Relationship Between Effective Dose, Alternative Metrics, and SSDE: Experiences with Two CT Dose-Monitoring Systems
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed Tomography |
DLP | Dose-length product |
SSDE | Size-specific dose estimate |
ED | effective dose |
SED | size-specific dose |
DMS | dose-monitoring system |
DWTM | DoseWatchTM |
SEDDMS | bodyweight-corrected effective dose by DMS |
EDDMS | effective dose calculated by DMS |
EDDW | effective dose calculated by DWTM |
CTDI | CT dose index |
ICRP | International Commission on Radiological Protection |
GE | General Electric |
AAPM | American Association of Physicists in Medicine |
Deff | effective diameter of the patient |
Dwater | water-equivalent diameter |
CAP | Chest-abdomen-pelvis |
BMI | body mass index |
DRL | diagnostic reference level |
References
- Council Directive 2013/59/Euratom of 5 December 2013 Laying Down Basic Safety Standards for Protection Against the Dangers arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom. Off. J. Eur. Union 2014, L13, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2013/59/oj (accessed on 28 June 2024).
- Crowley, C.; Ekpo, E.U.; Carey, B.W.; Joyce, S.; Kennedy, C.; Grey, T.; Duffy, B.; Kavanagh, R.; James, K.; Moloney, F.; et al. Radiation dose tracking in computed tomography: Red alerts and feedback. Implementing a radiation dose alert system in CT. Radiography 2021, 27, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.; Rogers, A. A comparison of two peak skin dose metrics calculated by patient dose management systems: Implications for clinical management. Br. J. Radiol. 2021, 94, 20200924. [Google Scholar] [CrossRef]
- Tsalafoutas, I.A.; Kharita, M.H.; Al-Naemi, H.; Kalra, M.K. Radiation dose monitoring in computed tomography: Status, options and limitations. Phys. Med. 2020, 79, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Shin, H.J.; Kim, M.J.; Lee, M.J. Comparison of effective radiation doses from X-ray, CT, and PET/CT in pediatric patients with neuroblastoma using a dose monitoring program. Diagn. Interv. Radiol 2016, 22, 390–394. [Google Scholar] [CrossRef]
- Akyea-Larbi, K.O.; Tetteh, M.A.; Martinsen, A.C.T.; Hasford, F.; Inkoom, S.; Jensen, K. Benchmarking of a new automatic CT radiation dose calculator. Radiat. Prot. Dosim. 2020, 191, 361–368. [Google Scholar] [CrossRef]
- Huda, W.; Ogden, K.M.; Khorasani, M.R. Converting dose-length product to effective dose at CT. Radiology 2008, 248, 995–1003. [Google Scholar] [CrossRef]
- Deak, P.D.; Smal, Y.; Kalender, W.A. Multisection CT protocols: Sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010, 257, 158–166. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection; ICRP Publication 103; Elsevier: Oxford, UK, 2007; pp. 1–332. [Google Scholar]
- Huda, W.; Schoepf, U.J.; Abro, J.A.; Mah, E.; Costello, P. Radiation-Related Cancer Risks in a Clinical Patient Population Undergoing Cardiac CT. Am. J. Roentgenol. 2011, 196, W159–W165. [Google Scholar] [CrossRef]
- Martin, C.J.; Abuhaimed, A.; Lee, C. Dose Quantities for Measurement and Comparison of Doses to Individual Patients in Computed Tomography (CT). J. Radiol. Prot. 2021, 41, 792. [Google Scholar] [CrossRef]
- Martin, C.J.; Abuhaimed, A. The Role of Effective Dose in Medicine Now and into the Future. Phys. Med. Biol. 2025, 70, 01TR01. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.J.; Harrison, J.D.; Rehani, M.M. Effective dose from radiation exposure in medicine: Past, present, and future. Phys. Med. Eur. J. Med. Phys. 2020, 79, 87–92. [Google Scholar] [CrossRef]
- Lee, C.; Liu, J.; Griffin, K.; Folio, L.; Summers, R.M. Adult patient-specific CT organ dose estimations using automated segmentations and Monte Carlo simulations. Biomed. Phys. Eng. Express 2020, 6, 045016. [Google Scholar] [CrossRef]
- Choi, C.; Yeom, Y.S.; Lee, H.; Han, H.; Shin, B.; Nguyen, T.T.; Kim, C.H. Body-size-dependent phantom library constructed from ICRP mesh-type reference computational phantoms. Phys. Med. Biol. 2020, 65, 125014. [Google Scholar] [CrossRef]
- Bagherzadeh, S.; MirDerikvand, A.; MohammadSharifi, A. Evaluation of Radiation Dose and Radiation-Induced Cancer Risk Associated with Routine CT Scan Examinations. Radiat. Phys. Chem. 2024, 217, 111521. [Google Scholar] [CrossRef]
- Huda, W.; Rowlett, W.T.; Schoepf, U.J. Radiation dose at cardiac computed tomography: Facts and fiction. J. Thorac. Imaging 2010, 25, 204–212. [Google Scholar] [CrossRef]
- American Association of Physicists in Medicine (AAPM). Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations; AAPM Report No. 204; AAPM: College Park, MD, USA, 2011. [Google Scholar]
- American Association of Physicists in Medicine (AAPM). Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT; AAPM Report No. 220; AAPM: College Park, MD, USA, 2014. [Google Scholar]
- AAPM Report 96. In The Measurement, Reporting, and Management of Radiation Dose in CT; American Association of Physicists in Medicine: College Park, MD, USA, 2008.
- Zancopè, N.; De Monte, F.; Simeone, E.; Giannone, A.; Lombardi, R.; Mele, A.; Zorz, A.; Di Paola, A.; Causin, F.; Paiusco, M. Validation of SSDE calculation in a modern CT scanner and correlation with effective dose. Sci. Rep. 2025, 15, 6091. [Google Scholar] [CrossRef] [PubMed]
- Akhilesh, P.; Pathan, M.S.; Sharma, S.D.; Sapra, B.K. Size specific dose estimates and effective dose in multiphase abdomen-pelvis CT examinations. Radiat. Phys. Chem. 2025, 226, 112269. [Google Scholar] [CrossRef]
- Gabusi, M.; Ricardi, L.; Aliberti, C.; Vio, S.; Paiusco, M. Radiation dose in chest CT: Assessment of size-specific dose estimates based on water-equivalent correction. Phys. Med. Eur. J. Med. Phys. 2016, 32, 393–397. [Google Scholar] [CrossRef]
- Juszczyk, J.; Badura, P.; Czajkowska, J.; Wijata, A.; Andrzejewski, J.; Bozek, P.; Smolinski, M.; Biesok, M.; Sage, A.; Rudzki, M.; et al. Automated size-specific dose estimates using deep learning image processing. Med. Image Anal. 2020, 68, 101898. [Google Scholar] [CrossRef]
- O’Neill, S.; Kavanagh, R.G.; Carey, B.W.; Moore, N.; Maher, M.; O’Connor, O.J. Using body mass index to estimate individualised patient radiation dose in abdominal computed tomography. Eur. Radiol. Exp. 2018, 28, 38. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, B.; Getzin, T.; Kaireit, T.F.; Ringe, K.I.; Jamali, L.; Wacker, F.; Werncke, T.; Raatschen, H.J. Correlation of size-dependent conversion factor and body-mass-index using size-specific dose estimates formalism in CT examinations. Eur. J. Radiol. 2018, 100, 130–134. [Google Scholar] [CrossRef]
- Satharasinghe, D.M.; Jeyasugiththan, J.; Wanninayake, W.M.N.M.B.; Pallewatte, A.S. Size-specific dose estimates (SSDEs) for computed tomography and influencing factors on it: A systematic review. J. Radiol. Prot. 2021, 41, R108–R124. [Google Scholar] [CrossRef]
- Christner, J.A.; Kofler, J.M.; McCollough, C.H. Estimating effective dose for CT using dose-length product compared with using organ doses: Consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. Am. J. Roentgenol. 2010, 194, 881–889. [Google Scholar] [CrossRef]
- Huda, W.; Mettler, F.A. Volume CT Dose Index and Dose-Length Product Displayed during CT: What Good Are They? Radiology 2011, 258, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Chatzoglou, V.; Kottou, S.; Nikolopoulos, D.; Molfetas, M.; Papailiou, I.; Tsapaki, V. Management and Optimisation of the Dose in Computed Tomography via a Dose Tracking Software. OMICS J. Radiol. 2016, 5, 227. [Google Scholar] [CrossRef]
- Osman, N.D.; Isa, S.M.; Karim, N.K.A.; Ismail, N.; Roslee, M.A.A.M.; Naharuddin, H.M.; Razali, M.A.S.M. Radiation dose management in CT imaging: Initial experience with commercial dose watch software. J. Phys. Conf. Ser. 2020, 1497, 012020. [Google Scholar] [CrossRef]
- Inoue, Y. Radiation Dose Management in Computed Tomography: Introduction to the Practice at a Single Facility. Tomography 2023, 6, 955–966. [Google Scholar] [CrossRef]
- Vano, E. Challenges for managing the cumulative effective dose for patients. Br. J. Radiol. 2020, 93, 20200814. [Google Scholar] [CrossRef]
- Brambilla, M.; Vassileva, J.; Kuchcinska, A.; Rehani, M.M. Multinational data on cumulative radiation exposure of patients from recurrent radiological procedures: Call for action. Eur. Radiol. 2020, 30, 2493–2501. [Google Scholar] [CrossRef]
- Rehani, M.M.; Melick, E.R.; Alvi, R.M.; Doda, K.R.; Batool-Anwar, S.; Neilan, T.G.; Bettmann, M. Patients undergoing recurrent CT exams: Assessment of patients with non-malignant diseases, reasons for imaging and imaging appropriateness. Eur. Radiol. 2020, 30, 1839–1846. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, M.; Chmelík, M.; Cannillo, B.; Klepanec, A.; Lacko, M.; Andreatta, P.; Šalát, D. Establishment of recurrent exposures reference levels for repeated computed tomography examinations in adult patients on a nationwide level in Slovakia. Eur. Radiol. 2025, 35, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, M.; Berton, L.; Balzano, R.F.; Cannillo, B.; Carriero, A.; Chauvie, S.; Gallo, T.; Cornacchia, S.; Cutaia, C.; D’Alessio, A.; et al. Optimisation of protection in the medical exposure of recurrent adult patients due to computed tomography procedures: Development of recurrent exposures reference levels. Eur. Radiol. 2024, 34, 4475–4483. [Google Scholar] [CrossRef]
- Bernardo, M.O.; Karout, L.; Morgado, F.; Ebrahimian, S.; Santos, A.S.; Amorim, C.; Filho, H.M.; Moscatelli, A.; Muglia, V.F.; Schroeder, H.; et al. Establishing national clinical diagnostic reference levels and achievable doses for CT examinations in Brazil: A prospective study. Eur. J. Radiol. 2023, 169, 111191. [Google Scholar] [CrossRef] [PubMed]
- Sebelego, I.; Acho, S.; van der Merwe, B.; Rae, W.I.D. Size based dependence of patient dose metrics, and image quality metrics for clinical indicator-based imaging protocols in abdominal CT procedures. Radiography 2023, 29, 961–974. [Google Scholar] [CrossRef]
- Tsapaki, V.; Damilakis, J.; Paulo, G.; Schegerer, A.A.; Repussard, J.; Jaschke, W.; Frija, G. CT diagnostic reference levels based on clinical indications: Results of a large-scale European survey. Eur. Radiol. 2021, 31, 4459–4469. [Google Scholar] [CrossRef]
- Paulo, G.; Damilakis, J.; Tsapaki, V. Diagnostic Reference Levels based on clinical indications in computed tomography: A literature review. Insights Imaging 2020, 11, 96. [Google Scholar] [CrossRef]
Scanned Region | Scan Length (cm) | Number of CT Exams |
---|---|---|
Abdomen-pelvis | 40–50 | 1779 |
Chest | 30–37 | 2490 |
Chest-abdomen-pelvis (CAP) | 62–70 | 2259 |
Abdomen | 15–30 | 366 |
Chest-abdomen | 40–50 | 2784 |
SEDDMS as Function of SSDEDMS | EDDMS as Function of SSDEDMS | SED as Function of SSDE | ||||
---|---|---|---|---|---|---|
Scanned Region | CT1 | CT2 | CT1 | CT2 | Martin et al. [11] | |
Abdomen and pelvis | a | 0.747 (10%) | 0.709 (4%) | 1.123 (65%) | 0.921 (35%) | 0.6813 |
b | −2.236 | −1.005 | −7.217 | −2.8 | 2.3621 | |
R2 | 0.675 | 0.874 | 0.657 | 0.936 | 0.939 | |
Chest | a | 0.548 (4%) | 0.446 (22%) | 0.714 (25%) | 0.454 (21%) | 0.5708 |
b | −0.169 | 0.059 | −1.031 | 0.0733 | 1.2599 | |
R2 | 0.905 | 0.949 | 0.850 | 0.927 | 0.972 | |
Chest-abdomen-pelvis | a | 0.749 (29%) | 0.922 (13%) | 0.935 (12%) | 1.182 (12%) | 1.0599 |
b | 1.092 | −0.580 | −0.248 | −2.179 | 2.9980 | |
R2 | 0.759 | 0.913 | 0.452 | 0.921 | 0.987 | |
Abdomen | a | 0.389 (3%) | 0.510 (34%) | −0.3793 | ||
b | −0.540 | −2.116 | 1.7078 | |||
R2 | 0.844 | 0.827 | 0.949 | |||
Chest-abdomen | a | 0.717 (8%) | 0.935 (20%) | 0.7798 | ||
b | −0.093 | −2.098 | 0.8491 | |||
R2 | 0.818 | 0.673 | 0.980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egeresi, L.S.; Urbán, L.; Dankó, Z.; Balázs, E.; Berényi, E.; Marosi, M.; Kiss, J.; Bágyi, P.; Képes, Z.; Emri, M.; et al. Relationship Between Effective Dose, Alternative Metrics, and SSDE: Experiences with Two CT Dose-Monitoring Systems. Diagnostics 2025, 15, 1654. https://doi.org/10.3390/diagnostics15131654
Egeresi LS, Urbán L, Dankó Z, Balázs E, Berényi E, Marosi M, Kiss J, Bágyi P, Képes Z, Emri M, et al. Relationship Between Effective Dose, Alternative Metrics, and SSDE: Experiences with Two CT Dose-Monitoring Systems. Diagnostics. 2025; 15(13):1654. https://doi.org/10.3390/diagnostics15131654
Chicago/Turabian StyleEgeresi, Lilla Szatmáriné, László Urbán, Zsolt Dankó, Ervin Balázs, Ervin Berényi, Mária Marosi, János Kiss, Péter Bágyi, Zita Képes, Miklós Emri, and et al. 2025. "Relationship Between Effective Dose, Alternative Metrics, and SSDE: Experiences with Two CT Dose-Monitoring Systems" Diagnostics 15, no. 13: 1654. https://doi.org/10.3390/diagnostics15131654
APA StyleEgeresi, L. S., Urbán, L., Dankó, Z., Balázs, E., Berényi, E., Marosi, M., Kiss, J., Bágyi, P., Képes, Z., Emri, M., & Balkay, L. (2025). Relationship Between Effective Dose, Alternative Metrics, and SSDE: Experiences with Two CT Dose-Monitoring Systems. Diagnostics, 15(13), 1654. https://doi.org/10.3390/diagnostics15131654