Explainable Artificial Intelligence in Radiological Cardiovascular Imaging—A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Study Selection
3. Results
3.1. Overview of Included Studies
3.2. Computed Tomography
Author | Year | XAI Method(s) | Imaging Modality | Aim of the Study | Ref. |
---|---|---|---|---|---|
Gerbasi et al. | 2024 | Deep SHAP | CCTA | To develop a fully automated, visually explainable deep learning pipeline using a Multi-Axis Vision Transformer for CAD-RADS scoring of CCTA scans, aiming to classify patients based on the need for further investigations and severity of coronary stenosis. | [12] |
Sakai et al. | 2024 | SHAP | contrast-enhanced CT angiography | To classify culprit versus non-culprit calcified carotid plaques in embolic stroke of undetermined source using an explainable ML model with clinically interpretable imaging features. | [15] |
Fu et al. | 2024 | SHAP | non-contrast abdominal CT | To predict early outcomes after percutaneous transluminal renal angioplasty in patients with severe atherosclerotic renal artery stenosis using CT-based radiomics. | [20] |
Lo Iacono et al. | 2023 | SHAP | contrast-enhanced cardiac CT | To differentiate cardiac amyloidosis from aortic stenosis using radiomic features and machine learning. | [18] |
Penso et al. | 2023 | Grad-CAM | CCTA | To classify coronary stenosis from MPR images using a ConvMixer-based token-mixer architecture according to CAD-RADS scoring. | [13] |
Lopes et al. | 2022 | SHAP | CCTA | To use machine learning models to predict insufficient contrast enhancement in coronary CT angiography and interpret predictive features using SHAP. | [14] |
Candemir et al. | 2020 | Grad-CAM | CCTA | Automated detection and weakly supervised localization of coronary artery atherosclerosis using a 3D-CNN. | [16] |
Wang et al. | 2021 | Grad-CAM | Contrast-enhanced Cardiac CT | To develop an explainable AI model for recognizing Tetralogy of Fallot in cardiovascular CT images. | [17] |
Huo et al. | 2019 | Grad-CAM | non-contrast chest CT | To detect coronary artery calcium using 3D attention-based deep learning with weakly supervised learning and to visualize predictions using 3D Grad-CAM. | [19] |
3.3. Magnetic Resonance Imaging
Author | Year | XAI Method(s) | Imaging Modality | Aim of the Study | Ref. |
---|---|---|---|---|---|
Zhang et al. | 2025 | SHAP | Cardiac MRI | To predict microvascular obstruction using a machine learning model based on angio-based microvascular resistance and clinical data during PPCI in STEMI patients and to interpret the model using SHAP. | [22] |
Wang et al. | 2024 | Grad-CAM, SHAP | Cardiac MRI | Development and evaluation of AI models for screening and diagnosis of multiple cardiovascular diseases using cardiac MRI, with explainability analysis. | [25] |
Sufian et al. | 2024 | LIME, SHAP | Cardiovascular MRI | To address algorithmic bias in AI-driven cardiovascular imaging using fairness-aware machine learning methods and explainability techniques such as SHAP and LIME. | [26] |
Paciorek et al. | 2024 | Grad-CAM | Cardiac MRI | To develop and compare deep learning models using DenseNet-161 for automated assessment of cardiac pathologies on T1-mapping and LGE PSIR cardiac MRI sequences. | [21] |
Cai et al. | 2023 | SHAP | Brain MRI and carotid ultrasound | To predict cerebral perfusion status based on internal carotid artery blood flow using machine learning models and explain predictions with SHAP. | [24] |
Mouches et al. | 2022 | Saliency maps (SmoothGrad) | Brain MRI | To predict biological brain age using multimodal MRI data and identify predictive brain and vascular regions. | [23] |
3.4. Echocardiography and Other Ultrasound Examinations
Author | Year | XAI Method(s) | Imaging Modality | Aim of the Study | Ref. |
---|---|---|---|---|---|
Day et al. | 2024 | Grad-CAM | Fetal Cardiac Ultrasound | To evaluate whether AI advice improves the diagnostic performance of clinicians in detecting fetal atrioventricular septal defect (AVSD) and assess the effect of displaying additional AI model information (confidence and Grad-CAM) on collaborative performance. | [33] |
Ragnarsdottir et al. | 2024 | Grad-CAM | Echocardiography | Automated and explainable prediction of pulmonary hypertension and classification of its severity in newborns. | [30] |
Holste et al. | 2023 | Grad-CAM, Saliency Maps | Echocardiography | To develop and validate an AI model for severe aortic stenosis detection using single-view transthoracic echocardiography without Doppler imaging. | [27] |
Chao et al. | 2023 | Grad-CAM | Echocardiography | Deep learning model (ResNet50) to differentiate constrictive pericarditis from cardiac amyloidosis based on apical four-chamber echocardiographic views. | [34] |
Sakai et al. | 2022 | Graph Chart Diagram | Fetal Cardiac Ultrasound | To improve fetal cardiac ultrasound screening using a novel interpretable deep learning representation to enhance examiner performance. | [32] |
Wang et al. | 2022 | Grad-CAM | 2D Echocardiography | To develop a CNN-based cardiac segmentation method incorporating coordinate attention and domain knowledge to improve segmentation accuracy and interpretability. | [29] |
Vafaeezadeh et al. | 2022 | Grad-CAM | Transthoracic Echocardiography | To automatically classify mitral valve morphologies using explainable deep learning based on Carpentier’s functional classification. | [28] |
Nurmaini et al. | 2022 | Grad-CAM, Guided Backpropagation | Prenatal Fetal Ultrasound | To improve prenatal screening for congenital heart disease using deep learning and explain classification via visualization methods. | [31] |
Lee et al. | 2022 | CAM | 2D Echocardiography | To distinguish incomplete Kawasaki disease from pneumonia in children using echocardiographic imaging and explainable deep learning. | [35] |
3.5. Chest X-Ray (CXR)
Author | Year | XAI Method(s) | Imaging Modality | Aim of the Study | Ref. |
---|---|---|---|---|---|
Bhave et al. | 2024 | Saliency Mapping, CAM | CXR | To develop and evaluate a deep learning model to detect structural heart abnormalities (SLVH and DLV) from chest X-rays. | [36] |
Ueda et al. | 2023 | Grad-CAM | CXR | Simultaneous classification of cardiac function and valvular diseases from chest X-rays. | [38] |
Matsumoto et al. | 2022 | Grad-CAM, Saliency Maps | CXR | To detect atrial fibrillation using a deep learning model trained on chest X-rays and to visualize the regions of interest using saliency maps. | [37] |
Kusunose et al. | 2022 | Grad-CAM | CXR | To predict exercise-induced pulmonary hypertension in patients with scleroderma using DL on CXR. | [39] |
4. Discussion
5. Conclusions and Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global Burden of Cardiovascular Diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Salih, A.M.; Galazzo, I.B.; Gkontra, P.; Rauseo, E.; Lee, A.M.; Lekadir, K.; Radeva, P.; Petersen, S.E.; Menegaz, G. A Review of Evaluation Approaches for Explainable AI with Applications in Cardiology. Artif. Intell. Rev. 2024, 57, 240. [Google Scholar] [CrossRef]
- Borys, K.; Schmitt, Y.A.; Nauta, M.; Seifert, C.; Krämer, N.; Friedrich, C.M.; Nensa, F. Explainable AI in Medical Imaging: An Overview for Clinical Practitioners—Beyond Saliency-Based XAI Approaches. Eur. J. Radiol. 2023, 162, 110786. [Google Scholar] [CrossRef]
- Gala, D.; Behl, H.; Shah, M.; Makaryus, A.N. The Role of Artificial Intelligence in Improving Patient Outcomes and Future of Healthcare Delivery in Cardiology: A Narrative Review of the Literature. Healthcare 2024, 12, 481. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Szabo, L.; Raisi-Estabragh, Z.; Salih, A.; McCracken, C.; Pujadas, E.R.; Gkontra, P.; Kiss, M.; Maurovich-Horvath, P.; Vago, H.; Merkely, B.; et al. Clinician’s Guide to Trustworthy and Responsible Artificial Intelligence in Cardiovascular Imaging. Front. Cardiovasc. Med. 2022, 9, 1016032. [Google Scholar] [CrossRef]
- Marey, A.; Arjmand, P.; Alerab, A.D.S.; Eslami, M.J.; Saad, A.M.; Sanchez, N.; Umair, M. Explainability, Transparency and Black Box Challenges of AI in Radiology: Impact on Patient Care in Cardiovascular Radiology. Egypt. J. Radiol. Nucl. Med. 2024, 55, 183. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Muhammad, D.; Bendechache, M. Unveiling the Black Box: A Systematic Review of Explainable Artificial Intelligence in Medical Image Analysis. Comput. Struct. Biotechnol. J. 2024, 24, 542–560. [Google Scholar] [CrossRef]
- Salahuddin, Z.; Woodruff, H.C.; Chatterjee, A.; Lambin, P. Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods. Comput. Biol. Med. 2022, 140, 105111. [Google Scholar] [CrossRef]
- Hassan, S.U.; Abdulkadir, S.J.; Zahid, M.S.M.; Al-Selwi, S.M. Local Interpretable Model-Agnostic Explanation Approach for Medical Imaging Analysis: A Systematic Literature Review. Comput. Biol. Med. 2024, 185, 109569. [Google Scholar] [CrossRef] [PubMed]
- Gerbasi, A.; Dagliati, A.; Albi, G.; Chiesa, M.; Andreini, D.; Baggiano, A.; Mushtaq, S.; Pontone, G.; Bellazzi, R.; Colombo, G. CAD-RADS Scoring of Coronary CT Angiography with Multi-Axis Vision Transformer: A Clinically-Inspired Deep Learning Pipeline. Comput. Methods Programs Biomed. 2023, 244, 107989. [Google Scholar] [CrossRef] [PubMed]
- Penso, M.; Moccia, S.; Caiani, E.G.; Caredda, G.; Lampus, M.L.; Carerj, M.L.; Babbaro, M.; Pepi, M.; Chiesa, M.; Pontone, G. A Token-Mixer Architecture for CAD-RADS Classification of Coronary Stenosis on Multiplanar Reconstruction CT Images. Comput. Biol. Med. 2022, 153, 106484. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.R.; van den Boogert, T.P.W.; Lobe, N.H.J.; Verwest, T.A.; Henriques, J.P.S.; Marquering, H.A.; Planken, R.N. Machine Learning-Based Prediction of Insufficient Contrast Enhancement in Coronary Computed Tomography Angiography. Eur. Radiol. 2022, 32, 7136–7145. [Google Scholar] [CrossRef]
- Sakai, Y.; Kim, J.; Phi, H.Q.; Hu, A.C.; Balali, P.; Guggenberger, K.V.; Woo, J.H.; Bos, D.; Kasner, S.E.; Cucchiara, B.L.; et al. Explainable Machine-Learning Model to Classify Culprit Calcified Carotid Plaque in Embolic Stroke of Undetermined Source. MedRxiv 2024. [Google Scholar] [CrossRef]
- Candemir, S.; White, R.D.; Demirer, M.; Gupta, V.; Bigelow, M.T.; Prevedello, L.M.; Erdal, B.S. Automated Coronary Artery Atherosclerosis Detection and Weakly Supervised Localization on Coronary CT Angiography with a Deep 3-Dimensional Convolutional Neural Network. Comput. Med. Imaging Graph. 2020, 83, 101721. [Google Scholar] [CrossRef]
- Wang, S.H.; Wu, K.; Chu, T.; Fernandes, S.L.; Zhou, Q.; Zhang, Y.D.; Sun, J. SOSPCNN: Structurally Optimized Stochastic Pooling Convolutional Neural Network for Tetralogy of Fallot Recognition. Wirel. Commun. Mob. Comput. 2021, 2021, 5792975. [Google Scholar] [CrossRef]
- Iacono, F.L.; Maragna, R.; Pontone, G.; Corino, V.D.A. A Robust Radiomic-Based Machine Learning Approach to Detect Cardiac Amyloidosis Using Cardiac Computed Tomography. Front. Radiol. 2023, 3, 1193046. [Google Scholar] [CrossRef]
- Huo, Y.; Terry, J.G.; Wang, J.; Nath, V.; Bermudez, C.; Bao, S.; Parvathaneni, P.; Carr, J.J.; Landman, B.A. Coronary Calcium Detection Using 3D Attention Identical Dual Deep Network Based on Weakly Supervised Learning. In Proceedings of the SPIE 10949, Medical Imaging 2019: Image Processing, San Diego, CA, USA, 16–21 February 2019; p. 42. [Google Scholar]
- Fu, J.; Fang, M.; Lin, Z.; Qiu, J.; Yang, M.; Tian, J.; Dong, D.; Zou, Y. CT-Based Radiomics: Predicting Early Outcomes after Percutaneous Transluminal Renal Angioplasty in Patients with Severe Atherosclerotic Renal Artery Stenosis. Vis. Comput. Ind. Biomed. Art 2024, 7, 1. [Google Scholar] [CrossRef]
- Paciorek, A.M.; von Schacky, C.E.; Foreman, S.C.; Gassert, F.G.; Gassert, F.T.; Kirschke, J.S.; Laugwitz, K.-L.; Geith, T.; Hadamitzky, M.; Nadjiri, J. Automated Assessment of Cardiac Pathologies on Cardiac MRI Using T1-Mapping and Late Gadolinium Phase Sensitive Inversion Recovery Sequences with Deep Learning. BMC Med. Imaging 2024, 24, 43. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Y.; Xue, P.; Bao, X.; Bai, X.; Qiao, S.; Gao, Y.; Guo, X.; Xue, Y.; Dai, Q.; et al. Prediction of Microvascular Obstruction from Angio-Based Microvascular Resistance and Available Clinical Data in Percutaneous Coronary Intervention: An Explainable Machine Learning Model. Sci. Rep. 2025, 15, 3045. [Google Scholar] [CrossRef] [PubMed]
- Mouches, P.; Wilms, M.; Rajashekar, D.; Langner, S.; Forkert, N.D. Multimodal Biological Brain Age Prediction Using Magnetic Resonance Imaging and Angiography with the Identification of Predictive Regions. Hum. Brain Mapp. 2022, 43, 2554. [Google Scholar] [CrossRef]
- Cai, L.; Zhao, E.; Niu, H.; Liu, Y.; Zhang, T.; Liu, D.; Zhang, Z.; Li, J.; Qiao, P.; Lv, H.; et al. A Machine Learning Approach to Predict Cerebral Perfusion Status Based on Internal Carotid Artery Blood Flow. Comput. Biol. Med. 2023, 164, 107264. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Yang, K.; Wen, Y.; Wang, P.; Hu, Y.; Lai, Y.; Wang, Y.; Zhao, K.; Tang, S.; Zhang, A.; et al. Screening and Diagnosis of Cardiovascular Disease Using Artificial Intelligence-Enabled Cardiac Magnetic Resonance Imaging. Nat. Med. 2024, 30, 1471–1480. [Google Scholar] [CrossRef]
- Sufian, A.; Alsadder, L.; Hamzi, W.; Zaman, S.; Sagar, A.S.M.S.; Hamzi, B. Mitigating Algorithmic Bias in AI-Driven Cardiovascular Imaging for Fairer Diagnostics. Diagnostics 2024, 14, 2675. [Google Scholar] [CrossRef]
- Holste, G.; Oikonomou, E.K.; Mortazavi, B.J.; Coppi, A.; Faridi, K.F.; Miller, E.J.; Forrest, J.K.; McNamara, R.L.; Ohno-Machado, L.; Yuan, N.; et al. Severe Aortic Stenosis Detection by Deep Learning Applied to Echocardiography. Eur. Heart J. 2023, 44, 4592–4604. [Google Scholar] [CrossRef] [PubMed]
- Vafaeezadeh, M.; Behnam, H.; Hosseinsabet, A.; Gifani, P. Automatic Morphological Classification of Mitral Valve Diseases in Echocardiographic Images Based on Explainable Deep Learning Methods. Int. J. Comput. Assist. Radiol. Surg. 2021, 17, 413–425. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Tang, T.; Xie, W.; Jiang, Y.; Zhang, H.; Zhou, X.; Yuan, K. Cardiac Segmentation Method Based on Domain Knowledge. Ultrason. Imaging 2022, 44, 105–117. [Google Scholar] [CrossRef]
- Ragnarsdottir, H.; Ozkan, E.; Michel, H.; Chin-Cheong, K.; Manduchi, L.; Wellmann, S.; Vogt, J.E. Deep Learning Based Prediction of Pulmonary Hypertension in Newborns Using Echocardiograms. Int. J. Comput. Vis. 2024, 132, 2567–2584. [Google Scholar] [CrossRef]
- Nurmaini, S.; Partan, R.U.; Bernolian, N.; Sapitri, A.I.; Tutuko, B.; Rachmatullah, M.N.; Darmawahyuni, A.; Firdaus, F.; Mose, J.C. Deep Learning for Improving the Effectiveness of Routine Prenatal Screening for Major Congenital Heart Diseases. J. Clin. Med. 2022, 11, 6454. [Google Scholar] [CrossRef]
- Sakai, A.; Komatsu, M.; Komatsu, R.; Matsuoka, R.; Yasutomi, S.; Dozen, A.; Shozu, K.; Arakaki, T.; Machino, H.; Asada, K.; et al. Medical Professional Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac Ultrasound Screening. Biomedicines 2022, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Day, T.G.; Matthew, J.; Budd, S.F.; Venturini, L.; Wright, R.; Farruggia, A.; Vigneswaran, T.V.; Zidere, V.; Hajnal, J.V.; Razavi, R.; et al. Interaction between Clinicians and Artificial Intelligence to Detect Fetal Atrioventricular Septal Defects on Ultrasound: How Can We Optimize Collaborative Performance? Ultrasound Obstet. Gynecol. 2024, 64, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.-J.; Jeong, J.; Arsanjani, R.; Kim, K.; Tsai, Y.-L.; Yu, W.-C.; Farina, J.M.; Mahmoud, A.K.; Ayoub, C.; Grogan, M.; et al. Echocardiography-Based Deep Learning Model to Differentiate Constrictive Pericarditis and Restrictive Cardiomyopathy. JACC Cardiovasc. Imaging 2023, 17, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Eun, Y.; Hwang, J.Y.; Eun, L.Y. Explainable Deep Learning Algorithm for Distinguishing Incomplete Kawasaki Disease by Coronary Artery Lesions on Echocardiographic Imaging. Comput. Methods Programs Biomed. 2022, 223, 106970. [Google Scholar] [CrossRef]
- Bhave, S.; Rodriguez, V.; Poterucha, T.; Mutasa, S.; Aberle, D.; Capaccione, K.M.; Chen, Y.; Dsouza, B.; Dumeer, S.; Goldstein, J.; et al. Deep Learning to Detect Left Ventricular Structural Abnormalities in Chest X-Rays. Eur. Heart J. 2024, 45, 2002–2012. [Google Scholar] [CrossRef]
- Matsumoto, T.; Ehara, S.; Walston, S.L.; Mitsuyama, Y.; Miki, Y.; Ueda, D. Artificial Intelligence-Based Detection of Atrial Fibrillation from Chest Radiographs. Eur. Radiol. 2022, 32, 5890–5897. [Google Scholar] [CrossRef]
- Ueda, D.; Matsumoto, T.; Ehara, S.; Yamamoto, A.; Walston, S.L.; Ito, A.; Shimono, T.; Shiba, M.; Takeshita, T.; Fukuda, D.; et al. Artificial Intelligence-Based Model to Classify Cardiac Functions from Chest Radiographs: A Multi-Institutional, Retrospective Model Development and Validation Study. Lancet Digit. Health 2023, 5, e525–e533. [Google Scholar] [CrossRef]
- Kusunose, K.; Hirata, Y.; Yamaguchi, N.; Kosaka, Y.; Tsuji, T.; Kotoku, J.; Sata, M. Deep Learning for Detection of Exercise-Induced Pulmonary Hypertension Using Chest X-Ray Images. Front. Cardiovasc. Med. 2022, 9, 891703. [Google Scholar] [CrossRef]
- Lo, S.H.; Yin, Y. A Novel Interaction-Based Methodology towards Explainable AI with Better Understanding of Pneumonia Chest X-Ray Images. Discov. Artif. Intell. 2021, 1, 16. [Google Scholar] [CrossRef]
- McNamara, S.L.; Yi, P.H.; Lotter, W. The Clinician-AI Interface: Intended Use and Explainability in FDA-Cleared AI Devices for Medical Image Interpretation. NPJ Digit. Med. 2024, 7, 80. [Google Scholar] [CrossRef]
- Panigutti, C.; Hamon, R.; Hupont, I.; Llorca, D.F.; Yela, D.F.; Junklewitz, H.; Scalzo, S.; Mazzini, G.; Sanchez, I.; Garrido, J.S.; et al. The Role of Explainable AI in the Context of the AI Act. In ACM International Conference Proceeding Series, Proceedings of the FAccT ′23: 2023 ACM Conference on Fairness, Accountability, and Transparency, Chicago, IL, USA, 12–15 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1139–1150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haupt, M.; Maurer, M.H.; Thomas, R.P. Explainable Artificial Intelligence in Radiological Cardiovascular Imaging—A Systematic Review. Diagnostics 2025, 15, 1399. https://doi.org/10.3390/diagnostics15111399
Haupt M, Maurer MH, Thomas RP. Explainable Artificial Intelligence in Radiological Cardiovascular Imaging—A Systematic Review. Diagnostics. 2025; 15(11):1399. https://doi.org/10.3390/diagnostics15111399
Chicago/Turabian StyleHaupt, Matteo, Martin H. Maurer, and Rohit Philip Thomas. 2025. "Explainable Artificial Intelligence in Radiological Cardiovascular Imaging—A Systematic Review" Diagnostics 15, no. 11: 1399. https://doi.org/10.3390/diagnostics15111399
APA StyleHaupt, M., Maurer, M. H., & Thomas, R. P. (2025). Explainable Artificial Intelligence in Radiological Cardiovascular Imaging—A Systematic Review. Diagnostics, 15(11), 1399. https://doi.org/10.3390/diagnostics15111399