Fusion-Based Deep Learning Approach for Renal Cell Carcinoma Subtype Detection Using Multi-Phasic MRI Data
Abstract
1. Introduction
1.1. Motivation
1.2. Contributions
- A, T2, and V MRI phases were integrated in the evaluation process, and a comprehensive analysis was performed.
- More detailed and precise feature extraction was performed using deep convolutional neural networks (CNNs) with a dense feature set.
- Model training was performed by combining the features obtained separately from each phase, and the classification performance was evaluated in detail.
- While the literature generally focuses on Normal–Tumor distinction, this study considered Renal Cell Carcinoma as a multi-class classification and achieved high success rates.
- There are studies in the literature that generally use Computerized Tomography (CT) images and a single image. In this study, a more detailed analysis was performed by evaluating MRI images taken from different sequences. The results obtained show that the level of radiation exposure can be reduced by using MRI instead of CT.
1.3. Outline
2. Related Work
3. Materials and Methods
3.1. Dataset
3.2. Proposed Model
3.2.1. ROI Dataset
3.2.2. Pre-Processing
3.2.3. Augmentation
3.2.4. Extraction of Deep Features Using DenseNet
3.2.5. Classification
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Global Burden of Disease Cancer Collaboration; et al. The global burden of cancer 2013. JAMA Oncol. 2015, 1, 505–527. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Budumuru, P.R.; Murugapandiyan, P.; Sri Rama Krishna, K. Performance Assessment of Deep Learning-Models for Kidney Tumor Segmentation using CT Images. In International Conference on Cognitive Computing and Cyber Physical Systems; Springer Nature: Cham, Switzerland, 2024; pp. 124–134. [Google Scholar]
- Kase, A.M.; George, D.J.; Ramalingam, S. Clear cell renal cell carcinoma: From biology to treatment. Cancers 2023, 15, 665. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Chen, Y.; Du, H.Q. Deep learning with a convolutional neural network model to differentiate renal parenchymal tumors: A preliminary study. Abdom. Radiol. 2021, 46, 3260–3268. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Hwang, S.I.; Lee, H.J. The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method. J. Digit. Imaging 2019, 32, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Özbay, E.; Özbay, F.A.; Gharehchopogh, F.S. Kidney tumor classification on CT images using self-supervised learning. Comput. Biol. Med. 2024, 176, 108554. [Google Scholar] [CrossRef] [PubMed]
- Mehedi, M.H.K.; Haque, E.; Radin, S.Y.; Rahman, M.A.U.; Reza, M.T.; Alam, M.G.R. Kidney Tumor Segmentation and Classification using Deep Neural Network on CT Images. In Proceedings of the 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia, 28 November–30 December 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Ghalib, M.R.; Bhatnagar, S.; Jayapoorani, S.; Pande, U. Artificial neural network based detection of renal tumors using CT scan image processing. Int. J. Eng. Technol. 2014, 2, 28–35. [Google Scholar]
- Pande, S.D.; Agarwal, R. Multi-class kidney abnormalities detecting novel system through computed tomography. IEEE Access 2024, 12, 21147–21155. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z.; Chen, Y.-C.; Zhao, Z.-Y.; Yin, X.-D.; Jiang, H.-B. A deep learning-based radiomics model for differentiating benign and malignant renal tumors. Transl. Oncol. 2019, 12, 292–300. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Kishore, M.N.; Sajin, S. End-to-end light-weighted deep-learning model for abnormality classification in kidney CT images. Int. J. Imaging Syst. Technol. 2024, 34, e23022. [Google Scholar] [CrossRef]
- Abdullah, M.; Hmeidi, I.; AlAzab, R.; Gharaibeh, M.; El-Heis, M.; Almotairi, K.H.; Forestiero, A.; Hussein, A.M.; Abualigah, L. Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans. J. Healthc. Eng. 2021, 2022, 3861161. [Google Scholar]
- Coy, H.; Hsieh, K.; Wu, W.; Nagarajan, M.B.; Young, J.R.; Douek, M.L.; Brown, M.S.; Scalzo, F.; Raman, S.S. Deep learning and radiomics: The utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Abdom. Radiol. 2019, 44, 2009–2020. [Google Scholar] [CrossRef]
- Sundaramoorthy, S.; Jayachandru, K. Designing of Enhanced Deep Neural Network Model for Analysis and Identification of Kidney Stone, Cyst, and Tumour. SN Comput. Sci. 2023, 4, 466. [Google Scholar] [CrossRef]
- Gupta, A.; Dhanakshirur, R.R.; Jain, K.; Garg, S.; Yadav, N.; Seth, A.; Das, C.J. Deep Learning for Detecting and Subtyping Renal Cell Carcinoma on Contrast-Enhanced CT Scans Using 2D Neural Network with Feature Consistency Techniques. Indian J. Radiol. Imaging 2025, 35, 395–401. [Google Scholar] [CrossRef]
- Kocak, B.; Yardimci, A.H.; Bektas, C.T.; Turkcanoglu, M.H.; Erdim, C.; Yucetas, U.; Koca, S.B.; Kilickesmez, O. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur. J. Radiol. 2018, 107, 149–157. [Google Scholar] [CrossRef]
- Uhm, K.-H.; Jung, S.-W.; Choi, M.H.; Shin, H.-K.; Yoo, J.-I.; Oh, S.W.; Kim, J.Y.; Kim, H.G.; Lee, Y.J.; Youn, S.Y.; et al. Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography. npj Precis. Oncol. 2021, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Ren, B.; Richards, R.; Suriawinata, M.; Tomita, N.; Hassanpour, S. Development and evaluation of a deep neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides. Sci. Rep. 2021, 11, 7080. [Google Scholar] [CrossRef]
- Pan, L.; Chen, M.; Sun, J.; Jin, P.; Ding, J.; Cai, P.; Chen, J.; Xing, W. Prediction of Fuhrman grade of renal clear cell carcinoma by multimodal MRI radiomics: A retrospective study. Clin. Radiol. 2024, 79, e273–e281. [Google Scholar] [CrossRef]
- Said, D.; Hectors, S.J.; Wilck, E.; Rosen, A.; Stocker, D.; Bane, O.; Beksaç, A.T.; Lewis, S.; Badani, K.; Taouli, B. Characterization of solid renal neoplasms using MRI-based quantitative radiomics features. Abdom. Radiol. 2020, 45, 2840–2850. [Google Scholar] [CrossRef]
- Du, G.; Chen, L.; Wen, B.; Lu, Y.; Xia, F.; Liu, Q.; Shen, W. Deep learning-based prediction of tumor aggressiveness in RCC using multiparametric MRI: A pilot study. Int. Urol. Nephrol. 2025, 57, 1365–1379. [Google Scholar] [CrossRef]
- Alhussaini, A.J.; Steele, J.D.; Nabi, G. Comparative analysis for the distinction of chromophobe renal cell carcinoma from renal oncocytoma in computed tomography imaging using machine learning radiomics analysis. Cancers 2022, 14, 3609. [Google Scholar] [CrossRef]
- Nikpanah, M.; Xu, Z.; Jin, D.; Farhadi, F.; Saboury, B.; Ball, M.W.; Gautam, R.; Merino, M.J.; Wood, B.J.; Turkbey, B.; et al. A deep-learning based artificial intelligence (AI) approach for differentiation of clear cell renal cell carcinoma from oncocytoma on multi-phasic MRI. Clin. Imaging 2021, 77, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- De, A.; Mishra, N.; Chang, H.T. An approach to the dermatological classification of histopathological skin images using a hybridized CNN-DenseNet model. PeerJ Comput. Sci. 2024, 10, e1884. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.; Ng, S.C.; Leung, M.F. Skin cancer classification using fine-tuned transfer learning of DENSENET-121. Appl. Sci. 2024, 14, 7707. [Google Scholar] [CrossRef]
- Mary, A.R.; Kavitha, P. Diabetic retinopathy disease detection using shapley additive ensembled densenet-121 resnet-50 model. Multimed. Tools Appl. 2024, 83, 69797–69824. [Google Scholar] [CrossRef]
- Norikane, T.; Ishimura, M.; Mitamura, K.; Yamamoto, Y.; Arai-Okuda, H.; Manabe, Y.; Murao, M.; Morita, R.; Obata, T.; Tanaka, K.; et al. Texture Features of 18F-Fluorodeoxyglucose Positron Emission Tomography for Predicting Programmed Death-Ligand-1 Levels in Non-Small Cell Lung Cancer. J. Clin. Med. 2024, 13, 1625. [Google Scholar] [CrossRef]
- Lakshmi, M.; Das, R.; Manohar, B. A new COVID-19 classification approach based on Bayesian optimization SVM kernel using chest X-ray datasets. Evol. Syst. 2024, 15, 1521–1540. [Google Scholar] [CrossRef]
- Çetintaş, D. Efficient monkeypox detection using hybrid lightweight CNN architectures and optimized SVM with grid search on imbalanced data. Signal Image Video Process. 2025, 19, 336. [Google Scholar] [CrossRef]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef]
- Yao, N.; Hu, H.; Chen, K.; Huang, H.; Zhao, C.; Guo, Y.; Li, B.; Nan, J.; Li, Y.; Han, C.; et al. A robust deep learning method with uncertainty estimation for the pathological classification of renal cell carcinoma based on CT images. J. Imaging Inform. Med. 2024, 38, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; An, Z.C.; Du, L.F.; Li, F.; Cai, Y.Y. Deep Learning for Classification of Solid Renal Parenchymal Tumors Using Contrast-Enhanced Ultrasound. J. Imaging Inform. Med. 2025, 42, 184. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.-C.; Lin, P.-H.; Shao, I.-H.; Cheng, S.-C.; Fan, T.-Y.; Chang, Y.-H.; Huang, L.-K.; Chu, Y.-C.; Yu, K.-J.; Chuang, C.-K.; et al. Using deep learning to differentiate among histology renal tumor types in computed tomography scans. BMC Med. Imaging 2025, 25, 66. [Google Scholar] [CrossRef] [PubMed]
- Chanchal, A.K.; Lal, S.; Kumar, R.; Kwak, J.T.; Kini, J. A novel dataset and efficient deep learning framework for automated grading of renal cell carcinoma from kidney histopathology images. Sci. Rep. 2023, 13, 5728. [Google Scholar] [CrossRef]
- Ye, Z.; Ge, S.; Yang, M.; Du, C.; Ma, F. An Explainable Classification Model of Renal Cancer Subtype Using Deep Learning. In Proceedings of the 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 26–28 October 2024; IEEE: New York, NY, USA; pp. 1–10. [Google Scholar]
A Phase | T2 Phase | V Phase | Gender | |
---|---|---|---|---|
Clear Cell | 161 | 161 | 161 | 10 Male—12 Female |
Chromophobe | 103 | 103 | 103 | 12 Male—6 Female |
Papiller | 161 | 161 | 161 | 12 Male—10 Female |
Total | 425 | 425 | 425 | 34 Male—28 Female |
A | T2 | V | |
ccRCC | |||
pRCC | |||
chRCC |
DenseNet121 | DenseNet169 | DenseNet201 | |||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1-Score | P | R | F1-Score | P | R | F1-Score | |
Clear Cell | 0.75 | 0.60 | 0.67 | 0.77 | 0.50 | 0.61 | 0.81 | 0.65 | 0.72 |
Chromophobe | 0.67 | 0.88 | 0.76 | 0.50 | 0.75 | 0.60 | 0.68 | 0.81 | 0.74 |
Papiller | 0.20 | 0.17 | 0.18 | 0.80 | 0.67 | 0.73 | 0.43 | 0.50 | 0.46 |
Accuracy | 0.64 | 0.62 | 0.69 |
DenseNet121 | DenseNet169 | DenseNet201 | |||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1-Score | P | R | F1-Score | P | R | F1-Score | |
Clear Cell | 1.00 | 0.53 | 0.69 | 0.88 | 0.74 | 0.80 | 0.83 | 0.53 | 0.65 |
Chromophobe | 0.59 | 1.00 | 0.74 | 0.78 | 0.82 | 0.80 | 0.60 | 0.88 | 0.71 |
Papiller | 0.25 | 0.14 | 0.18 | 0.56 | 0.71 | 0.62 | 0.33 | 0.29 | 0.31 |
Accuracy | 0.65 | 0.77 | 0.63 |
DenseNet121 | DenseNet169 | DenseNet201 | |||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1-Score | P | R | F1-Score | P | R | F1-Score | |
Clear Cell | 0.48 | 0.81 | 0.60 | 0.67 | 0.62 | 0.65 | 0.65 | 0.69 | 0.67 |
Chromophobe | 0.58 | 0.44 | 0.50 | 0.54 | 0.88 | 0.67 | 0.64 | 0.88 | 0.77 |
Papiller | 0.67 | 0.20 | 0.31 | 0.60 | 0.30 | 0.31 | 1.00 | 0.30 | 0.46 |
Accuracy | 0.52 | 0.61 | 0.67 |
A-V | A-T2 | T2-V | |||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1-Score | P | R | F1-Score | P | R | F1-Score | |
Chromophobe | 0.86 | 0.75 | 0.80 | 0.85 | 1.00 | 0.92 | 0.83 | 0.88 | 0.86 |
Clear Cell | 0.86 | 0.90 | 0.88 | 1.00 | 0.79 | 0.88 | 0.94 | 0.89 | 0.92 |
Papiller | 0.86 | 1.00 | 0.92 | 0.71 | 0.83 | 0.77 | 0.83 | 0.83 | 0.83 |
Accuracy | 0.86 | 0.88 | 0.88 | ||||||
Kappa | 0.73 | 0.72 | 0.74 |
Precision (%) | Recall (%) | F1-Score (%) | |
---|---|---|---|
Clear Cell | 88 | 88 | 88 |
Chromophobe | 94 | 89 | 91 |
Papiller | 85 | 100 | 92 |
Accuracy | 90 | ||
MCC | 0.84 | ||
Kappa | 0.84 |
Classes | i → j | j → i | McNemar | p-Value |
---|---|---|---|---|
Chromophobe vs. Clear Cell | 1 | 2 | 0.0 | 1.0 |
Chromophobe vs. Papiller | 1 | 0 | 0.0 | 1.0 |
Clear Cell vs. Papiller | 0 | 0 | - | 0.0 |
Ref. | Number of Classes | Dataset | Model | Parameter |
---|---|---|---|---|
Gupta et al. [16] | 2 | 196 CT | CNN-based Resnet | A: 0.95 F1 score: 0.89 AUC: 0.98 |
Koçak et al. [17] | 3 | TCGA | ANN, SVM | MCC: 0.80 |
Ulm et al. [18] | 5 | 308 CT | 3D CNN | AUC: 0.88 |
Zhu et al. [19] | 5 | TCGA | CNN | AUC: 0.95 |
Han et al. [6] | 3 | 169 BT | Modified GoogLeNet | A: 0.85 |
Yao et al. [33] | 3 | 746 BT | 3D convolutional neural network+fivefold cross-validation | AUC ccRCC: 0.85 AUC pRCC: 0.78 AUC chRCC: 0.79 |
Bai et al. [34] | 4 | 237 CEUS | ResNet-18 and RepVGG-A0 | ResNet-18 A: 0.76 RepVGG A: 0.84 |
Kan et al. [35] | 4 | 4238 BT | Inception V3 ve Resnet50 +fivefold cross-validation | Inception V3 A: 0.83 Resnet50: 0.84 |
Chanchal et al. [36] | 5 | 722 Hematoxylin and Eosin (H andE) | RCCGNet | A: 0.90 F1-Score: 0.89 |
Ye et al. [37] | 2 | 170 US images | Vgg16 and Resnet34 using Grad-CAM | Vgg16 AUC: 0.76 Resnet34 AUC: 0.71 |
Proposed Method | 3 | 1275 MRI | Densenet, Feature extraction, SVM | A: 0.90 MCC: 84 Kappa: 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilicarslan, G.; Cetintas, D.; Tuncer, T.; Yildirim, M. Fusion-Based Deep Learning Approach for Renal Cell Carcinoma Subtype Detection Using Multi-Phasic MRI Data. Diagnostics 2025, 15, 1636. https://doi.org/10.3390/diagnostics15131636
Kilicarslan G, Cetintas D, Tuncer T, Yildirim M. Fusion-Based Deep Learning Approach for Renal Cell Carcinoma Subtype Detection Using Multi-Phasic MRI Data. Diagnostics. 2025; 15(13):1636. https://doi.org/10.3390/diagnostics15131636
Chicago/Turabian StyleKilicarslan, Gulhan, Dilber Cetintas, Taner Tuncer, and Muhammed Yildirim. 2025. "Fusion-Based Deep Learning Approach for Renal Cell Carcinoma Subtype Detection Using Multi-Phasic MRI Data" Diagnostics 15, no. 13: 1636. https://doi.org/10.3390/diagnostics15131636
APA StyleKilicarslan, G., Cetintas, D., Tuncer, T., & Yildirim, M. (2025). Fusion-Based Deep Learning Approach for Renal Cell Carcinoma Subtype Detection Using Multi-Phasic MRI Data. Diagnostics, 15(13), 1636. https://doi.org/10.3390/diagnostics15131636