Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Spectrum Aided Vision Enhancer
2.3. Model Architecture
2.3.1. EfficientNetB2
2.3.2. EfficientNetB7
2.3.3. ResNet 50
2.3.4. ResNet 101
2.3.5. VGG 16
2.4. Evaluation Metrics
3. Results
3.1. Efficient Net B2
3.2. Efficient Net B7
3.3. ResNet 50
3.4. Resnet 101
3.5. VGG16
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hmoud Al-Adhaileh, M.; Mohammed Senan, E.; Alsaade, F.W.; Aldhyani, T.H.H.; Alsharif, N.; Abdullah Alqarni, A.; Uddin, M.I.; Alzahrani, M.Y.; Alzain, E.D.; Jadhav, M.E. Deep Learning Algorithms for Detection and Classification of Gastrointestinal Diseases. Complexity 2021, 2021, 6170416. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, M.A.; Ahmed, F.; Mittal, M.; Goyal, L.M.; Hemanth, D.J.; Satapathy, S.C. Gastrointestinal Diseases Segmentation and Classification Based on Duo-Deep Architectures. Pattern Recognit. Lett. 2020, 131, 193–204. [Google Scholar] [CrossRef]
- Fass, R.; Boeckxstaens, G.E.; El-Serag, H.; Rosen, R.; Sifrim, D.; Vaezi, M.F. Gastro-Oesophageal Reflux Disease. Nat. Rev. Dis. Primers 2021, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Abbass, A.; Khalid, S.; Boppana, V.; Hanson, J.; Lin, H.; McCarthy, D. Giant Gastric Ulcers: An Unusual Culprit. Dig. Dis. Sci. 2020, 65, 2811–2817. [Google Scholar] [CrossRef]
- Wu, Y.; Murray, G.K.; Byrne, E.M.; Sidorenko, J.; Visscher, P.M.; Wray, N.R. GWAS of Peptic Ulcer Disease Implicates Helicobacter Pylori Infection, Other Gastrointestinal Disorders and Depression. Nat. Commun. 2021, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Kővári, B.; Kim, B.H.; Lauwers, G.Y. The Pathology of Gastric and Duodenal Polyps: Current Concepts. Histopathology 2021, 78, 106–124. [Google Scholar] [CrossRef]
- Tripathi, P.R.; Sen Sarma, M.; Yachha, S.K.; Lal, R.; Srivastava, A.; Poddar, U. Gastrointestinal Polyps and Polyposis in Children: Experience of Endoscopic and Surgical Outcomes. Dig. Dis. 2021, 39, 25–32. [Google Scholar] [CrossRef]
- Low, E.E.; Dellon, E.S. Emerging Insights into the Epidemiology, Pathophysiology, Diagnostic and Therapeutic Aspects of Eosinophilic Oesophagitis and Other Eosinophilic Gastrointestinal Diseases. Aliment. Pharmacol. Ther. 2024, 59, 322–340. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Camargo, M.C.; El-Omar, E.; Liou, J.-M.; Peek, R.; Schulz, C.; Smith, S.I.; Suerbaum, S. Helicobacter Pylori Infection. Nat. Rev. Dis. Primers 2023, 9, 19. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Dore, M.P.; Graham, D.Y. Diagnosis and Treatment of Helicobacter Pylori Infection. Annu. Rev. Med. 2022, 73, 183–195. [Google Scholar] [CrossRef]
- Tarasconi, A.; Coccolini, F.; Biffl, W.L.; Tomasoni, M.; Ansaloni, L.; Picetti, E.; Molfino, S.; Shelat, V.; Cimbanassi, S.; Weber, D.G. Perforated and Bleeding Peptic Ulcer: WSES Guidelines. World J. Emerg. Surg. 2020, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Aelvoet, A.S.; Buttitta, F.; Ricciardiello, L.; Dekker, E. Management of Familial Adenomatous Polyposis and MUTYH-Associated Polyposis; New Insights. Best Pract. Res. Clin. Gastroenterol. 2022, 58, 101793. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Roos, V.H.; Anele, C.; Walton, S.-J.; Cuthill, V.; Suzuki, N.; Bastiaansen, B.A.; Clark, S.K.; von Roon, A.; Dekker, E. Gastric Adenomas and Their Management in Familial Adenomatous Polyposis. Endoscopy 2021, 53, 795–801. [Google Scholar] [CrossRef]
- Kanth, P.; Inadomi, J.M. Screening and Prevention of Colorectal Cancer. BMJ 2021, 374, n1855. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Collins, M.H.; Katzka, D.A.; Hudgens, S.; Lan, L.; Williams, J.; Vera-Llonch, M.; Hirano, I. Improvements in Dysphagia and Pain with Swallowing in Patients with Eosinophilic Esophagitis Receiving Budesonide Oral Suspension. Clin. Gastroenterol. Hepatol. 2021, 19, 699–706. e694. [Google Scholar] [CrossRef]
- Black, C.J.; Drossman, D.A.; Talley, N.J.; Ruddy, J.; Ford, A.C. Functional Gastrointestinal Disorders: Advances in Understanding and Management. Lancet 2020, 396, 1664–1674. [Google Scholar] [CrossRef]
- Fati, S.M.; Senan, E.M.; Azar, A.T. Hybrid and Deep Learning Approach for Early Diagnosis of Lower Gastrointestinal Diseases. Sensors 2022, 22, 4079. [Google Scholar] [CrossRef]
- Ben-Aharon, I.; van Laarhoven, H.W.; Fontana, E.; Obermannova, R.; Nilsson, M.; Lordick, F. Early-Onset Cancer in the Gastrointestinal Tract Is on the Rise—Evidence and Implications. Cancer Discov. 2023, 13, 538–551. [Google Scholar] [CrossRef]
- Chetcuti Zammit, S.; Sidhu, R. Capsule endoscopy–Recent Developments and Future Directions. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 127–137. [Google Scholar] [CrossRef]
- Soffer, S.; Klang, E.; Shimon, O.; Nachmias, N.; Eliakim, R.; Ben-Horin, S.; Kopylov, U.; Barash, Y. Deep Learning for Wireless Capsule Endoscopy: A Systematic Review and Meta-Analysis. Gastrointest. Endosc. 2020, 92, 831–839. e838. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Chun, H.J. Capsule Endoscopy: Pitfalls and Approaches to Overcome. Diagnostics 2021, 11, 1765. [Google Scholar] [CrossRef]
- Wu, C.C.H.; Namasivayam, V.; Li, J.W.; Khor, C.J.; Fock, K.M.; Law, N.M.; Wang, L.M.; Ang, T.L. A Prospective Randomized Tandem Gastroscopy Pilot Study of Linked Color Imaging Versus White Light Imaging for Detection of Upper Gastrointestinal Lesions. J. Gastroenterol. Hepatol. 2021, 36, 2562–2567. [Google Scholar] [CrossRef]
- Shinozaki, S.; Kobayashi, Y.; Hayashi, Y.; Sakamoto, H.; Sunada, K.; Lefor, A.K.; Yamamoto, H. Colon Polyp Detection Using Linked Color Imaging Compared to White Light Imaging: Systematic Review and Meta-Analysis. Dig. Endosc. 2020, 32, 874–881. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Shen, Z.; Zhang, X.; Sang, J.; Ding, Y.; Yang, X.; Li, J.; Chen, M.; Jin, C. Convolutional Neural Network for the Diagnosis of Early Gastric Cancer Based on Magnifying Narrow Band Imaging. Gastric Cancer 2020, 23, 126–132. [Google Scholar] [CrossRef]
- Ohmori, M.; Ishihara, R.; Aoyama, K.; Nakagawa, K.; Iwagami, H.; Matsuura, N.; Shichijo, S.; Yamamoto, K.; Nagaike, K.; Nakahara, M. Endoscopic Detection and Differentiation of Esophageal Lesions Using a Deep Neural Network. Gastrointest. Endosc. 2020, 91, 301–309. e301. [Google Scholar] [CrossRef]
- Yoshida, N.; Doyama, H.; Yano, T.; Horimatsu, T.; Uedo, N.; Yamamoto, Y.; Kakushima, N.; Kanzaki, H.; Hori, S.; Yao, K. Early Gastric Cancer Detection in High-Risk Patients: A Multicentre Randomised Controlled Trial on the Effect of Second-Generation Narrow Band Imaging. Gut 2021, 70, 67–75. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Aoyama, K.; Tokai, Y.; Hirasawa, T.; Yoshimizu, S.; Ishiyama, A.; Yoshio, T.; Tsuchida, T.; Fujisaki, J.; Tada, T. Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging. Dig. Dis. Sci. 2020, 65, 1355–1363. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Karmakar, R.; Mukundan, A.; Tsao, Y.-M.; Sung, T.-C.; Lu, C.-L.; Wang, H.-C. Spectrum Aided Vision Enhancer Enhances Mucosal Visualization by Hyperspectral Imaging in Capsule Endoscopy. Sci. Rep. 2024, 14, 22243. [Google Scholar] [CrossRef] [PubMed]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Raju, A.S.N.; Jayavel, K.; Rajalakshmi, T. An Advanced Diagnostic ColoRectalCADx Utilises CNN and Unsupervised Visual Explanations to Discover Malignancies. Neural Comput. Appl. 2023, 35, 20631–20662. [Google Scholar] [CrossRef]
- Demirbaş, A.A.; Üzen, H.; Fırat, H. Spatial-Attention ConvMixer Architecture for Classification and Detection of Gastrointestinal Diseases Using the Kvasir Dataset. Health Inf. Sci. Syst. 2024, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Varam, D.; Khalil, L.; Shanableh, T. On-Edge Deployment of Vision Transformers for Medical Diagnostics Using the Kvasir-Capsule Dataset. Appl. Sci. 2024, 14, 8115. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Sun, P. Deep Learning Model for Gastrointestinal Polyp Segmentation. PeerJ Comput. Sci. 2025, 11, e2924. [Google Scholar] [CrossRef] [PubMed]
- Deeba, F.; Bui, F.M.; Wahid, K.A. Computer-Aided Polyp Detection Based on Image Enhancement and Saliency-Based Selection. Biomed. Signal Process. Control 2020, 55, 101530. [Google Scholar] [CrossRef]
- Smedsrud, P.H.; Thambawita, V.; Hicks, S.A.; Gjestang, H.; Nedrejord, O.O.; Næss, E.; Borgli, H.; Jha, D.; Berstad, T.J.D.; Eskeland, S.L. Kvasir-Capsule, a Video Capsule Endoscopy Dataset. Sci. Data 2021, 8, 142. [Google Scholar] [CrossRef]
- Joseph, V.R.; Vakayil, A. SPlit: An Optimal Method for Data Splitting. Technometrics 2022, 64, 166–176. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Benning, M.; Burger, M. Modern Regularization Methods for Inverse Problems. Acta Numer. 2018, 27, 1–111. [Google Scholar] [CrossRef]
- Lin, C.; Yang, P.; Wang, Q.; Qiu, Z.; Lv, W.; Wang, Z. Efficient and Accurate Compound Scaling for Convolutional Neural Networks. Neural Netw. 2023, 167, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Daubechies, I.; DeVore, R.; Foucart, S.; Hanin, B.; Petrova, G. Nonlinear Approximation and (Deep) ReLU Networks. Constr. Approx. 2022, 55, 127–172. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Clift, A.K.; Dodwell, D.; Lord, S.; Petrou, S.; Brady, M.; Collins, G.S.; Hippisley-Cox, J. Development and Internal-External Validation of Statistical and Machine Learning Models for Breast Cancer Prognostication: Cohort Study. BMJ 2023, 381, e073800. [Google Scholar] [CrossRef]
- Ramspek, C.L.; Jager, K.J.; Dekker, F.W.; Zoccali, C.; van Diepen, M. External Validation of Prognostic Models: What, Why, How, When and Where? Clin. Kidney J. 2021, 14, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.P.; Hadjiiski, L.M.; Samala, R.K. Computer-Aided Diagnosis in the Era of Deep Learning. Med. Phys. 2020, 47, e218–e227. [Google Scholar] [CrossRef]
- Jiang, Q.; Yu, Y.; Ren, Y.; Li, S.; He, X. A Review of Deep Learning Methods for Gastrointestinal Diseases Classification Applied in Computer-Aided Diagnosis System. Med. Biol. Eng. Comput. 2025, 63, 293–320. [Google Scholar] [CrossRef]
- Spadaccini, M.; Iannone, A.; Maselli, R.; Badalamenti, M.; Desai, M.; Chandrasekar, V.T.; Patel, H.K.; Fugazza, A.; Pellegatta, G.; Galtieri, P.A. Computer-Aided Detection Versus Advanced Imaging for Detection of Colorectal Neoplasia: A Systematic Review and Network Meta-Analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 793–802. [Google Scholar] [CrossRef]
Study | Dataset Used | Methodology | Originality | Results |
---|---|---|---|---|
[32] | Hyper Kvasir, Kvasir2, CVC-ClinicDB | CNNs (ResNet-50V2, DenseNet-201, VGG-16, RDV-22) combined with SVM and LSTM; K-means for tumour localization | Introduces a multi-phase diagnostic system integrating CNNs with SVM, LSTM, and K-means for colorectal cancer detection | Achieved up to 98.91% accuracy with DenseNet-201; 95.87% accuracy in tumour localisation using K-means |
[33] | Kvasir dataset | Spatial-attention ConvMixer architecture for disease classification and detection | Proposes a novel ConvMixer architecture enhanced with spatial attention for improved classification accuracy | Achieved 93.37% accuracy, outperforming other models like ViT and ResNet50 |
[34] | Kvasir-Capsule dataset | Vision Transformers (ViTs) with TensorFlow Lite quantisation for on-edge deployment | Focuses on deploying ViTs for real-time medical diagnostics on edge devices | Demonstrated effective deployment with reduced model size and maintained performance |
[35] | Kvasir-SEG dataset | Deep learning model with encoder-decoder architecture using ConvNeXt and Transformer blocks | Introduces a cross-attention mechanism and Residual Transformer Block for polyp segmentation | Achieved Dice coefficient of 0.8715 and mIoU of 0.8021 |
Proposed Method | Kvasir dataset | Multiple machine learning models, including EfficientNet, ResNet and VGG 16 | Introduced a novel HSI conversion algorithm that can convert any WLI image into an HSI image | Accuracy improvements from 85% (WLI) to 92% (SAVE) |
Class | Train | Validation | Test | Total |
---|---|---|---|---|
Normal | 800 | 500 | 200 | 1500 |
Ulcer | 800 | 500 | 200 | 1500 |
Polyps | 800 | 500 | 200 | 1500 |
Esophagitis | 800 | 500 | 200 | 1500 |
Total | 3200 | 2000 | 800 | 6000 |
Type | Classes | Precision | Recall | F1 Score | Accuracy |
---|---|---|---|---|---|
WLI | Normal | 97% | 100% | 98% | 96% |
Ulcer | 96% | 92% | 94% | ||
Polyps | 94% | 94% | 94% | ||
Oesophagitis | 99% | 100% | 99% | ||
SAVE | Normal | 98% | 100% | 99% | 97% |
Ulcer | 95% | 97% | 96% | ||
Polyps | 97% | 94% | 95% | ||
Oesophagitis | 100% | 100% | 100% |
Type | Classes | Precision | Recall | F1 Score | Accuracy |
---|---|---|---|---|---|
WLI | Normal | 98% | 100% | 99% | 97% |
Ulcer | 99% | 92% | 95% | ||
Polyps | 95% | 97% | 96% | ||
Oesophagitis | 97% | 100% | 98% | ||
SAVE | Normal | 100% | 100% | 100% | 98% |
Ulcer | 97% | 94% | 95% | ||
Polyps | 94% | 97% | 96% | ||
Oesophagitis | 99% | 100% | 100% |
Type | Classes | Precision | Recall | F1 Score | Accuracy |
---|---|---|---|---|---|
WLI% | Normal | 98% | 100% | 99% | 92% |
Ulcer | 98% | 72% | 83% | ||
Polyps | 80% | 97% | 87% | ||
Oesophagitis | 98% | 100% | 99% | ||
SAVE | Normal | 97% | 100% | 98% | 95% |
Ulcer | 89% | 96% | 93% | ||
Polyps | 97% | 85% | 91% | ||
Oesophagitis | 99% | 100% | 99% |
Type | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WLI | Normal | 98% | 100% | 99% | 93% |
Ulcer | 96% | 76% | 85% | ||
Polyps | 82% | 95% | 88% | ||
Oesophagitis | 98% | 100% | 99% | ||
SAVE | Normal | 100% | 100% | 100% | 97% |
Ulcer | 94% | 95% | 95% | ||
Polyps | 96% | 94% | 95% | ||
Oesophagitis | 100% | 100% | 100% |
Type | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WLI | Normal | 86% | 100% | 92% | 85% |
Ulcer | 96% | 54% | 69% | ||
Polyps | 71% | 89% | 79% | ||
Oesophagitis | 98% | 99% | 99% | ||
SAVE | Normal | 94% | 100% | 97% | 95% |
Ulcer | 96% | 88% | 91% | ||
Polyps | 91% | 93% | 92% | ||
Oesophagitis | 99% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-W.; Su, C.-C.; Chou, C.-K.; Mukundan, A.; Karmakar, R.; Chen, T.-H.; Shukla, P.; Gupta, D.; Wang, H.-C. Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection. Diagnostics 2025, 15, 1664. https://doi.org/10.3390/diagnostics15131664
Huang C-W, Su C-C, Chou C-K, Mukundan A, Karmakar R, Chen T-H, Shukla P, Gupta D, Wang H-C. Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection. Diagnostics. 2025; 15(13):1664. https://doi.org/10.3390/diagnostics15131664
Chicago/Turabian StyleHuang, Chien-Wei, Chang-Chao Su, Chu-Kuang Chou, Arvind Mukundan, Riya Karmakar, Tsung-Hsien Chen, Pranav Shukla, Devansh Gupta, and Hsiang-Chen Wang. 2025. "Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection" Diagnostics 15, no. 13: 1664. https://doi.org/10.3390/diagnostics15131664
APA StyleHuang, C.-W., Su, C.-C., Chou, C.-K., Mukundan, A., Karmakar, R., Chen, T.-H., Shukla, P., Gupta, D., & Wang, H.-C. (2025). Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection. Diagnostics, 15(13), 1664. https://doi.org/10.3390/diagnostics15131664