Can a Portable Flash Visual Evoked Potential (VEP) Device Identify Chiasmal Decussation Anomalies in Albinism?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Electrode Placement
2.3. VEP Recordings Using Standard Laboratory-Based EDT Techniques
2.4. VEP Recordings Using the RETeval®
2.5. Analysis
3. Results
3.1. Agreeability Between Standard Clinic VEPs and RETeval® VEP in Detecting Chiasmal Pathway Anomalies
3.2. Analysing the Full Epoch May Increase the Sensitivity of the RETeval® VEP to Identify Chiasmal Misrouting
3.3. The RETeval® Is Highly Sensitive and Specific at Detecting Chiasmal Misrouting
3.4. The RETeval® Score Is Not Age Dependent
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VEP | Visual Evoke Potentials |
ISCEV | International Society for Clinical Electrophysiology of Vision |
OCA | Oculocutaneous Albinism |
References
- Grønskov, K.; Ek, J.; Brondum-Nielsen, K. Oculocutaneous albinism. Orphanet J. Rare Dis. 2007, 2, 43. [Google Scholar] [CrossRef] [PubMed]
- Brilliant, M.H. Albinism in Africa: A medical and social emergency. Int. Health 2015, 7, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.S.; Zeeb, H.; Repacholi, M.H. Albinism in Africa as a public health issue. BMC Public Health 2006, 6, 212. [Google Scholar] [CrossRef] [PubMed]
- Toyofuku, K.; Wada, I.; Spritz, R.A.; Hearing, V.J. The molecular basis of oculocutaneous albinism type 1 (OCA1): Sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation. Biochem. J. 2001, 355, 259–269. [Google Scholar] [CrossRef]
- Thomas, M.G.; Kumar, A.; Mohammad, S.; Proudlock, F.A.; Engle, E.C.; Andrews, C.; Chan, W.M.; Thomas, S.; Gottlob, I. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology 2011, 118, 1653–1660. [Google Scholar] [CrossRef]
- Dorey, S.E.; Neveu, M.M.; Burton, L.C.; Sloper, J.J.; Holder, G.E. The clinical features of albinism and their correlation with visual evoked potentials. Br. J. Ophthalmol. 2003, 87, 767. [Google Scholar] [CrossRef]
- Kruijt, C.C.; de Wit, G.C.; Bergen, A.A.; Florijn, R.J.; Schalij-Delfos, N.E.; van Genderen, M.M. The Phenotypic Spectrum of Albinism. Ophthalmology 2018, 125, 1953–1960. [Google Scholar] [CrossRef]
- Lee, H.; Purohit, R.; Sheth, V.; Maconachie, G.; Tu, Z.; Thomas, M.G.; Pilat, A.; McLean, R.J.; Proudlock, F.A.; Gottlob, I. Retinal Development in Infants and Young Children with Albinism: Evidence for Plasticity in Early Childhood. Am. J. Ophthalmol. 2023, 245, 202–211. [Google Scholar] [CrossRef]
- Sanchez-Bretano, A.; Scott, J.A.; Newall, T.; Lynn, S.; Griffiths, H.; Salman, A.; Lotery, A.; Ratnayaka, J.A.; Self, J.E.; Lee, H. Oral human-equivalent L-DOPA/Carbidopa dosages administered during the postnatal critical period of neuroplasticity rescues retinal morphology and visual function in a mouse model of human albinism. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1393. [Google Scholar]
- Liu, S.; Kuht, H.J.; Moon, E.H.; Maconachie, G.D.E.; Thomas, M.G. Current and emerging treatments for albinism. Surv. Ophthalmol. 2021, 66, 362–377. [Google Scholar] [CrossRef]
- Lin, S.; Sanchez-Bretaño, A.; Leslie, J.S.; Williams, K.B.; Lee, H.; Thomas, N.S.; Callaway, J.; Deline, J.; Ratnayaka, J.A.; Baralle, D.; et al. Evidence that the Ser192Tyr/Arg402Gln in cis Tyrosinase gene haplotype is a disease-causing allele in oculocutaneous albinism type 1B (OCA1B). NPJ Genom. Med. 2022, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Norman, C.S.; O’Gorman, L.; Gibson, J.; Pengelly, R.J.; Baralle, D.; Ratnayaka, J.A.; Griffiths, H.; Rose-Zerilli, M.; Ranger, M.; Bunyan, D.; et al. Identification of a functionally significant tri-allelic genotype in the Tyrosinase gene (TYR) causing hypomorphic oculocutaneous albinism (OCA1B). Sci. Rep. 2017, 7, 4415. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, L.; Norman, C.S.; Michaels, L.; Newall, T.; Crosby, A.H.; Mattocks, C.; Cree, A.J.; Lotery, A.J.; Baple, E.L.; Ratnayaka, J.A.; et al. A small gene sequencing panel realises a high diagnostic rate in patients with congenital nystagmus following basic phenotyping. Sci. Rep. 2019, 9, 13229. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Mossallam, E.; Allam, I.Y. The Role of the Flash Visual Evoked Potential in Evaluating Visual Function in Patients with Indirect Traumatic Optic Neuropathy. Clin. Ophthalmol. 2021, 15, 1349–1355. [Google Scholar] [CrossRef]
- Brecelj, J. Electrodiagnostics of chiasmal compressive lesions. Int. J. Psychophysiol. 1994, 16, 263–272. [Google Scholar] [CrossRef]
- Odom, J.V.; Bach, M.; Brigell, M.; Holder, G.E.; McCulloch, D.L.; Mizota, A.; Tormene, A.P.; International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Kriss, A.; Russell-Eggitt, I. Electrophysiological assessment of visual pathway function in infants. Eye 1992, 6 Pt 2, 145–153. [Google Scholar] [CrossRef]
- Marmoy, O.R.; Moinuddin, M.; Thompson, D.A. An alternative electroretinography protocol for children: A study of diagnostic agreement and accuracy relative to ISCEV standard electroretinograms. Acta Ophthalmol. 2022, 100, 322–330. [Google Scholar] [CrossRef]
- Handley, S.E.; Šuštar, M.; Tekavčič Pompe, M. What can visual electrophysiology tell about possible visual-field defects in paediatric patients. Eye 2021, 35, 2354–2373. [Google Scholar] [CrossRef]
- Apkarian, P. A practical approach to albino diagnosis. VEP misrouting across the age span. Ophthalmic Paediatr. Genet. 1992, 13, 77–88. [Google Scholar] [CrossRef]
- Kriss, A.; Russell-Eggitt, I.; Taylor, D. Childhood albinism. Visual electrophysiological features. Ophthalmic Paediatr. Genet. 1990, 11, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kruijt, C.C.; de Wit, G.C.; Talsma, H.E.; Schalij-Delfos, N.E.; van Genderen, M.M. The Detection of Misrouting in Albinism: Evaluation of Different VEP Procedures in a Heterogeneous Cohort. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3963–3969. [Google Scholar] [CrossRef] [PubMed]
- Neveu, M.M.; Jeffery, G.; Burton, L.C.; Sloper, J.J.; Holder, G.E. Age-related changes in the dynamics of human albino visual pathways. Eur. J. Neurosci. 2003, 18, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Pott, J.W.R.; Jansonius, N.M.; Kooijman, A.C. Chiasmal coefficient of flash and pattern visual evoked potentials for detection of chiasmal misrouting in albinism. Doc. Ophthalmol. 2003, 106, 137–143. [Google Scholar] [CrossRef]
- Soong, F.; Levin, A.V.; Westall, C.A. Comparison of techniques for detecting visually evoked potential asymmetry in albinism. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2000, 4, 302–310. [Google Scholar] [CrossRef]
- McCulloch, D.L.; Garcia-filion, P.; Matar, M.; Stewart, C.; Borchert, M.S. Repeated measurements of ERGs and VEPs using chloral hydrate sedation and propofol anesthesia in young children. Doc. Ophthalmol. 2021, 143, 141–153. [Google Scholar] [CrossRef]
- Kuba, M.; Kremláček, J.; Vít, F.; Kubová, Z.; Langrová, J.; Szanyi, J.; Chutná, M. VEP examination with new portable device. Doc. Ophthalmol. 2023, 146, 79–91. [Google Scholar] [CrossRef]
- You, J.Y.; Dorfman, A.L.; Gauvin, M.; Vatcher, D.; Polomeno, R.C.; Little, J.M.; Lachapelle, P. Comparing the RETeval(®) portable ERG device with more traditional tabletop ERG systems in normal subjects and selected retinopathies. Doc. Ophthalmol. 2022, 146, 137–150. [Google Scholar] [CrossRef]
- Carter, P.; Gordon-Reid, A.; Shawkat, F.; Self, J.E. Comparison of the handheld RETeval ERG system with a routine ERG system in healthy adults and in paediatric patients. Eye 2021, 35, 2180–2189. [Google Scholar] [CrossRef]
- Jansonius, N.M.; van der Vliet, T.M.; Cornelissen, F.W.; Pott, J.W.R.; Kooijman, A.C. A Girl Without a Chiasm: Electrophysiologic and MRI Evidence for the Absence of Crossing Optic Nerve Fibers in a Girl with a Congenital Nystagmus. J. Neuro-Ophthalmol. 2001, 21, 26–29. [Google Scholar] [CrossRef]
- Toga, A.W.; Thompson, P.M. Mapping brain asymmetry. Nat. Rev. Neurosci. 2003, 4, 37–48. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
Control | Albinism | |
---|---|---|
0–7 | 15 | 20 |
8+ | 25 | 7 |
Age (Years) | Iris Transillumination | Nystagmus | Pale Fundus | Foveal Hypoplasia | RETeval Pearson‘s Correlate | Genomics Variant 1 | Genomics Variant 2 | Genomic Diagnostic Summary | Albinism Diagnosis |
---|---|---|---|---|---|---|---|---|---|
5 | No | No | Yes | Yes (Grade 3) | −0.6725 | TYR c.1217C>T p. (Pro406Leu) | TYR c.1036G>A p. (Gly346Arg) | OCA1 | proven |
1 | Yes | Yes | Yes | Yes (Grade 1/2) | −0.465 | OCA2 c.1327G>A, P.(Val443lle) | nil | Likely OCA2 with missing variant | likely |
0 | Yes | Yes | Yes | Yes (Grade 1/2) | −0.3107 | nil | nil | Clinical OCA but no variants on R39 panel | likely |
3 | Yes | Yes | Yes | No | −0.5299 | nil | Hom R402Q and Het S192Y | Likely OCA1b but segregation not complete | likely |
9 | No | No | Yes | Yes (Grade 3/4) | −0.09339 | TYR c.823G>T p.(Val275Phe) | het s192y and het r402Q | OCA1b | proven |
1 | Yes | Yes | Yes | Yes (Grade 3) | −0.4979 | nil | nil | Clinical OCA but no variants on R39 panel | likely |
1 | No | Yes | Yes | Yes | −0.5061 | nil | nil | Clinical OCA but no variants on R39 panel | likely |
1 | No | Yes | Yes | Yes | −0.6705 | OCA2 c.1255C>T p.(Arg419Trp) | nil | Likely OCA2 with missing variant | likely |
0 | Unknown | Yes | Yes | Yes | −0.7914 | nil | nil | Clinical OCA but no variants on R39 panel | likely |
7 | Yes | Yes | Yes | Yes (Grade 4) | −0.4442 | TYR c.229C>T p.(Arg77Trp) | TYR s192Y (hom) and R402Q (het) | Likely OCA1b but segregation not complete | likely |
1 | No | Yes | Yes | Yes (Grade 1/2) | −0.4607 | nil | nil | Clinical OCA but no variants on R39 panel | likely |
5 | Yes | Yes | Yes | Unknown | −0.7293 | Unknown | Unknown | Likely OCA1b but segregation not complete | likely |
4 | Yes | No | Yes | Yes | −0.1855 | TYR c.650G>A p.(Arg217Gln) | TYR s192Y (het) and R402Q (hom) | Likely OCA1b but segregation not complete | likely |
1 | Yes | No | Yes | Unknown | −0.4032 | nil | nil | Not done | possible |
2 | Yes | Yes | Unknown | Unknown | −0.01125 | nil | nil | Not done | possible |
26 | Yes | Yes | Yes | Yes (Grade 3/4) | −0.3472 | TYR c.1118C>A p.(Thr373Lys) | TYR s192Y (hom) and R402Q (het) | OCA1b | proven |
60 | No | Yes | No | Yes (Grade 1) | −0.2073 | TYR c.1118C>A p.(Thr373Lys) | TYR s192Y (het) and R402Q (het) | OCA1b | proven |
2 | No | No | Yes | Unknown | −0.6503 | nil | nil | Not done | possible |
41 | No | Yes | Yes | Yes (Grade 3) | −0.5923 | nil | nil | Not done | possible |
5 | Unknown | no | yes | Yes (Grade 3) | −0.442 | nil | nil | Not done | possible |
13 | Yes | No | Yes | mild | −0.3373 | OCA2 c.1025A>G p. (Tyr342Cys) | OCA2 c.1418T>A p.(lle473Asn) | OCA2 | proven |
14 | Yes | Yes | Yes | Yes | −0.1239 | OCA2 c.1025A>G p. (Tyr342Cys) | OCA2 c.1418T>A p.(lle473Asn) | OCA2 | proven |
0 | Yes | No | Yes | Yes (Grade 1) | −0.5789 | nil | nil | Clinical OCA but no variants on R39 panel | likely |
6 | Unknown | no | Yes | Yes Grade 3 | −0.4285 | TYR c.1118C>A p.(Thr373Lys) | nil | Likely OCA1 with missing variant | likely |
5 | Yes | Yes | yes | Yes Grade 3 | −0.2729 | OCA2 c.619_636del p.(Leu207_Leu212del) | OCA2 c.1103C>T p.(Ala368Val) | OCA2 | proven |
2 | Yes | Yes | Yes | Unknown | −0.06207 | nil | nil | Clinical OCA but no variants on R39 panel | likely |
0 | Unknown | Yes | Unknown | Unknown | −0.1491 | nil | nil | Not done | possible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keeling, E.; Carter, P.; Musa, A.M.; Shawkat, F.; Lee, H.; Self, J.E. Can a Portable Flash Visual Evoked Potential (VEP) Device Identify Chiasmal Decussation Anomalies in Albinism? Diagnostics 2025, 15, 1395. https://doi.org/10.3390/diagnostics15111395
Keeling E, Carter P, Musa AM, Shawkat F, Lee H, Self JE. Can a Portable Flash Visual Evoked Potential (VEP) Device Identify Chiasmal Decussation Anomalies in Albinism? Diagnostics. 2025; 15(11):1395. https://doi.org/10.3390/diagnostics15111395
Chicago/Turabian StyleKeeling, Eloise, Perry Carter, Abdi Malik Musa, Fatima Shawkat, Helena Lee, and Jay E. Self. 2025. "Can a Portable Flash Visual Evoked Potential (VEP) Device Identify Chiasmal Decussation Anomalies in Albinism?" Diagnostics 15, no. 11: 1395. https://doi.org/10.3390/diagnostics15111395
APA StyleKeeling, E., Carter, P., Musa, A. M., Shawkat, F., Lee, H., & Self, J. E. (2025). Can a Portable Flash Visual Evoked Potential (VEP) Device Identify Chiasmal Decussation Anomalies in Albinism? Diagnostics, 15(11), 1395. https://doi.org/10.3390/diagnostics15111395