A Meta-Learning-Based Ensemble Model for Explainable Alzheimer’s Disease Diagnosis
Abstract
1. Introduction
- Enhanced Transparency: To address the improving model explainability, our approach simplifies the input space by training exclusively on mid-slice MRI scans. These slices highlight the lateral ventricles, facilitating the explanation of AI decisions without compromising accuracy.
- High Diagnostic Performance: In line with achieving clinically reliable performance, our ensemble model achieves 99% accuracy on OASIS and 97.61% on ADNI when using clinical data alone, and 99.38% (OASIS) and 98.62% (ADNI) with mid-slice MRI. This confirms the robustness of the model and its generalizability across datasets and input methods.
- Clinical Application: To support the development of a tool suitable for practical clinical use, the model is designed to assist general practitioners and non-specialists in diagnosing AD, particularly in resource-limited settings where access to neurological expertise is scarce. The simplicity and interpretability of the inputs make it deployable in real-world scenarios.
2. Background of XAI in Alzheimer’s Diagnosis
3. Problem Formulation
4. Our Proposed Approach
4.1. MRI Slice Selection Strategy
4.2. Ensemble Learning for Reliable Classification
5. Motivation for Ensemble-Based XAI
6. XAI-Driven Ensemble Learning Methodology
6.1. Deriving Clinically Relevant Features
6.2. Data Acquisition and Preparation
6.3. MRI Preprocessing Pipeline
Feature Extraction via ResNet50
6.4. Stacked Ensemble Learning for Alzheimer’s Disease Detection
6.4.1. Base Models in Ensemble Learning
6.4.2. Ensemble Learning Using Stacking
Algorithm 1 Feature-based Stacking Model for Alzheimer’s Classification |
Input: Data samples Output: Classification results and feature-based explanation 1: Clinical Data Processing: {path to .csv} 2: Load clinical data table 3: Create new clinical features 4: MRI Data Processing: 5: Category paths [30] 6: For each category do: 7: Walk through the directory and collect MRI paths 8: end for 9: Function load and process MRI (path to MRI) 10: Load MRI, convert to RGB 11: Resize MRI to 128 × 128 12: Preprocess using ResNet50 (Extracting features from MRI) 13: return preprocessed MRI and original MRI 14: end function 15: Function: Augment MRI data (MRI) 16: Apply random horizontal and vertical flips 17: Adjust brightness and contrast 18: return list of 10 augmented MRI 19: end function 20: For each MRI path and label do: 21: load and process MRI 22: Store original, processed MRI, and label 23: Generate augmented MRI using augment MRI data 24: Append augmented data and labels to lists 25: end for 26: Load pre-trained ResNet50 (exclude top layer) 27: Extract MRI features: MRI_features 28: Normalize MRI features using L2 norm 29: Fusion and Modeling: 30: Correlating clinical features with MRI features: combined_features 31: Apply K-fold Cross-Validation 32: For each fold do: 33:. Split combined_features and labels into train/test 34: Train base classifiers: - RF - XGBoost - SVM - GB 35: Generate stacked_train_features from base models 36: Train logistic regression as meta-classifier 37: Predict final output using meta_model 38: Compute and print classification report and accuracy 39: end for 40: Explainability: - Use SHAP for clinical features - Retrieve original_images - Use Grad-CAM for visual explanations of MRI features |
6.5. Model Explainability Using Grad-CAM and SHAP
7. Experiment Setup
7.1. Base Models Performance and Comparison
7.2. Stacked Ensemble Performance and Evaluation
8. Performance Evaluation
- Training time: 1.2 h (ensemble) vs. 4.8 h (3D CNN);
- Inference speed: 1.8 s per case (CPU); 0.4 s per case (GPU).
Explainability Analysis Using SHAP and Grad-CAM
9. Discussion
Key Findings
10. Conclusions
11. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
ADNI | Alzheimer’s Disease Neuroimaging Initiative |
AI | Artificial Intelligence |
AUC | Area Under the Curve |
CN | Cognitively Normal |
CNN | Convolutional Neural Network |
DT | Decision Tree |
GB | Gradient Boosting |
KNN | K-Nearest Neighbors |
LR | Logistic Regression |
MCI | Mild Cognitive Impairment |
MMSE | Mini-Mental State Examination |
MRI | Magnetic Resonance Imaging |
OASIS | Open Access Series of Imaging Studies |
RF | Random Forest |
ReLU | Rectified Linear Unit |
SVM | Support Vector Machine |
XAI | Explainable Artificial Intelligence |
XGB | Extreme Gradient Boosting |
References
- Majd, S.; Power, J.; Majd, Z. Alzheimer’s Disease and Cancer: When Two Monsters Cannot Be Together. Front. Neurosci. 2019, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Arafa, D.A.; Moustafa, H.E.-D.; Ali-Eldin, A.M.T.; Ali, H.A. Early detection of Alzheimer’s disease based on the state-of-the-art deep learning approach: A comprehensive survey. Multimedia Tools Appl. 2022, 81, 23735–23776. [Google Scholar] [CrossRef]
- Zakaria, M.M.A.; Doheir, M.; Akmaliah, N.; Yaacob, N.B.M. Infinite potential of AI chatbots: Enhancing user experiences and driving business transformation in e-commerce: Case of Palestinian e-commerce. J. Ecohumanism 2024, 3, 216–229. [Google Scholar] [CrossRef]
- Garcia, S.d.l.F.; Ritchie, C.W.; Luz, S. Artificial Intelligence, Speech, and Language Processing Approaches to Monitoring Alzheimer’s Disease: A Systematic Review. J. Alzheimer’s Dis. 2020, 78, 1547–1574. [Google Scholar] [CrossRef]
- Viswan, V.; Shaffi, N.; Mahmud, M.; Subramanian, K.; Hajamohideen, F. Explainable Artificial Intelligence in Alzheimer’s Disease Classification: A Systematic Review. Cogn. Comput. 2023, 16, 1–44. [Google Scholar] [CrossRef]
- Achilleos, K.; Leandrou, S.; Prentzas, N.; Kyriacou, P.; Kakas, A.; Pattichis, C. Extracting Explainable Assessments of Alzheimer’s disease via Machine Learning on brain MRI imaging data. In Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, 26–28 October 2020. [Google Scholar] [CrossRef]
- Villain, N.; Fouquet, M.; Baron, J.-C.; Mézenge, F.; Landeau, B.; de La Sayette, V.; Viader, F.; Eustache, F.; Desgranges, B.; Chételat, G. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain 2010, 133, 3301–3314. [Google Scholar] [CrossRef]
- Al Olaimat, M.; Martinez, J.; Saeed, F.; Bozdag, S.; Initiative, A.D.N. PPAD: A deep learning architecture to predict progression of Alzheimer’s disease. Bioinformatics 2023, 39 (Suppl. 1), i149–i157. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.; Liao, C.; Zhang, C.; Guo, Y.; Xia, Y.; Zhang, Y.; Yao, S. Optimized Dropkey-Based Grad-CAM: Toward Accurate Image Feature Localization. Sensors 2023, 23, 8351. [Google Scholar] [CrossRef]
- Covert, I.; Lundberg, S.; Lee, S.-I. Feature Removal Is a Unifying Principle for Model Explanation Methods. arXiv 2020, arXiv:2011.03623. [Google Scholar] [CrossRef]
- Ting, C.-P.; Ma, M.-C.; Chang, H.-I.; Huang, C.-W.; Chou, M.-C.; Chang, C.-C. Diet Pattern Analysis in Alzheimer’s Disease Implicates Gender Differences in Folate–B12–Homocysteine Axis on Cognitive Outcomes. Nutrients 2024, 16, 733. [Google Scholar] [CrossRef]
- Martínez-Murcia, F.; Górriz, J.; Ramírez, J.; Puntonet, C.; Salas-González, D. Computer Aided Diagnosis tool for Alzheimer’s Disease based on Mann–Whitney–Wilcoxon U-Test. Expert Syst. Appl. 2012, 39, 9676–9685. [Google Scholar] [CrossRef]
- Woodbright, M.D.; Morshed, A.; Browne, M.; Ray, B.; Moore, S. Toward Transparent AI for Neurological Disorders: A Feature Extraction and Relevance Analysis Framework. IEEE Access 2024, 12, 37731–37743. [Google Scholar] [CrossRef]
- Vrahatis, A.G.; Skolariki, K.; Krokidis, M.G.; Lazaros, K.; Exarchos, T.P.; Vlamos, P. Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. Sensors 2023, 23, 4184. [Google Scholar] [CrossRef]
- Abadir, P.; Oh, E.; Chellappa, R.; Choudhry, N.; Demiris, G.; Ganesan, D.; Karlawish, J.; Marlin, B.; Li, R.M.; Dehak, N.; et al. Artificial Intelligence and Technology Collaboratories: Innovating aging research and Alzheimer’s care. Alzheimer’s Dement. 2024, 20, 3074–3079. [Google Scholar] [CrossRef]
- Fabrizio, C.; Termine, A.; Caltagirone, C.; Sancesario, G. Artificial Intelligence for Alzheimer’s Disease: Promise or Challenge? Diagnostics 2021, 11, 1473. [Google Scholar] [CrossRef]
- Saif, F.H.; Al-Andoli, M.N.; Bejuri, W.M.Y.W. Explainable AI for Alzheimer Detection: A Review of Current Methods and Applications. Appl. Sci. 2024, 14, 10121. [Google Scholar] [CrossRef]
- Zhao, X.; Ang, C.K.E.; Acharya, U.R.; Cheong, K.H. Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybern. Biomed. Eng. 2021, 41, 456–473. [Google Scholar] [CrossRef]
- Haddada, K.; Ibn Khedher, M.; Jemai, O.; Khedher, S.I.; El-Yacoubi, M.A. Assessing the Interpretability of Machine Learning Models in Early Detection of Alzheimer’s Disease. In Proceedings of the 2024 16th International Conference on Human System Interaction (HSI), Paris, France, 8–11 July 2024. [Google Scholar] [CrossRef]
- Mansouri, D.; Echtioui, A.; Khemakhem, R.; Ben Hamida, A. Explainable AI Framework for Alzheimer’s Diagnosis Using Convolutional Neural Networks. In Proceedings of the 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP), Sousse, Tunisia, 11–13 July 2024. [Google Scholar] [CrossRef]
- Alarjani, M. Alzheimer’s Disease Detection based on Brain Signals using Computational Modeling. In Proceedings of the 2024 Seventh International Women in Data Science Conference at Prince Sultan University (WiDS PSU), Riyadh, Saudi Arabia, 3–4 March 2024. [Google Scholar] [CrossRef]
- Guan, H.; Wang, C.; Cheng, J.; Jing, J.; Liu, T. A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer’s disease. Hum. Brain Mapp. 2021, 43, 760–772. [Google Scholar] [CrossRef]
- Umeda-Kameyama, Y.; Kameyama, M.; Tanaka, T.; Son, B.-K.; Kojima, T.; Fukasawa, M.; Iizuka, T.; Ogawa, S.; Iijima, K.; Akishita, M. Screening of Alzheimer’s disease by facial complexion using artificial intelligence. Aging 2021, 13, 1765–1772. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, P.; Liu, B.; Song, C.; Wang, D.; Yang, H.; Zhang, Z.; Chen, P.; Kang, X.; Du, K.; et al. AI4AD: Artificial intelligence analysis for Alzheimer’s disease classification based on a multisite DTI database. Brain Disord. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Yilmaz, D. Development and Evaluation of an Explainable Diagnostic AI for Alzheimer’s Disease. In Proceedings of the 2023 International Conference on Artificial Intelligence Science and Applications in Industry and Society (CAISAIS), Galala, Egypt, 3–5 September 2023. [Google Scholar] [CrossRef]
- Yousefzadeh, N.; Tran, C.; Ramirez-Zamora, A.; Chen, J.; Fang, R.; Thai, M.T. Neuron-level explainable AI for Alzheimer’s Disease assessment from fundus images. Sci. Rep. 2024, 14, 7710. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Katsuki, M.; Takasu, A.; Kitajima, A.; Shimazu, T.; Maruki, Y. Development of an artificial intelligence-based diagnostic model for Alzheimer’s disease. Aging Med. 2022, 5, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, M.; Lee, M.K.; Wang, S.-M.; Kim, N.-Y.; Kang, D.W.; Um, Y.H.; Na, H.-R.; Woo, Y.S.; Lee, C.U.; et al. Development of Random Forest Algorithm Based Prediction Model of Alzheimer’s Disease Using Neurodegeneration Pattern. Psychiatry Investig. 2021, 18, 69–79. [Google Scholar] [CrossRef]
- Syed, M.R.; Kothari, N.; Joshi, Y.; Gawade, A. EADDA: Towards Novel and Explainable Deep Learning for Early Alzheimer’s Disease Diagnosis Using Autoencoders. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 234–246. [Google Scholar]
- Rehman, S.U.; Tarek, N.; Magdy, C.; Kamel, M.; Abdelhalim, M.; Melek, A.; Mahmoud, L.N.; Sadek, I. AI-based tool for early detection of Alzheimer’s disease. Heliyon 2024, 10, e29375. [Google Scholar] [CrossRef]
- Jahan, S.; Abu Taher, K.; Kaiser, M.S.; Mahmud, M.; Rahman, S.; Hosen, A.S.M.S.; Ra, I.-H.; Mridha, M.F. Explainable AI-based Alzheimer’s prediction and management using multimodal data. PLoS ONE 2023, 18, e0294253. [Google Scholar] [CrossRef]
- Shad, H.A.; Rahman, Q.A.; Asad, N.B.; Bakshi, A.Z.; Mursalin, S.; Reza, T.; Parvez, M.Z. Exploring Alzheimer’s Disease Prediction with XAI in various Neural Network Models. In Proceedings of the TENCON 2021—2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021. [Google Scholar] [CrossRef]
- Tima, J.; Wiratkasem, C.; Chairuean, W.; Padongkit, P.; Pangkhiao, K.; Pikulkaew, K. Early Detection of Alzheimer’s Disease: A Deep Learning Approach for Accurate Diagnosis. In Proceedings of the 2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE), Phuket, Thailand, 19–22 June 2024. [Google Scholar] [CrossRef]
- Alvarado, M.; Gómez, D.; Nuñez, A.; Robles, A.; Marecos, H.; Ticona, W. Implementation of an Early Detection System for Neurodegenerative Diseases Through the use of Artificial Intelligence. In Proceedings of the 2023 IEEE XXX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 2–4 November 2023. [Google Scholar] [CrossRef]
- Khater, T.; Ansari, S.; Alatrany, A.S.; Alaskar, H.; Mahmoud, S.; Turky, A.; Tawfik, H.; Almajali, E.; Hussain, A. Explainable Machine Learning Model for Alzheimer Detection Using Genetic Data: A Genome-Wide Association Study Approach. IEEE Access 2024, 12, 95091–95105. [Google Scholar] [CrossRef]
- Vimbi, V.; Shaffi, N.; Mahmud, M. Interpreting artificial intelligence models: A systematic review on the application of LIME and SHAP in Alzheimer’s disease detection. Brain Inform. 2024, 11, 10. [Google Scholar] [CrossRef]
- Antor, M.B.; Jamil, A.H.M.S.; Mamtaz, M.; Khan, M.M.; Aljahdali, S.; Kaur, M.; Singh, P.; Masud, M.; Kang, J. A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer’s Disease. J. Health Eng. 2021, 2021, 9917919. [Google Scholar] [CrossRef]
- Nguyen, K.; Nguyen, M.; Dang, K.; Pham, B.; Huynh, V.; Vo, T.; Ngo, L.; Ha, H. Early Alzheimer’s disease diagnosis using an XG-Boost model applied to MRI images. Biomed. Res. Ther. 2023, 10, 5896–5911. [Google Scholar] [CrossRef]
- Yi, F.; Yang, H.; Chen, D.; Qin, Y.; Han, H.; Cui, J.; Bai, W.; Ma, Y.; Zhang, R.; Yu, H. XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease. BMC Med. Informatics Decis. Mak. 2023, 23, 137. [Google Scholar] [CrossRef] [PubMed]
- Angelov, P.P.; Soares, E.A.; Jiang, R.; Arnold, N.I.; Atkinson, P.M. Explainable artificial intelligence: An analytical review. WIREs Data Min. Knowl. Discov. 2021, 11, e1424. [Google Scholar] [CrossRef]
- Varma, B.S.S.; Kalyani, G.; Asish, K.; Bai, M.I. Early Detection of Alzheimer’s Disease Using SVM, Random Forest & FNN Algorithms. In Proceedings of the 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 3–5 March 2023. [Google Scholar] [CrossRef]
- Ben Hassen, S.; Neji, M.; Hussain, Z.; Hussain, A.; Alimi, A.M.; Frikha, M. Deep learning methods for early detection of Alzheimer’s disease using structural MR images: A survey. Neurocomputing 2024, 576, 127325. [Google Scholar] [CrossRef]
- Khan, P.; Kader, F.; Islam, S.M.R.; Rahman, A.B.; Kamal, S.; Toha, M.U.; Kwak, K.-S. Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances. IEEE Access 2021, 9, 37622–37655. [Google Scholar] [CrossRef]
- AlMohimeed, A.; Saad, R.M.A.; Mostafa, S.; El-Rashidy, N.M.; Farrag, S.; Gaballah, A.; Elaziz, M.A.; El-Sappagh, S.; Saleh, H. Explainable Artificial Intelligence of Multi-Level Stacking Ensemble for Detection of Alzheimer’s Disease Based on Particle Swarm Optimization and the Sub-Scores of Cognitive Biomarkers. IEEE Access 2023, 11, 123173–123193. [Google Scholar] [CrossRef]
- Ganaie, M.; Hu, M.; Malik, A.; Tanveer, M.; Suganthan, P. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Al-Andoli, M.N.; Sim, K.S.; Tan, S.C.; Goh, P.Y.; Lim, C.P. An Ensemble-Based Parallel Deep Learning Classifier With PSO-BP Optimization for Malware Detection. IEEE Access 2023, 11, 76330–76346. [Google Scholar] [CrossRef]
- Al-Andoli, M.; Cheah, W.P.; Tan, S.C. Deep learning-based community detection in complex networks with network partitioning and reduction of trainable parameters. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 2527–2545. [Google Scholar] [CrossRef]
- Weber, C.J.; Carrillo, M.C.; Jagust, W.; Jr, C.R.J.; Shaw, L.M.; Trojanowski, J.Q.; Saykin, A.J.; Beckett, L.A.; Sur, C.; Rao, N.P.; et al. The Worldwide Alzheimer’s Disease Neuroimaging Initiative: ADNI-3 updates and global perspectives. Alzheimer’s Dementia: Transl. Res. Clin. Interv. 2021, 7, e12226. [Google Scholar] [CrossRef]
- LaMontagne, P.J.; Benzinger, T.L.S.; Morris, J.C.; Keefe, S.; Hornbeck, R.; Xiong, C.; Grant, E.; Hassenstab, J.; Moulder, K.; Vlassenko, A.G.; et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. medRxiv 2019. [Google Scholar] [CrossRef]
- Rashmi, U.; Singh, T.; Ambesange, S. MRI image based Ensemble Voting Classifier for Alzheimer’s Disease Classification with Explainable AI Technique. In Proceedings of the 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), Lonavla, India, 7–9 April 2023. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Lanfranchi, V.; Yang, P. Explainable Tensor Multi-Task Ensemble Learning Based on Brain Structure Variation for Alzheimer’s Disease Dynamic Prediction. IEEE J. Transl. Eng. Health Med. 2022, 11, 1–12. [Google Scholar] [CrossRef]
- Ravikiran, H.K.; Deepak, R.; Deepak, H.A.; Prapulla Kumar, M.S.; Sharath, S.; Yogeesh, G.H. A robust framework for Alzheimer’s disease detection and staging: Incorporating multi-feature integration, MRMR feature selection, and Random Forest classification. Multimedia Tools Appl. 2024, 1–29. [Google Scholar] [CrossRef]
- Uddin, K.M.M.; Alam, M.J.; Anawar, J.E.; Uddin, A.; Aryal, S. A Novel Approach Utilizing Machine Learning for the Early Diagnosis of Alzheimer’s Disease. Biomed. Mater. Devices 2023, 1, 882–898. [Google Scholar] [CrossRef] [PubMed]
- Sadegh-Zadeh, S.-A.; Fakhri, E.; Bahrami, M.; Bagheri, E.; Khamsehashari, R.; Noroozian, M.; Hajiyavand, A.M. An Approach toward Artificial Intelligence Alzheimer’s Disease Diagnosis Using Brain Signals. Diagnostics 2023, 13, 477. [Google Scholar] [CrossRef] [PubMed]
- Menagadevi, M.; Mangai, S.; Madian, N.; Thiyagarajan, D. Automated prediction system for Alzheimer detection based on deep residual autoencoder and support vector machine. Optik 2022, 272, 170212. [Google Scholar] [CrossRef]
- Bloch, L.; Friedrich, C.M.; Alzheimer’s Disease Neuroimaging Initiative. Machine Learning Workflow to Explain Black-Box Models for Early Alzheimer’s Disease Classification Evaluated for Multiple Datasets. SN Comput. Sci. 2022, 3, 509. [Google Scholar] [CrossRef]
- Chakraborty, M.; Naoal, N.; Momen, S.; Mohammed, N. ANALYZE-AD: A comparative analysis of novel AI approaches for early Alzheimer’s detection. Array 2024, 22, 100352. [Google Scholar] [CrossRef]
- González-Alday, R.; García-Cuesta, E.; Kulikowski, C.A.; Maojo, V. A Scoping Review on the Progress, Applicability, and Future of Explainable Artificial Intelligence in Medicine. Appl. Sci. 2023, 13, 10778. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, L.; Huang, J.; Han, L.; Zhang, D. Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI. IEEE Trans. Med. Imaging 2021, 40, 2354–2366. [Google Scholar] [CrossRef]
- Illakiya, T.; Ramamurthy, K.; Siddharth, M.V.; Mishra, R.; Udainiya, A. AHANet: Adaptive Hybrid Attention Network for Alzheimer’s Disease Classification Using Brain Magnetic Resonance Imaging. Bioengineering 2023, 10, 714. [Google Scholar] [CrossRef]
Author | Dataset | Data Type |
---|---|---|
[23] | Participants | Facial images |
[26] | UK Biobank | Fundus image |
[29] | ADNI | MRI |
[30] | ADNI | MRI |
[31] | OASIS | Clinical data, MRI |
[24] | Participants | DTI |
[6] | ADNI | MRI |
[22] | ADNI | sMRI |
[25] | Kaggle, OASIS | MRI |
[20] | Kaggle | MRI |
[32] | Kaggle | MRI |
[33] | Kaggle, UNBC | MRI |
[19] | OASIS-3 | MRI |
[21] | ADNI | fMRI |
[34] | OASIS | MRI |
Reference | Models Used | Highest Accuracy |
---|---|---|
[23] | Xception, SENet50, ResNet50, VGG16, simple CNN | 92.56% |
[26] | CNN | 71.4% |
[29] | SVM, RF, ETC, XGB, and MLP | 86.57% |
[30] | VGG16 | 98.17% |
[31] | RF, LR, DT, MLP, KNN, GB, AdaB, SVM, and NB | 98.81% |
[24] | SVM, logistic regression, CNN, and XGB | 82.35% |
[6] | DT, CNNs, and RF | 91% |
[22] | ResNet-based 3D, CNN | 89.02% |
[25] | KNN, SVM, and CNN | 99.9% |
[20] | CNN | 93.82% |
[32] | Resnet50, VGG16 and Inception v3 | 86.82% |
[33] | DenseNet, GoogLeNet, ResNet18, EfficientNet, and RegNet | 88.4% |
[19] | CNN | 89% |
[21] | CNN, DT, and a KNN | 98% |
[34] | DT, RF, and AdaBoost | 86.84% |
Characteristic | ADNI | OASIS |
---|---|---|
Total Subjects | 1568 | 1119 |
CN | 522 (33.3%) | 609 (54.4%) |
MCI | 738 (47.1%) | 336 (30.0%) |
AD | 308 (19.6%) | 174 (15.6%) |
MRI Field Strength | 1.5T/3T | 1.5T |
Clinical Measures | MMSE, CDR | MMSE, CDR |
Dataset | Previous Studies | Our Models |
---|---|---|
ADNI | [21] | |
DT: 96% | DT: 96.25% | |
KNN: 98% | RF: 98.50% | |
OASIS | [56] | |
DT: 90.58% | DT: 93.35% | |
XGB: 90.58% | XGB: 91.00% | |
SVM: 90.58% | SVM: 92.00% | |
RF: 90.58% | RF: 91.00% |
Configuration | Dataset | Accuracy | F1-Score | AUC |
---|---|---|---|---|
Clinical Only | ADNI | 97.61% | 96.83% | 0.992 |
OASIS | 99.00% | 98.72% | 0.998 | |
MRI Only | ADNI | 98.62% | 97.91% | 0.997 |
OASIS | 99.38% | 99.25% | 0.999 | |
Combined | OASIS | 99.00% | 98.85% | 0.999 |
Actual/Predicted | CN | MCI | AD |
---|---|---|---|
CN | 588 | 12 | 0 |
MCI | 6 | 594 | 0 |
AD | 0 | 0 | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-bakri, F.H.; Bejuri, W.M.Y.W.; Al-Andoli, M.N.; Ikram, R.R.R.; Khor, H.M.; Tahir, Z.; The Alzheimer’s Disease Neuroimaging Initiative. A Meta-Learning-Based Ensemble Model for Explainable Alzheimer’s Disease Diagnosis. Diagnostics 2025, 15, 1642. https://doi.org/10.3390/diagnostics15131642
Al-bakri FH, Bejuri WMYW, Al-Andoli MN, Ikram RRR, Khor HM, Tahir Z, The Alzheimer’s Disease Neuroimaging Initiative. A Meta-Learning-Based Ensemble Model for Explainable Alzheimer’s Disease Diagnosis. Diagnostics. 2025; 15(13):1642. https://doi.org/10.3390/diagnostics15131642
Chicago/Turabian StyleAl-bakri, Fatima Hasan, Wan Mohd Yaakob Wan Bejuri, Mohamed Nasser Al-Andoli, Raja Rina Raja Ikram, Hui Min Khor, Zulkifli Tahir, and The Alzheimer’s Disease Neuroimaging Initiative. 2025. "A Meta-Learning-Based Ensemble Model for Explainable Alzheimer’s Disease Diagnosis" Diagnostics 15, no. 13: 1642. https://doi.org/10.3390/diagnostics15131642
APA StyleAl-bakri, F. H., Bejuri, W. M. Y. W., Al-Andoli, M. N., Ikram, R. R. R., Khor, H. M., Tahir, Z., & The Alzheimer’s Disease Neuroimaging Initiative. (2025). A Meta-Learning-Based Ensemble Model for Explainable Alzheimer’s Disease Diagnosis. Diagnostics, 15(13), 1642. https://doi.org/10.3390/diagnostics15131642