancilla, R.; Medina-Ramos, L.A.; Toriz-Vazquez, A.; Hernandez-Rodriguez, Y.M.; Cigarroa-Mayorga, O.E. Automated Computer-Assisted Medical Decision-Making System Based on Morphological Shape and Skin Thickness Analysis for Asymmetry Detection in Mammographic Images. Diagnostics 2023, 13, 3440. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, D.; Takahashi, K.; Kurosawa, D.; Takaya, E.; Oba, K.; Yagishita, K.; Fukuda, T.; Tsunoda, H.; Ueda, T. Deep learning model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images. Radiol. Phys. Technol. 2023, 16, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.Z.; Ni, D.; Chou, Y.H.; Qin, J.; Tiu, C.M.; Chang, Y.C.; Huang, C.S.; Shen, D.; Chen, C.M. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci. Rep. 2016, 6, 24454. [Google Scholar] [CrossRef] [PubMed]
- Witowski, J.; Heacock, L.; Reig, B.; Kang, S.K.; Lewin, A.; Pysarenko, K.; Patel, S.; Samreen, N.; Rudnicki, W.; Luczynska, E.; et al. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med. 2022, 14, eabo4802. [Google Scholar] [CrossRef]
- Yaqub, M.; Jinchao, F.; Arshid, K.; Ahmed, S.; Zhang, W.; Nawaz, M.Z.; Mahmood, T. Deep Learning-Based Image Reconstruction for Different Medical Imaging Modalities. Comput. Math. Methods Med. 2022, 2022, 8750648. [Google Scholar] [CrossRef]
- Chaika, M.; Afat, S.; Wessling, D.; Afat, C.; Nickel, D.; Kannengiesser, S.; Herrmann, J.; Almansour, H.; Mannlin, S.; Othman, A.E.; et al. Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time. Diagn. Interv. Imaging 2022, 104, 53–59. [Google Scholar] [CrossRef]
- Wessling, D.; Gassenmaier, S.; Olthof, S.C.; Benkert, T.; Weiland, E.; Afat, S.; Preibsch, H. Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI. Eur. J. Radiol. 2023, 166, 110948. [Google Scholar] [CrossRef]
- Almansour, H.; Herrmann, J.; Gassenmaier, S.; Lingg, A.; Nickel, M.D.; Kannengiesser, S.; Arberet, S.; Othman, A.E.; Afat, S. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity. Acad. Radiol. 2023, 30, 863–872. [Google Scholar] [CrossRef]
- Gassenmaier, S.; Warm, V.; Nickel, D.; Weiland, E.; Herrmann, J.; Almansour, H.; Wessling, D.; Afat, S. Thin-Slice Prostate MRI Enabled by Deep Learning Image Reconstruction. Cancers 2023, 15, 578. [Google Scholar] [CrossRef]
- Man, C.; Lau, V.; Su, S.; Zhao, Y.; Xiao, L.; Ding, Y.; Leung, G.K.K.; Leong, A.T.L.; Wu, E.X. Deep learning enabled fast 3D brain MRI at 0.055 tesla. Sci. Adv. 2023, 9, eadi9327. [Google Scholar] [CrossRef]
- Brendel, J.M.; Jacoby, J.; Dehdab, R.; Ursprung, S.; Fritz, V.; Werner, S.; Herrmann, J.; Brendlin, A.S.; Gassenmaier, S.; Schick, F.; et al. Prospective Deployment of Deep Learning Reconstruction Facilitates Highly Accelerated Upper Abdominal MRI. Acad. Radiol. 2024, 31, 4965–4973. [Google Scholar] [CrossRef] [PubMed]
- Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, M.P.; Sodickson, D.K.; Pock, T.; Knoll, F. Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 2018, 79, 3055–3071. [Google Scholar] [CrossRef] [PubMed]
- Kiryu, S.; Akai, H.; Yasaka, K.; Tajima, T.; Kunimatsu, A.; Yoshioka, N.; Akahane, M.; Abe, O.; Ohtomo, K. Clinical Impact of Deep Learning Reconstruction in MRI. Radiographics 2023, 43, e220133. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Yoon, J.H.; Jeon, S.K.; Choi, J.W.; Lee, J.; Kim, J.H.; Nickel, M.D.; Song, B.; Duan, T.; Lee, J.M. Enhancing gadoxetic acid-enhanced liver MRI: A synergistic approach with deep learning CAIPIRINHA-VIBE and optimized fat suppression techniques. Eur. Radiol. 2024, 34, 6712–6725. [Google Scholar] [CrossRef]
- Mesropyan, N.; Katemann, C.; Leutner, C.; Sommer, A.; Isaak, A.; Weber, O.M.; Peeters, J.M.; Dell, T.; Bischoff, L.; Kuetting, D.; et al. Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction. Acad. Radiol. 2025, 32, 3147–3156. [Google Scholar] [CrossRef]
Protocol Parameter | T1 VIBEStd | T1 VIBEDL |
---|---|---|
Resolution | 0.9 × 0.9 × 2.0 mm3 | 0.4 (i) × 0.4 (i) × 2.0 mm3 |
Matrix | 448 | 544 |
FOV | 420 × 420 mm2 | 420 × 420 mm2 |
TA/scan | 73 s | 73 s |
Number of scans (Pre-/post-contrast) | 1/7 | 1/1 |
TR/TE | 7.73/4.77 ms | 7.69/4.77 ms |
Fat saturation | None | None |
Parallel imaging factor | 2 | 2 |
Partial Fourier (phase, slice) | 7/8, 5/8 | 6/8, 6/8 |
Reconstruction mode | CAIPIRINHA | DL enhanced CAIPIRINHA with partial Fourier optimized super-resolution |
Reader 1 | Reader 2 | Percentage of Agreement Between Raters | ||||||
---|---|---|---|---|---|---|---|---|
Image Parameters T1 VIBE Sequence Precontrast | T1 VIBEStd Mean (SD) | T1 VIBEDL Mean (SD) | p-Value | T1 VIBEStd Mean (SD) | T1 VIBEDL Mean (SD) | p-Value | T1 VIBEStd | T1 VIBEDL |
Motion artefacts | 4.96 (0.19) | 4.96 (0.02) | >0.99 | 4.98 (0.13) | 4.96 (0.19) | 0.322 | 94% | 96% |
Image quality (IQ) | 4.17 (0.61) | 4.91 (0.35) | <0.001 | 3.98 (0.13) | 5.00 (0.00) | <0.001 | 60% | 92% |
Artefacts | 4.96 (0.19) | 5.000 (0.00) | 0.159 | 4.75 (0.43) | 4.30 (0.60) | <0.001 | 72% | 38% |
Sharpness | 3.47 (0.54) | 4.71 (0.57) | <0.001 | 3.04 (0.28) | 4.98 (0.14) | <0.001 | 51% | 76% |
SNR | 4.02 (0.58) | 4.78 (0.57) | <0.001 | 4.00 (0.34) | 4.92 (0.03) | <0.001 | 59% | 84% |
DC | 4.51 (0.78) | 4.67 (0.73) | 0.004 | 4.39 (0.69) | 4.61 (0.56) | 0.001 | 61% | 71% |
Reader 1 | Reader 2 | Percentage of Agreement Between Raters | ||||||
---|---|---|---|---|---|---|---|---|
Image Parameters T1 VIBE Sequence Postcontrast | T1 VIBEStd Mean (SD) | T1 VIBEDL Mean (SD) | p- Value | T1 VIBEStd Mean (SD) | T1 VIBEDL Mean (SD) | p- Value | T1 VIBEStd | T1 VIBEDL |
Motion artefacts | 4.94 (0.23) | 4.89 (0.42) | 0.261 | 4.98 (0.13) | 4.96 (0.19) | 0.322 | 92% | 87% |
Image quality (IQ) | 4.04 (0.55) | 4.75 (0.51) | <0.001 | 3.98 (0.13) | 4.98 (0.13) | * | 68% | 77% |
Artefacts | 4.81 (0.39) | 4.25 (0.55) | <0.001 | 4.75 (0.43) | 4.30 (0.60) | <0.001 | 53% | 70% |
Sharpness | 3.55 (0.57) | 4.71 (0.64) | <0.001 | 3.06 (0.31) | 4.92 (0.33) | <0.001 | 51% | 76% |
SNR | 4.65 (0.60) | 4.43 (0.74) | <0.001 | 4.06 (0.23) | 4.92 (0.27) | <0.001 | 67% | 75% |
DC | 4.43 (0.80) | 4.53 (0.83) | 0.058 | 4.59 (0.72) | 4.82 (0.43) | 0.001 | 63% | 76% |
Reader 1 | Reader 2 | Percentage of Agreement Between Raters | ||||||
---|---|---|---|---|---|---|---|---|
Image Parameters T1 VIBE SUB | T1 VIBEStd Mean (SD) | T1 VIBEDL Mean (SD) | p-Value | T1 VIBEStd Mean (SD) | T1 VIBEDL Mean (SD) | p-Value | T1 VIBEStd | T1 VIBEDL |
Motion artefacts | 4.25 (0.67) | 4.09 (0.79) | 0.10 | 4.02 (0.36) | 4.00 (0.39) | 0.766 | 55% | 49% |
Image quality (IQ) | 3.79 (0.66) | 4.58 (0.71) | <0.001 | 3.94 (0.30) | 4.45 (0.63) | <0.001 | 70% | 40% |
Artefacts | 4.83 (0.42) | 4.36 (0.73) | <0.001 | 4.58 (0.49) | 4.19 (0.55) | <0.001 | 47% | 34% |
Sharpness | 3.57 (0.60) | 4.83 (0.612) | <0.001 | 3.11 (0.32) | 4.89 (0.37) | <0.001 | 43% | 85% |
SNR | 4.17 (0.70) | 4.83 (0.61) | <0.001 | 3.98 (0.23) | 4.70 (0.54) | <0.001 | 53% | 66% |
DC | 4.79 (0.68) | 4.85 (0.63) | 0.083 | 4.77 (0.46) | 4.92 (0.26) | 0.004 | 81% | 91% |
Lesion Size in mm (Std) | Mean Value Reader 1 | Mean Value Reader 2 |
---|---|---|
SUB VIBEStd | 26.71 (25.09) | 30.89 (26.64) |
SUB VIBEDL | 26.63 (25.00) | 30.04 (26.65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olthof, S.-C.; Nickel, M.D.; Weiland, E.; Leyhr, D.; Afat, S.; Nikolaou, K.; Preibsch, H. Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T. Diagnostics 2025, 15, 1681. https://doi.org/10.3390/diagnostics15131681
Olthof S-C, Nickel MD, Weiland E, Leyhr D, Afat S, Nikolaou K, Preibsch H. Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T. Diagnostics. 2025; 15(13):1681. https://doi.org/10.3390/diagnostics15131681
Chicago/Turabian StyleOlthof, Susann-Cathrin, Marcel Dominik Nickel, Elisabeth Weiland, Daniel Leyhr, Saif Afat, Konstantin Nikolaou, and Heike Preibsch. 2025. "Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T" Diagnostics 15, no. 13: 1681. https://doi.org/10.3390/diagnostics15131681
APA StyleOlthof, S.-C., Nickel, M. D., Weiland, E., Leyhr, D., Afat, S., Nikolaou, K., & Preibsch, H. (2025). Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T. Diagnostics, 15(13), 1681. https://doi.org/10.3390/diagnostics15131681