Objective Measurement of Musculoskeletal Pain: A Comprehensive Review
Abstract
:1. Introduction
2. Physiological Approaches to Pain Measurement
2.1. Autonomic Nervous System Responses
2.2. Muscle Activity and Nociceptive Flexion Reflexes
3. Behavioral Measures of Musculoskeletal Pain
4. Multimodal Pain Assessment Approaches
5. Neuroimaging Techniques
6. Discussion
7. Potential Future Directions
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldsmith, E.S.; Murdoch, M.; Taylor, B.; Greer, N.; MacDonald, R.; McKenzie, L.; Rosebush, C. Rapid Evidence Review: Measures for Patients with Chronic Musculoskeletal Pain. 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525003/ (accessed on 1 October 2024).
- MacKichan, F.; Wylde, V.; Dieppe, P. The assessment of musculoskeletal pain in the clinical setting. Rheum. Dis. Clin. N. Am. 2008, 34, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zhao, X.; Han, J.; Su, Y. Physiological Signal-Based Method for Measurement of Pain Intensity. Front. Media 2017, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Younger, J.; McCue, R.; Mackey, S. Pain outcomes: A brief review of instruments and techniques. Curr. Pain Headache Rep. 2009, 13, 39–43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salaffi, F.; Ciapetti, A.; Carotti, M. Pain assessment strategies in patients with musculoskeletal conditions. Reumatismo 2012, 64, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Misailidou, V.; Malliou, P.; Beneka, A.; Karagiannidis, A.; Godolias, G. Assessment of patients with neck pain: A review of definitions, selection criteria, and measurement tools. J. Chiropr. Med. 2010, 9, 49–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kroenke, K.; Krebs, E.E.; Turk, D.; Von Korff, M.; Bair, M.J.; Allen, K.D.; Sandbrink, F.; Cheville, A.L.; DeBar, L.; Lorenz, K.A.; et al. Core Outcome Measures for Chronic Musculoskeletal Pain Research: Recommendations from a Veterans Health Administration Work Group. Pain Med. 2019, 20, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Litcher-Kelly, L.; Martino, S.A.; Broderick, J.E.; Stone, A.A. A systematic review of measures used to assess chronic musculoskeletal pain in clinical and randomized controlled clinical trials. J. Pain 2007, 8, 906–913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ong, K.S.; Seymour, R.A. Pain measurement in humans. Surgeon 2004, 2, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.A.; Lahuerta, J. Physical Methods used in Pain Measurements: A Review. J. R. Soc. Med. 1983, 76, 409–414. [Google Scholar] [CrossRef]
- Noble, B.; Clark, D.; Meldrum, M.; ten Have, H.; Seymour, J.; Winslow, M.; Paz, S. The measurement of pain, 1945-2000. J. Pain Symptom Manag. 2005, 29, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Cowen, R.; Stasiowska, M.K.; Laycock, H.; Bantel, C. Assessing pain objectively: The use of physiological markers. Anaesthesia 2015, 70, 828–847. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.D.; Doss, B.; Chanderasekar, L.D.; Madhavan, A.; Rosary, A.M. Scope of physiological and behavioural pain assessment techniques in children—A review. Healthc. Technol. Lett. 2018, 5, 124–129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sokolskiy, V.M.; Petrova, I.Y.; Sokolskiy, M.V. Automated system for measuring integral pain index of patients during general anesthesia. In 2019 International Scientific Conference on Digital Economy; IEEE: Piscataway, NJ, USA, 2019; pp. 104–108. [Google Scholar] [CrossRef]
- Kanao-Kanda, M.; Kanda, H.; Iida, T.; Kikuchi, S.; Azuma, N. Clinical Application of Laser Speckle Flowgraphy to Assess Changes in Blood Flow to the Foot After a Lumbar Sympathetic Ganglion Block: A Case Report. J. Pain Res. 2021, 14, 1451–1456. [Google Scholar] [CrossRef]
- Morf, S.; Amann-Vesti, B.; Forster, A.; Franzeck, U.K.; Koppensteiner, R.; Uebelhart, D.; Sprott, H. Microcirculation abnormalities in patients with fibromyalgia—Measured by capillary microscopy and laser fluxmetry. Arthritis Res. Ther. 2004, 7, R209. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Kim, K.H.; Kim, E.D. Perfusion index as a reliable parameter of vasomotor disturbance in complex regional pain syndrome. Br. J. Anaesth. 2018, 121, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Loggia, M.L.; Juneau, M.; Bushnell, C.M. Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain 2011, 152, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Kyle, B.N.; McNeil, D.W. Autonomic arousal and experimentally induced pain: A critical review of the literature. Pain Res. Manag. 2014, 19, 159–167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karpe, J.; Misiołek, A.; Daszkiewicz, A.; Misiołek, H. Anaesthesiology And Intensive Care. A new method for the objective evaluation of postoperative pain. Kardiochirurgia i Torakochirurgia Polska/Pol. J. Thorac. Cardiovasc. Surgery 2013, 10, 48–50. [Google Scholar] [CrossRef]
- Storm, H. Changes in skin conductance as a tool to monitor nociceptive stimulation and pain. Curr. Opin. Anaesthesiol. 2008, 21, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Linton, S.J.; Shaw, W.S. Impact of psychological factors in the experience of pain. Phys. Ther. 2011, 91, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Brochard, L.; Martin, G.S.; Blanch, L.; Pelosi, P.; Belda, F.J.; Jubran, A.; Gattinoni, L.; Mancebo, J.; Ranieri, V.M.; Richard, J.C.; et al. Clinical review: Respiratory monitoring in the ICU—A consensus of 16. Crit. Care 2012, 16, 219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandez Rojas, R.; Hirachan, N.; Brown, N.; Waddington, G.; Murtagh, L.; Seymour, B.; Goecke, R. Multimodal physiological sensing for the assessment of acute pain. Front. Pain. Res. 2023, 4, 1150264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skljarevski, V.; Ramadan, N.M. The nociceptive flexion reflex in humans—Review article. Pain 2002, 96, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Pasley, J.D.; O’Connor, P.J. The nociception flexion (R-III) reflex: A potentially useful tool in exercise and pain studies. Int. J. Sport Exerc. Psychol. 2005, 3, 338–351. [Google Scholar] [CrossRef]
- Kim, H.Y.; Gwak, Y.S.; Shim, I. An electrophysiological method for quantifying neuropathic pain behaviors in rats: Measurement of hindlimb withdrawal EMG magnitude. J. Physiol. Sci. 2009, 59, 473–476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazaro, R.P. Electromyography in musculoskeletal pain: A reappraisal and practical considerations. Surg. Neurol. Int. 2015, 6, 143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haig, A.J.; Tong, H.C.; Yamakawa, K.S.J.; Quint, D.J.; Hoff, J.T.; Chiodo, A.; Miner, J.A.; Choksi, V.R.; Geisser, M.E. The Sensitivity and Specificity of Electrodiagnostic Testing for the Clinical Syndrome of Lumbar Spinal Stenosis. Spine 2005, 30, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Yalinay Dikmen, P.; Ilgaz Aydinlar, E.; Karlikaya, G. Expected and Experienced Pain Levels in Electromyography. Noro Psikiyatr. Ars. 2013, 50, 364–367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dworkin, R.H.; Turk, D.C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Katz, N.P.; Kerns, R.D.; Stucki, G.; Allen, R.R.; Bellamy, N.; et al. IMMPACT Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 2005, 113, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Dworkin, R.H.; Turk, D.C.; McDermott, M.P.; Eccleston, C.; Farrar, J.T.; Rowbotham, M.C.; Bhagwagar, Z.; Burke, L.B.; Cowan, P.; et al. Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations. Pain 2020, 161, 2446–2461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tranquilli, C.; Bernetti, A.; Picerno, P. Ambulatory joint mobility and muscle strength assessment during rehabilitation using a single wearable inertial sensor. Med. Dello Sport 2013, 66, 583–597. [Google Scholar]
- Prkachin, K.M.; Schultz, I.; Berkowitz, J.; Hughes, E.; Hunt, D. Assessing pain behaviour of low-back pain patients in real time: Concurrent validity and examiner sensitivity. Behav. Res. Ther. 2002, 40, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.; Friesen, W.V. Measuring facial movement. J. Nonverbal Behav. 1976, 1, 56–75. [Google Scholar] [CrossRef]
- Lints-Martindale, A.C.; Hadjistavropoulos, T.; Barber, B.; Gibson, S.J. A Psychophysical Investigation of the Facial Action Coding System as an Index of Pain Variability among Older Adults with and without Alzheimer’s Disease. Pain Med. 2007, 8, 678–689. [Google Scholar] [CrossRef]
- Lautenbacher, S.; Walz, A.L.; Kunz, M. Using observational facial descriptors to infer pain in persons with and without dementia. BMC Geriatr. 2018, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K. Measuring facial expression of emotion. Dialogues Clin. Neurosci. 2015, 17, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Egede, J.; Song, S.; Olugbade, T.; Wang, C.; Williams, A.C.d.C.; Meng, H.; Aung, M.H.; Lane, N.D.; Valstar, M.; Bianchi-Berthouze, N. EMOPAIN Challenge 2020: Multimodal Pain Evaluation from Facial and Bodily Expressions. In Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 849–856. [Google Scholar] [CrossRef]
- Gjoreski, M.; Kiprijanovska, I.; Stankoski, S.; Mavridou, I.; Broulidakis, M.J.; Gjoreski, H.; Nduka, C. Facial EMG sensing for monitoring affect using a wearable device. Sci. Rep. 2022, 12, 16876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lian, Z.; Guo, Y.; Cao, X.; Li, W. An Ear Wearable Device System for Facial Emotion Recognition Disorders. Front. Bioeng. Biotechnol. 2021, 9, 703048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwon, J.; Ha, J.; Kim, D.-H.; Choi, J.W.; Kim, L. Emotion Recognition Using a Glasses-Type Wearable Device via Multi-Channel Facial Responses. IEEE Access 2021, 9, 146392–146403. [Google Scholar] [CrossRef]
- Nandini, D.; Yadav, J.; Singh, V.; Mohan, V.; Agarwal, S. An ensemble deep learning framework for emotion recognition through wearable devices multi-modal physiological signals. Sci. Rep. 2025, 15, 17263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kallipolitis, A.; Galliakis, M.; Menychtas, A.; Maglogiannis, I. Affective analysis of patients in homecare video-assisted telemedicine using computational intelligence. Neural Comput. Appl. 2020, 32, 17125–17136. [Google Scholar] [CrossRef]
- Robinson, C.L.; Phung, A.; Dominguez, M.; Remotti, E.; Ricciardelli, R.; Momah, D.U.; Wahab, S.; Kim, R.S.; Norman, M.; Zhang, E.; et al. Pain Scales: What Are They and What Do They Mean. Curr. Pain Headache Rep. 2024, 28, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B. Chronic pain assessment from bench to bedside: Lessons along the translation continuum. Transl. Behav. Med. 2016, 6, 596–604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hassett, A.L.; Whibley, D.; Kratz, A.; Williams, D.A. Measures for the Assessment of Pain in Adults. Arthritis Care Res. 2020, 72 (Suppl. 10), 342–357. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.; Bucksey, S.J. Communicating with patients: What happens in practice? Phys. Ther. 2007, 87, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Becerra, L.; Borsook, D. Insights into pain mechanisms through functional MRI. Drug Discov. Today Dis. Mech. 2006, 3, 313–318. [Google Scholar] [CrossRef]
- Fomberstein, K.; Qadri, S.; Ramani, R. Functional MRI and pain. Curr. Opin. Anaesthesiol. 2013, 26, 588–593. [Google Scholar] [CrossRef]
- Mehta, V.; Bouchareb, Y.; Ramaswamy, S.; Ahmad, A.; Wodehouse, T.; Haroon, A. Metabolic Imaging of Pain Matrix Using 18F Fluoro-deoxyglucose Positron Emission Tomography/Computed Tomography for Patients Undergoing L2 Dorsal Root Ganglion Stimulation for Low Back Pain. Neuromodulation 2020, 23, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Boissoneault, J.; Sevel, L.; Letzen, J.; Robinson, M.; Staud, R. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning. Curr. Rheumatol. Rep. 2017, 19, 5. [Google Scholar] [CrossRef]
- Davis, K.D. Legal and ethical issues of using brain imaging to diagnose pain. Pain Rep. 2016, 1, e577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Opancina, V.; Sebek, V.; Janjic, V. Advanced neuroimaging and criminal interrogation in lie detection. Open Med. 2024, 19, 20241032. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Miesen, M.M.; Lindquist, M.A.; Wager, T.D. Neuroimaging-based biomarkers for pain: State of the field and current directions. Pain Rep. 2019, 4, e751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farah, M.J.; Hutchinson, J.B.; Phelps, E.A.; Wagner, A.D. Functional MRI-based lie detection: Scientific and societal challenges. Nat. Rev. Neurosci. 2014, 15, 123–131. [Google Scholar] [CrossRef]
- Berger, S.E.; Baria, A.T. Assessing Pain Research: A Narrative Review of Emerging Pain Methods, Their Technosocial Implications, and Opportunities for Multidisciplinary Approaches. Front. Pain. Res. 2022, 3, 896276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mackey, S.; Greely, H.T.; Martucci, K.T. Neuroimaging-based pain biomarkers: Definitions, clinical and research applications, and evaluation frameworks to achieve personalized pain medicine. Pain Rep. 2019, 4, e762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guaragni, B.; Howell, A.; Rehman, F.U.; Jain, A. Management of pain in ventilated neonates: Current evidence. Paediatr. Child Health 2013, 24, 32–37. [Google Scholar] [CrossRef]
- Gatchel, R.J. The Continuing and Growing Epidemic of Chronic Low Back Pain. Healthcare 2015, 3, 838–845. [Google Scholar] [CrossRef]
- Daneshjou, R.; Brenner, S.E.; Chen, J.H.; Crawford, D.C.; Finlayson, S.G.; Kidziński, Ł.; Bulyk, M.L. Precision Medicine: Using Artificial Intelligence to Improve Diagnostics and Healthcare. Pac. Symp. Biocomput. 2022, 27, 223–230. [Google Scholar] [PubMed]
- Gatchel, R.J.; Peng, Y.B.; Peters, M.L.; Fuchs, P.N.; Turk, D.C. The biopsychosocial approach to chronic pain: Scientific advances and future directions. Psychol. Bull. 2007, 133, 581–624. [Google Scholar] [CrossRef] [PubMed]
- Kohoutová, L.; Atlas, L.Y.; Büchel, C.; Buhle, J.T.; Geuter, S.; Jepma, M.; Koban, L.; Krishnan, A.; Lee, D.H.; Lee, S.; et al. Individual variability in brain representations of pain. Nat. Neurosci. 2022, 25, 749–759. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddan, M.C. Recommendations for the Development of Socioeconomically-Situated and Clinically-Relevant Neuroimaging Models of Pain. Front. Neurol. 2021, 12, 700833. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mao, J. Translational pain research: Achievements and challenges. J. Pain 2009, 10, 1001–1011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rani, B.; Gupta, M.; Ganesh, V.; Sharma, R.; Bhatia, A.; Ghai, B. Efficacy of mobile health interventions in the conservative management of chronic low back pain in low- and middle-income countries: A systematic review, meta-analysis, and trial sequential analysis. Pain Rep. 2025, 10, e1242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Domenico, M.; Allegri, L.; Caldarelli, G.; d’Andrea, V.; Di Camillo, B.; Rocha, L.M.; Rozum, J.; Sbarbati, R.; Zambelli, F. Challenges and opportunities for digital twins in precision medicine from a complex systems perspective. NPJ Digit. Med. 2025, 8, 37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Assessment Modality | Method(s) Used | Mechanism | Advantages | Limitations | Clinical Utility | References |
---|---|---|---|---|---|---|
Physiological | HR, BP, HRV, Skin conductance | Autonomic response to pain stimuli | Non-invasive, continuous, accessible | Non-specific, affected by confounders | Adjunct for monitoring under sedation | [14,15] |
Physiological | Pupillometry | Pain induces pupillary dilation | Objective, quick response | Lighting and medications can affect accuracy | Analgesia titration | [16,17] |
Physiological | Biochemical markers (cortisol, cytokines) | Pain alters stress and immune biomarkers | Reflects systemic pain-related responses | Low accuracy, time lag | Biomarkers for research of chronic pain | [18,19] |
Physiological | Nociceptive flexion reflex (EMG) | Spinal reflex triggered by nociceptive input | Quantifies spinal nociceptive processing | Requires setup, variable tolerability | Research, depth of analgesia studies | [20] |
Physiological | Quantitative sensory testing | Pain alters sensory thresholds | Quantifiable, maps altered sensation | Time-consuming, user-dependent | Pain mechanism evaluation, tracking | [21,22] |
Behavioral | Facial expression coding (FACS), AI analysis | Pain induces characteristic facial changes | Nonverbal, automation is possible | Cultural variation requires training | Infants, cognitive impairment | [25,26] |
Behavioral | Body movements, posture, gait | Pain alters movement to avoid discomfort | Functional | Not pain-specific, hard to standardize | Rehab tracking, postural assessment | [27,28] |
Behavioral | Functional performance tests | Pain impairs functional capacity | Standardized, widely used | Influenced by fitness, motivation | Outcomes in chronic pain and rehabilitation | [30] |
Behavioral | Observer-based pain scales (e.g., FLACC) | Observable behavior reflects pain | Standardized and validated for nonverbal patients | Scoring is semi-subjective | Pain in nonverbal or pediatric settings | [34,35] |
Neuroimaging | fMRI | Pain activates specific brain regions | High spatial resolution, brain-level analysis | Expensive, motion-sensitive | Pain diagnosis research, biomarker identification | [36,37] |
Neuroimaging | PET | Pain alters metabolic/receptor activity | Molecular insights, receptor-specific imaging | Radiation exposure, experimental tracers | Pharmacologic pain research | [38] |
Neuroimaging | EEG, pain-evoked potentials | Pain induces cortical EEG changes | Portable, fast, good temporal resolution | Low spatial resolution | Depth of analgesia | [36,37] |
Neuroimaging | fNIRS | Pain alters cortical blood oxygenation | Portable, bedside-ready | Limited depth, validation needed | Pain tracking in rehab, infants | [19] |
Computational | AI-based multimodal systems | AI detects multimodal patterns of pain | Automated, integrates multiple modalities | Not yet clinically validated | Potential future tool for continuous pain monitoring | [23,24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberg, N. Objective Measurement of Musculoskeletal Pain: A Comprehensive Review. Diagnostics 2025, 15, 1581. https://doi.org/10.3390/diagnostics15131581
Rosenberg N. Objective Measurement of Musculoskeletal Pain: A Comprehensive Review. Diagnostics. 2025; 15(13):1581. https://doi.org/10.3390/diagnostics15131581
Chicago/Turabian StyleRosenberg, Nahum. 2025. "Objective Measurement of Musculoskeletal Pain: A Comprehensive Review" Diagnostics 15, no. 13: 1581. https://doi.org/10.3390/diagnostics15131581
APA StyleRosenberg, N. (2025). Objective Measurement of Musculoskeletal Pain: A Comprehensive Review. Diagnostics, 15(13), 1581. https://doi.org/10.3390/diagnostics15131581