Renal Function in Chronic Hepatitis C Patients in Mongolia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Scope, and Sample
2.2. Questionnaire, Laboratory Tests, and Physical Exam
- Mild—slightly increased echogenicity of the liver, loss of intrahepatic arterial boundaries, normal appearance of the diaphragm.
- Moderate—markedly increased echogenicity of the liver, loss of visibility of the lower hepatic mass, and lack of clear visibility of the diaphragm.
- Severe—markedly increased echogenicity of the liver, with no clear differentiation of the diaphragm. Clinical guidelines for the diagnosis and treatment of non-alcoholic fatty liver disease, Order of the Ministry of Health of Mongolia, No. A/697, 2024.
2.3. The Method to Evaluate the Hepatic Fibrosis Degree
2.3.1. Liver Fibrosis Grade Was Assessed Using the Fibrosis-4 (FIB4), APRI Index [13], Which Was Calculated Using the Following Formula
2.3.2. Aspartate Aminotransferase to Platelet Ratio Index (APRI) Was Calculated Using Formula [13]
2.4. Evaluation of Renal Function
2.4.1. The Method to Evaluate the Glomerular Filtration Rate
- Normal kidney function: eGFR above 90 mL/min/1.73 m2 and no proteinuria;
- CKD stage 1: eGFR below 90 mL/min/1.73 m2 with evidence of kidney damage;
- CKD stage 2 (mild): eGFR of 60 to 89 mL/min/1.73 m2 with evidence of kidney damage;
- CKD stage 3 (moderate): eGFR of 30 to 59 mL/min/1.73 m2;
- CKD stage 4 (severe): eGFR of 15 to 29 mL/min/1.73 m2;
- CKD stage 5 kidney failure: eGFR less than 15 mL/min/1.73 m2.
2.4.2. Method for Calculating Creatinine Clearance [15]
2.5. Statistical Analysis
3. Results
3.1. General Demographics of the Participants
3.2. The Comparison Between Study Variables
3.3. The Factors Influencing the Reduction of Glomerular Filtration Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Dashtseren, B.; Bungert, A.; Bat-Ulzii, P.; Enkhbat, M.; Lkhagva-Ochir, O.; Jargalsaikhan, G.; Enkhbat, A.; Oidovsambuu, O.; Klemen, J.; Dashdorj, N.; et al. Endemic prevalence of hepatitis B and C in Mongolia: A nationwide survey amongst Mongolian adults. J. Viral Hepat. 2017, 24, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Cacoub, P.; Gragnani, L.; Comarmond, C.; Zignego, A.L. Extrahepatic manifestations of chronic hepatitis C virus infection. Dig. Liver Dis. 2014, 46 (Suppl. S5), S165–S173. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Kataria, A.; Sharma, M.K.; Rastogi, A.; Gupta, E.; Singh, A.; Tiwari, S.C. Hepatitis C Virus-associated Membranoproliferative Glomerulonephritis Treated with Directly Acting Antiviral Therapy. Indian. J. Nephrol. 2018, 28, 462–464. [Google Scholar] [CrossRef]
- Lai, T.S.; Lee, M.H.; Yang, H.I.; You, S.L.; Lu, S.N.; Wang, L.Y.; Yuan, Y.; L’Italien, G.; Chien, K.L.; Chen, C.J.; et al. High hepatitis C viral load and genotype 2 are strong predictors of chronic kidney disease. Kidney Int. 2017, 92, 703–709. [Google Scholar] [CrossRef]
- Peralta, C.A.; Lin, F.; Shlipak, M.G.; Siscovick, D.; Lewis, C.; Jacobs, D.R., Jr.; Bibbins-Domingo, K. Race differences in prevalence of chronic kidney disease among young adults using creatinine-based glomerular filtration rate-estimating equations. Nephrol. Dial. Transpl. 2010, 25, 3934–3939. [Google Scholar] [CrossRef]
- Levey, A.S.; Tighiouart, H.; Titan, S.M.; Inker, L.A. Estimation of Glomerular Filtration Rate With vs Without Including Patient Race. JAMA Intern. Med. 2020, 180, 793–795. [Google Scholar] [CrossRef]
- Glassock, R.J.; Warnock, D.G.; Delanaye, P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol. 2017, 13, 104–114. [Google Scholar] [CrossRef]
- Li, W.C.; Lee, Y.Y.; Chen, I.C.; Wang, S.H.; Hsiao, C.T.; Loke, S.S. Age and gender differences in the relationship between hepatitis C infection and all stages of Chronic kidney disease. J. Viral Hepat. 2014, 21, 706–715. [Google Scholar] [CrossRef]
- Hsu, C.K.; Lai, T.S.; Chen, Y.T.; Tseng, Y.J.; Lee, C.C.; Chen, C.Y.; Hsu, H.J.; Pan, H.C.; Chen, L.W.; Chien, C.H.; et al. Renal function trajectories in hepatitis C infection: Differences between renal healthy and chronic kidney disease individuals. Sci. Rep. 2021, 11, 17197. [Google Scholar] [CrossRef]
- Gantumur, G.; Batsaikhan, B.; Huang, C.I.; Yeh, M.L.; Huang, C.F.; Lin, Y.H.; Lin, T.C.; Liang, P.C.; Liu, T.W.; Lee, J.J.; et al. The association between hepatitis C virus infection and renal function. J. Chin. Med. Assoc. 2021, 84, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.C.; Wu, Y.F.; Lin, M.S.; Lin, C.L.; Chang, M.L.; Chang, S.T.; Weng, T.C.; Chen, M.Y. The Impact of Hepatitis C Virus, Metabolic Disturbance, and Unhealthy Behavior on Chronic Kidney Disease: A Secondary Cross-Sectional Analysis. Int. J. Env. Res. Public. Health 2022, 19, 3558. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Fernandez-Prado, R.; Castillo-Rodriguez, E.; Velez-Arribas, F.J.; Gracia-Iguacel, C.; Ortiz, A. Creatinine Clearance Is Not Equal to Glomerular Filtration Rate and Cockcroft-Gault Equation Is Not Equal to CKD-EPI Collaboration Equation. Am. J. Med. 2016, 129, 1259–1263. [Google Scholar] [CrossRef]
- Fabrizi, F.; Donato, F.M.; Messa, P. Association Between Hepatitis C Virus and Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Ann. Hepatol. 2018, 17, 364–391. [Google Scholar] [CrossRef]
- Lee, J.J.; Lin, M.Y.; Yang, Y.H.; Lu, S.N.; Chen, H.C.; Hwang, S.J. Association of hepatitis C and B virus infection with CKD in an endemic area in Taiwan: A cross-sectional study. Am. J. Kidney Dis. 2010, 56, 23–31. [Google Scholar] [CrossRef]
- Park, H.; Adeyemi, A.; Henry, L.; Stepanova, M.; Younossi, Z. A meta-analytic assessment of the risk of chronic kidney disease in patients with chronic hepatitis C virus infection. J. Viral Hepat. 2015, 22, 897–905. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, H.Y.; Li, C.Y.; Lee, M.S.; Su, Y.C. A nationwide cohort study suggests that hepatitis C virus infection is associated with increased risk of chronic kidney disease. Kidney Int. 2014, 85, 1200–1207. [Google Scholar] [CrossRef]
- Dashjamts, G.; Ganzorig, A.-E.; Tsedendorj, Y.; Dondov, G.; Nergui, O.; Badamjav, T.; Huang, C.-F.; Liang, P.-C.; Lonjid, T.; Batsaikhan, B. Post-Treatment Occurrence of Serum Cryoglobulinemia in Chronic Hepatitis C Patients. Diagnostics 2024, 14, 1188. [Google Scholar] [CrossRef]
- Nevola, R.; Acierno, C.; Pafundi, P.C.; Adinolfi, L.E. Chronic hepatitis C infection induces cardiovascular disease and type 2 diabetes: Mechanisms and management. Minerva Medica 2021, 112, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Terrier, B.; Cacoub, P. Renal involvement in HCV-related vasculitis. Clin. Res. Hepatol. Gastroenterol. 2013, 37, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Batsaikhan, B.; Huang, C.I.; Yeh, M.L.; Huang, C.F.; Hou, N.J.; Lin, Z.Y.; Chen, S.C.; Huang, J.F.; Yu, M.L.; Chuang, W.L.; et al. The effect of antiviral therapy on serum lipid profiles in chronic hepatitis C. Oncotarget 2018, 9, 21313–21321. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Awan, A.A.; Berenguer, M.C.; Bruchfeld, A.; Fabrizi, F.; Goldberg, D.S.; Jia, J.; Kamar, N.; Mohamed, R.; Pessoa, M.G.; et al. Executive Summary of the KDIGO 2022 Clinical Practice Guideline for the Prevention, Diagnosis, Evaluation, and Treatment of Hepatitis C in Chronic Kidney Disease. Kidney Int. 2022, 102, 1228–1237. [Google Scholar] [CrossRef]
- Molnar, M.Z.; Alhourani, H.M.; Wall, B.M.; Lu, J.L.; Streja, E.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of hepatitis C viral infection with incidence and progression of chronic kidney disease in a large cohort of US veterans. Hepatology 2015, 61, 1495–1502. [Google Scholar] [CrossRef]
- Dalrymple, L.S.; Koepsell, T.; Sampson, J.; Louie, T.; Dominitz, J.A.; Young, B.; Kestenbaum, B. Hepatitis C virus infection and the prevalence of renal insufficiency. Clin. J. Am. Soc. Nephrol. 2007, 2, 715–721. [Google Scholar] [CrossRef]
- Ferri, C.; Giuggioli, D.; Colaci, M. Renal Manifestations of Hepatitis C Virus. Clin. Liver Dis. 2017, 21, 487–497. [Google Scholar] [CrossRef]
- Fukui, M.; Kitagawa, Y.; Nakamura, N.; Yoshikawa, T. Hepatitis C virus and atherosclerosis in patients with type 2 diabetes. Jama 2003, 289, 1245–1246. [Google Scholar] [CrossRef]
- Ishizaka, N.; Ishizaka, Y.; Takahashi, E.; Tooda, E.-i.; Hashimoto, H.; Nagai, R.; Yamakado, M. Association between hepatitis C virus seropositivity, carotid-artery plaque, and intima-media thickening. Lancet 2002, 359, 133–135. [Google Scholar] [CrossRef]
- Cacoub, P.; Saadoun, D. Extrahepatic manifestations of chronic HCV infection. N. Engl. J. Med. 2021, 384, 1038–1052. [Google Scholar] [CrossRef]
- Dashjamts, G.; Ganzorig, A.-E.; Tsedendorj, Y.; Daramjav, D.; Khayankhyarvaa, E.; Ulziitsogt, B.; Nergui, O.; Dondov, G.; Badamjav, T.; Lonjid, T. Change in Estimated Glomerular Filtration Rate After Direct-Acting Antiviral Treatment in Chronic Hepatitis C Patients. Diseases 2025, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Song, I.H. Hepatitis C virus infection in chronic kidney disease: Paradigm shift in management. Korean J. Intern. Med. 2018, 33, 670. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Henry, L.; Ong, J.P.; Tanaka, A.; Eguchi, Y.; Mizokami, M.; Lim, Y.S.; Dan, Y.Y.; Yu, M.L.; Stepanova, M. Systematic review with meta-analysis: Extrahepatic manifestations in chronic hepatitis C virus-infected patients in East Asia. Aliment. Pharmacol. Ther. 2019, 49, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Su, F.-H.; Su, C.-T.; Chang, S.-N.; Chen, P.-C.; Sung, F.-C.; Lin, C.-C.; Yeh, C.-C. Association of hepatitis C virus infection with risk of ESRD: A population-based study. Am. J. Kidney Dis. 2012, 60, 553–560. [Google Scholar] [CrossRef]
- Fabrizi, F.; Martin, P.; Dixit, V.; Messa, P. Hepatitis C virus infection and kidney disease: A meta-analysis. Clin. J. Am. Soc. Nephrol. 2012, 7, 549–557. [Google Scholar] [CrossRef]
- Derbala, M.; Shebl, F.M.; Rashid, A.; Amer, A.; Bener, A. Microalbuminuria in hepatitis C-genotype 4: Effect of pegylated interferon and ribavirin. World J. Gastroenterol. WJG 2010, 16, 1226. [Google Scholar] [CrossRef]
- Liangpunsakul, S.; Chalasani, N. Relationship between hepatitis C and microalbuminuria: Results from the NHANES III. Kidney Int. 2005, 67, 285–290. [Google Scholar] [CrossRef]
Score | Fibrosis Degree | Diagnosis |
---|---|---|
<1.45 | F0–F1 | F0—normal F1—mild fibrosis F2–F3—moderate fibrosis F4–F6—severe fibrosis |
1.45–3.25 | F2–F3 | |
>3.25 | F4–F6 |
Characteristics | All (n = 222) | HCV (+) (n = 111) | HCV (−) (n = 111) | p-Value |
---|---|---|---|---|
Age (mean ± SD) | 40.7 ± 11.1 | 40.7 ± 11.1 | 40.7 ± 11.2 | 0.962 |
Female, n (%) | 171 (77.0%) | 86 (50.3%) | 85 (49.7%) | 0.873 |
BMI (mean ± SD) | 26.0 (4.8) | 25.4 (4.0) | 26.7 (5.4) | 0.045 |
Platelet, mean (SD) | 254.4 ± 69.3 | 257.6 ± 72.2 | 251.2 ± 66.6 | 0.490 |
PT (s) | 11.3 ± 4.6 | 13.4 ± 2.2 | 9.5 ± 5.3 | <0.001 |
GOT mean (SD) | 275.4 ± 435.7 | 500.6 ± 517.0 | 41.7 ± 55.06 | <0.001 |
GPT mean (SD) | 410.4 ± 632.5 | 764.4 ± 724.6 | 39.6 ± 46.1 | <0.001 |
Total bilirubin umol/L | 65.2 ± 81.5 | 94.1 ± 86.2 | 14.06 ± 34.6 | <0.001 |
ALP umol/L | 185.3 ± 123.6 | 193.7 ± 124.4 | 90.4 ± 59.9 | 0.016 |
GGT U/L | 223.9 ± 194.7 | 237.5 ± 194.7 | 36.4 ± 20.0 | 0.045 |
TCH mean (SD) | 4.3 ± 1.01 | 4.1 ± 0.8 | 5.7 ± 0.9 | <0.001 |
TG mean (SD) | 1.5 ± 0.6 | 1.62 ± 0.8 | 1.45 ± 0.4 | 0.772 |
Creatinine mmol/L | 56.2 ± 18.1 | 57.0 ± 17.6 | 55.6 ± 18.5 | 0.642 |
Urea mmol/L | 4.9 ± 5.2 | 3.2 ± 1.7 | 6.4 ± 6.8 | <0.001 |
FGV, N/n (%) | 164/57 | 93/21 (22.5) | 71/36 (50.7) | <0.001 |
eGFR mean (SD) | 112.8 ± 22.3 | 105.3 ± 24.5 | 118.7 ± 18.5 | <0.001 |
CrCl mean (SD) | 1.7 ± 1.1 | 1.5 ± 0.6 | 1.8 ± 1.3 | <0.001 |
FIB4 (SD) | 2.4 ± 3.3 | 2.9 ± 2.9 | 1.9 ± 3.7 | <0.001 |
APRI (SD) | 3.0 ± 4.7 | 5.1 ± 5.7 | 0.8 ± 2.0 | <0.001 |
Characteristics | eGFR ≤ 120, n = 95 | eGFR ≥ 120, n = 65 | p-Value |
---|---|---|---|
Age (mean ± SD) | 54.3 (8.9) | 52.3 (12.0) | 0.048 |
Male (%) Female (%) | 28 (29.4%) 67 (70.5%) | 13 (20.0%) 52 (80.0%) | 0.178 |
BMI (mean ± SD) | 24.4 (3.6) | 24.8 (3.5) | 0.276 |
CrCl mean (SD) | 1.1 (0.2) | 1.8 (1.1) | <0.001 |
FIB4 (SD) | 3.5 (2.9) | 3.1 (3.0) | 0.136 |
APRI (SD) | 1.9 (1.5) | 1.8 (1.6) | 0.352 |
Liver steatosis a (%) | 58.4% | 33.3% | 0.216 |
Hyperlipidemia (%) | 8.0% | 14.2% | 0.489 |
FGV (%) | 73/34 (46.5) | 49/15 (30.6) | 0.078 |
HCV (+), (%) | 49 (69.0%) | 22 (31.0%) | 0.027 |
Parameter | HCV (+) | HCV (−) | ||||
---|---|---|---|---|---|---|
eGFR ≤ 120 | eGFR ≥ 120 | p-Value | eGFR ≤ 120 | eGFR ≥ 120 | p-Value | |
Age (mean ± SD) | 46.0 ± 10.0 | 35.2 ± 10.4 | <0.001 | 44.1 ± 9.8 | 34.9 ± 10.3 | <0.001 |
BMI (mean ± SD) | 26.7 ± 3.4 | 23.6 ± 3.6 | <0.001 | 27.8 ± 4.9 | 25.4 ± 5.9 | 0.038 |
CrCl mean (SD) | 1.4 ± 0.5 | 1.7 ± 0.6 | 0.048 | 1.3 ± 0.2 | 2.4 ± 1.8 | <0.001 |
FIB4 (SD) | 3.1 ± 3.5 | 2.2 ± 1.7 | 0.263 | 1.9 ± 3.1 | 1.9 ± 4.7 | 0.996 |
APRI (SD) | 5.7 ± 6.4 | 5.6 ± 4.9 | 0.959 | 1.1 ± 2.7 | 0.6 ± 1.2 | 0.252 |
FGV (%) | 20/7 (35.0) | 43/11 (25.5) | 0.441 | 29/8 (27.5) | 30/23 (76.6) | <0.001 |
Parameter | HCV (+) | HCV (−) | p-Value | HCV (+) | HCV (−) | p-Value |
---|---|---|---|---|---|---|
Age > 45 | Age > 45 | Age < 45 | Age < 45 | |||
BMI (mean ± SD) | 27.0 (3.4) | 28.7 (5.4) | 0.077 | 24.5 (4.1) | 25.4 (4.9) | 0.271 |
eGFR mean (SD) | 99.6 (23.8) | 111.0 (16.7) | 0.021 | 111.5 (22.6) | 122.8 (18.0) | 0.008 |
CrCl mean (SD) | 1.5 (0.7) | 1.8 (1.7) | 0.476 | 1.5 (0.4) | 1.9 (1.1) | 0.014 |
FIB4 (SD) | 4.1 (3.8) | 2.3 (3.5) | 0.020 | 2.0 (1.6) | 1.7 (3.7) | 0.455 |
APRI (SD) | 4.9 (5.3) | 1.2 (2.8) | <0.001 | 5.0 (5.9) | 0.5 (1.0) | <0.001 |
Characteristics | FIB4 ≥ 3.25 | FIB4 ≤ 3.25 | p-Value |
---|---|---|---|
Age (mean ± SD) | 46.8 (9.3) | 37.9 (10.8) | <0.001 |
BMI (mean ± SD) | 26.2 (3.3) | 25.0 (4.3) | 0.139 |
eGFR mean (SD) | 97.9 (28.8) | 107.4 (22.6) | 0.154 |
CrCl mean (SD) | 1.4 (0.5) | 1.5 (0.6) | 0.530 |
APRI (SD) | 5.6 (5.4) | 4.7 (5.8) | 0.496 |
FGV (%) | 40/17 (42.5) | 120/39 (32.5) | 0.251 |
Univariate Logistic Regression | Multivariate Logistic Regression | |||||
---|---|---|---|---|---|---|
eGFR mL/min/1.73 m2 | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
HCV (+) | 27.70 | 3.58–214.13 | <0.001 | 24.91 | 3.13–198.38 | 0.002 |
Age ≥ 45 (mean ± SD) | 3.55 | 1.20–10.50 | 0.022 | 2.18 | 0.60–7.92 | 0.232 |
BMI ≥ 25 (mean ± SD) | 3.65 | 1.01–13.20 | 0.048 | 2.63 | 0.61–11.3 | 0.193 |
FIB4 ≥ 3.25 (SD) | 2.89 | 1.41–5.91 | 0.004 | 0.92 | 0.26–3.29 | 0.909 |
Gender (female) | 0.88 | 0.29–2.64 | 0.824 | 1.20 | 0.35–4.16 | 0.764 |
FGV mmol/L | 0.88 | 0.28–2.72 | 0.827 | 0.55 | 0.14–2.03 | 0.371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashjamts, G.; Ganzorig, A.-E.; Tsedendorj, Y.; Batsaikhan, A.; Daramjav, D.; Khayankhyarvaa, E.; Ulziitsogt, B.; Nergui, O.; Davaasuren, N.-E.; Dondov, G.; et al. Renal Function in Chronic Hepatitis C Patients in Mongolia. Diagnostics 2025, 15, 1471. https://doi.org/10.3390/diagnostics15121471
Dashjamts G, Ganzorig A-E, Tsedendorj Y, Batsaikhan A, Daramjav D, Khayankhyarvaa E, Ulziitsogt B, Nergui O, Davaasuren N-E, Dondov G, et al. Renal Function in Chronic Hepatitis C Patients in Mongolia. Diagnostics. 2025; 15(12):1471. https://doi.org/10.3390/diagnostics15121471
Chicago/Turabian StyleDashjamts, Gantogtokh, Amin-Erdene Ganzorig, Yumchinsuren Tsedendorj, Ankhzaya Batsaikhan, Dolgion Daramjav, Enkhmend Khayankhyarvaa, Bolor Ulziitsogt, Otgongerel Nergui, Nomin-Erdene Davaasuren, Ganchimeg Dondov, and et al. 2025. "Renal Function in Chronic Hepatitis C Patients in Mongolia" Diagnostics 15, no. 12: 1471. https://doi.org/10.3390/diagnostics15121471
APA StyleDashjamts, G., Ganzorig, A.-E., Tsedendorj, Y., Batsaikhan, A., Daramjav, D., Khayankhyarvaa, E., Ulziitsogt, B., Nergui, O., Davaasuren, N.-E., Dondov, G., Badamjav, T., Lonjid, T., Huang, C.-F., Lin, T.-C., Batsaikhan, B., & Dai, C.-Y. (2025). Renal Function in Chronic Hepatitis C Patients in Mongolia. Diagnostics, 15(12), 1471. https://doi.org/10.3390/diagnostics15121471