The Diagnostic Accuracy of an Abbreviated vs. a Full MRI Breast Protocol in Detecting Breast Lobular Carcinoma: A Single-Center ROC Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Intra-Rater Reliability
3.2. Inter-Rater Reliability
3.3. ROC Curve and Diagnostic Accuracy
3.4. Full Protocol Analysis
3.5. Abbreviated Protocol Analysis (Radiologist A—Consultant)
3.6. Abbreviated Protocol Analysis (Radiologist B—Resident Specialist)
3.7. Lymph Node Involvement
3.8. Lesion Number and Laterality
3.9. Lesion Size and Localisation
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
BI-RADS | Breast Imaging Reporting and Data System |
BRCA | Breast Cancer Gene |
DBT | Digital Breast Tomosynthesis |
DWI | Diffusion-Weighted Imaging |
FREC | Faculty Research Ethics Committee |
ICC | Intraclass Correlation Coefficient |
MIP | Maximum-Intensity Projection |
MRI | Magnetic Resonance Imaging |
NPV | Negative Predictive Value |
PACS | Picture Archiving and Communication System |
PPV | Positive Predictive Value |
ROC | Receiver Operating Characteristics |
SPSS | Statistical Package for Social Sciences Software |
T | Tesla |
UREC | University Research Ethics Committee |
US | Ultrasound |
References
- Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 2019, 11, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Seely, J.M. How effective is mammography as a screening tool? Curr. Breast Cancer Rep. 2017, 9, 251–258. [Google Scholar] [CrossRef]
- Chhor, C.M.; Mercado, C.L. Abbreviated MRI protocols: Wave of the future for breast cancer screening. AJR Am. J. Roentgenol. 2017, 208, 284–289. [Google Scholar] [CrossRef]
- Deike-Hofmann, K.; Koenig, F.; Paech, D.; Dreher, C.; Delorme, S.; Schlemmer, H.-P.; Bickelhaupt, S. Abbreviated MRI protocols in breast cancer diagnostics. J. Magn. Reson. Imaging 2019, 49, 647–658. [Google Scholar] [CrossRef]
- Kuhl, C.K. Abbreviated magnetic resonance imaging (MRI) for breast cancer screening: Rationale, concept, and transfer to clinical practice. Annu. Rev. Med. 2019, 70, 501–519. [Google Scholar] [CrossRef]
- Mootz, A.R.; Madhuranthakam, A.J.; Dogan, B. Changing paradigms in breast cancer screening: Abbreviated breast MRI. Eur. J. Breast Health 2019, 15, 1–6. [Google Scholar] [CrossRef]
- Roganovic, D.; Djilas, D.; Vujnovic, S.; Stojanov, D.; Pavic, D. Breast MRI, digital mammography and breast tomosynthesis: Comparison of three methods for early detection of breast cancer. Biomol. Biomed. 2015, 15, 64–68. [Google Scholar] [CrossRef]
- Kriege, M.; Brekelmans, C.T.M.; Boetes, C.; Besnard, P.E.; Zonderland, H.M.; Obdeijn, I.M.; Manoliu, R.A.; Kok, T.; Peterse, H.; Tilanus-Linthorst, M.M.A.; et al. Magnetic Resonance Imaging Screening Study Group. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med. 2004, 351, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.A.; Kaufman, T. Mammography. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gunduru, M.; Grigorian, C. Breast magnetic resonance imaging. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Riedl, C.C.; Luft, N.; Bernhart, C.; Weber, M.; Bernathova, M.; Tea, M.-K.M.; Singer, C.F.; Rudas, M.; Helbich, T.H. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging. J. Clin. Oncol. 2015, 33, 1128–1135. [Google Scholar] [CrossRef]
- Sung, J.S.; Stamler, S.; Brooks, J.; Kaplan, J.; Huang, T.; Dershaw, D.D.; Lee, C.H.; Comstock, C.E.; Morris, E.A. Breast cancers detected at screening MR imaging and mammography in patients at high risk. Radiology 2016, 280, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K.; Schrading, S.; Strobel, K.; Schild, H.H.; Hilgers, R.-D.; Bieling, H.B. Abbreviated breast magnetic resonance imaging (MRI): First postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J. Clin. Oncol. 2014, 32, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Battaglia, O.; Rotili, A.; Gnocchi, G.; D’Ecclesiis, O.; Bellerba, F.; Penco, S.; Signorelli, G.; Nicosia, L.; Trentin, C.; et al. Comparative diagnostic efficacy of abbreviated and full protocol breast MRI: A systematic review and a meta-analysis. Br. J. Radiol. 2024, 97, 1915–1924. [Google Scholar] [CrossRef]
- Geach, R.; Jones, L.I.; Harding, S.A.; Marshall, A.; Taylor-Phillips, S.; McKeown-Keegan, S.; Dunn, J.A.; FAST MRI Study Group. The potential utility of abbreviated breast MRI (FAST MRI) as a tool for breast cancer screening: A systematic review and meta-analysis. Clin. Radiol. 2021, 76, 154.e11–154.e22. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.L.; Osorio, S.; Florez, K.; Ospino, A.; Díaz, G.M. Abbreviated magnetic resonance imaging in breast cancer: A systematic review of literature. Eur. J. Radiol. Open 2020, 8, 100307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmadinejad, N.; Azhdeh, S.; Arian, A.; Eslami, B.; Mehrabinejad, M.-M. Implementation of abbreviated breast MRI in diagnostic and screening settings. Acta Radiol. 2022, 64, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Veltman, J.; Barentsz, J.O.; Wobbes, T.; Blickman, J.G.; Boetes, C. The value of MRI compared to mammography in the assessment of tumour extent in invasive lobular carcinoma of the breast. Eur. J. Surg. Oncol. 2008, 34, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Kuhl, C.K.; Kinkel, K.; Boetes, C. Breast MRI: Guidelines from the European Society of Breast Imaging. Eur. Radiol. 2008, 18, 1307–1318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weinstein, S.; Rosen, M. Breast MR imaging: Current indications and advanced imaging techniques. Radiol. Clin. N. Am. 2010, 48, 1013–1042. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.C.; Nissan, N.; Rahbar, H.; Kitsch, A.E.; Sigmund, E.E. Diffusion-weighted breast MRI: Clinical applications and emerging techniques. J. Magn. Reson. Imaging 2017, 45, 337–355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Lee-Felker, S.; Joines, M.; Storer, L.; Li, B.; DeBruhl, N.; Sayre, J.; Hoyt, A. Abbreviated Breast MRI for Estimating Extent of Disease in Newly Diagnosed Breast Cancer. J. Breast Imaging 2020, 2, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Heacock, L.; Melsaether, A.N.; Heller, S.L.; Gao, Y.; Pysarenko, K.M.; Babb, J.S. Evaluation of a known breast cancer using an abbreviated breast MRI protocol. Eur. J. Radiol. 2016, 85, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Mango, V.L.; Morris, E.A.; Dershaw, D.D.; Abramson, A.; Fry, C.; Moskowitz, C.S.; Jochelson, M.S.; Hughes, M.; Kaplan, J. Abbreviated protocol for breast MRI: Are multiple sequences needed for cancer detection? Eur. J. Radiol. 2015, 84, 65–70. [Google Scholar] [CrossRef]
- Petrillo, A.; Fusco, R.; Sansone, M.; Cerbone, M.; Filice, S.; Porto, A.; Di Bonito, M.; Avino, F.; Rubulotta, M.R.; Botti, G.; et al. Abbreviated breast dynamic contrast-enhanced MR imaging: Experience of an Italian oncologic center. Breast Cancer Res. Treat. 2017, 164, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Dekker, B.M.; Bakker, M.F.; de Lange, S.V.; Veldhuis, W.B.; van Diest, P.J.; Duvivier, K.M.; Pijnappel, R.M.; Veltman, J.; Mann, R.M.; Monninkhof, E.M.; et al. Reducing false-positive screening MRI rate using prediction models: Data from the DENSE trial. Radiology 2021, 301, 283–292. [Google Scholar] [CrossRef]
- Tosteson, A.N.A.; Fryback, D.G.; Hammond, C.S.; Hanna, L.G.; Grove, M.R.; Pisano, E.D.; Brown, M.; Wang, Q.; Lindfors, K. Consequences of false-positive screening mammograms. JAMA Intern. Med. 2014, 174, 954. [Google Scholar] [CrossRef]
- Shen, Y.; Winget, M.; Yuan, Y. Impact of false positive screening mammograms on retention. Can. J. Public Health 2017, 108, e539–e545. [Google Scholar] [CrossRef]
- Kuhl, C. The current status of breast MR imaging Part I. Radiology 2007, 244, 356–378. [Google Scholar] [CrossRef]
- Oldrini, G.; Derraz, I.; Salleron, J.; Marchal, F.; Henrot, P. Impact of an abbreviated protocol for breast MRI in diagnostic accuracy. Diagn. Interv. Radiol. 2018, 24, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Q.; Huang, M.; Shen, Y.-Y.; Liu, C.-L.; Xu, C.-X. Abbreviated protocol MRI for breast cancer screening in dense breasts. Acad. Radiol. 2017, 24, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Machida, Y.; Shimauchi, A.; Kanemaki, Y.; Igarashi, T.; Harada, M.; Fukuma, E. Abbreviated breast MRI: Observer study using an enriched cohort. Breast Cancer 2017, 24, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Lehman, C.D.; Arao, R.F.; Sprague, B.L.; Lee, J.M.; Buist, D.S.M.; Kerlikowske, K.; Henderson, L.M.; Onega, T.; Tosteson, A.N.A.; Rauscher, G.H.; et al. National performance benchmarks for modern screening digital mammography. Radiology 2017, 283, 49–58. [Google Scholar] [CrossRef]
- Grimm, L.J.; Soo, M.S.; Yoon, S.; Kim, C.; Ghate, S.V.; Johnson, K.S. Abbreviated screening protocol for breast MRI. Acad. Radiol. 2015, 22, 1157–1162. [Google Scholar] [CrossRef]
- Moschetta, M.; Telegrafo, M.; Rella, L.; Stabile Ianora, A.A.; Angelelli, G. Abbreviated combined MR protocol: A new faster strategy. Clin. Breast Cancer 2016, 16, 207–211. [Google Scholar] [CrossRef]
- Trevethan, R. Sensitivity, specificity, and predictive values: Foundations, pliabilities, and pitfalls. Front. Public Health 2017, 5, 307. [Google Scholar] [CrossRef]
Standard Full-Protocol Sequences | Scan Time (Minutes) | Abbreviated-Protocol Sequences (Extracted from Standard-Protocol Examinations) | Scan Time (Minutes) |
---|---|---|---|
Axial T1-Weighted TSE | 5.41 | / | - |
Axial T2-Weighted SPAIR | 6.10 | / | - |
Unenhanced Axial Dynamic THRIVE (T1-Weighted) (FS) | 1.18 | Unenhanced Axial Dynamic THRIVE (T1-Weighted) (FS) | 1.18 |
Ninth Contrast Axial Enhanced Dynamic THRIVE (T1-Weighted) (FS) | 9.14 total | First and Second Contrast Axial Enhanced (Early-Arterial-Phase) Dynamic THRIVE (T1-Weighted) (FS) | 3.54 total |
eTHRIVE High-Resolution Sagittal | 4.21 | / | - |
Diffusion-Weighted Imaging (DWI) | 3.27 | / | - |
T2-Weighted Long TE | / | ||
High-Resolution Axial | 4.02 | / | - |
Maximum-Intensity Projection (MIP) | 0 | Maximum-Intensity Projection (MIP) | 0 |
Subtraction Imaging | 0 | Subtraction Imaging | 0 |
Total Scan Time | 33.33 | 4.72 |
Protocol | AUC | p-Value (Asymptotic Sig.) | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
Full protocol | 1.00 | 0.00 | 1.00 | 1.00 |
Abbreviated protocol (Radiologist A) | 0.92 | 0.00 | 0.82 | 1.00 |
Abbreviated protocol (Radiologist B) | 0.92 | 0.00 | 0.81 | 1.00 |
Protocol | Asymptotic | AUC Difference | Asymptotic 95% Confidence Interval | ||
---|---|---|---|---|---|
z | Sig. (2-Tail) | Lower Bound | Upper Bound | ||
Full protocol vs. Abbreviated protocol A | 1.65 | 0.10 | 0.08 | −0.02 | 0.18 |
Full protocol vs. Abbreviated protocol B | 1.62 | 0.11 | 0.08 | −0.02 | 0.17 |
Abbreviated protocol A vs. Abbreviated protocol B | −0.04 | 0.97 | −0.00 | −0.09 | 0.09 |
Performance Indicators | Value |
---|---|
Sensitivity | 100% |
Specificity | 100% |
PPV | 100% |
NPV | 100% |
True Disease Status | 1 Negative | 2 Benign | 3 Probably Benign | 4 Suspicious | 5 Highly Suggestive of Malignancy | 6 Malignancy (Biopsy-Proven) |
---|---|---|---|---|---|---|
Radiologist A: Normal | 4 | 7 | 1 | 2 | 1 | 0 |
Radiologist A: Abnormal | 0 | 0 | 1 | 6 | 13 | 0 |
Radiologist B: Normal | 8 | 0 | 2 | 3 | 2 | 0 |
Radiologist B: Abnormal | 0 | 0 | 0 | 1 | 19 | 0 |
Performance Indicators | Value (Radiologist A) | Value (Radiologist B) |
---|---|---|
Sensitivity | 100.% | 100% |
Specificity | 73.3% | 53.3% |
PPV | 83.3% | 74% |
NPV | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarb, F.; Mizzi, D.; Bezzina, P.; Galea, L. The Diagnostic Accuracy of an Abbreviated vs. a Full MRI Breast Protocol in Detecting Breast Lobular Carcinoma: A Single-Center ROC Study. Diagnostics 2025, 15, 1497. https://doi.org/10.3390/diagnostics15121497
Zarb F, Mizzi D, Bezzina P, Galea L. The Diagnostic Accuracy of an Abbreviated vs. a Full MRI Breast Protocol in Detecting Breast Lobular Carcinoma: A Single-Center ROC Study. Diagnostics. 2025; 15(12):1497. https://doi.org/10.3390/diagnostics15121497
Chicago/Turabian StyleZarb, Francis, Deborah Mizzi, Paul Bezzina, and Leanne Galea. 2025. "The Diagnostic Accuracy of an Abbreviated vs. a Full MRI Breast Protocol in Detecting Breast Lobular Carcinoma: A Single-Center ROC Study" Diagnostics 15, no. 12: 1497. https://doi.org/10.3390/diagnostics15121497
APA StyleZarb, F., Mizzi, D., Bezzina, P., & Galea, L. (2025). The Diagnostic Accuracy of an Abbreviated vs. a Full MRI Breast Protocol in Detecting Breast Lobular Carcinoma: A Single-Center ROC Study. Diagnostics, 15(12), 1497. https://doi.org/10.3390/diagnostics15121497