Predictive Factors for Gastrointestinal and Genitourinary Toxicities in Prostate Cancer External Beam Radiotherapy: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
- Published in 2000 or after;
- Investigating primary PCa;
- Using photon EBRT as primary treatment.
- Previous prostatectomy;
- Salvage radiotherapy;
- Brachytherapy involved;
- Radiotherapy for recurrent PCa or re-irradiation;
- Particle or non-photon radiation therapy;
- Two-dimensional dosimetric planning;
- No toxicity predictors provided;
- Non-experimental study (including but not limited to reviews, opinions, letters, abstract or book chapters);
- Full text unavailable;
- Full text not in English.
2.2. Data Extraction
3. Results
3.1. Overview of Included Studies
3.2. Predictors of Gastrointestinal Toxicities
3.2.1. Acute Gastrointestinal Toxicities
3.2.2. Late Gastrointestinal Toxicities
3.3. Predictors of Genitourinary Toxicities
3.3.1. Acute Genitourinary Toxicities
3.3.2. Late Genitourinary Toxicities
3.4. Predictive Models
4. Discussion
4.1. Predictors of GI and GU Toxicities
4.2. Performance of Prediction Models
4.3. Limitations on Toxicity Prediction Studies
4.4. Recommendation
4.5. Limitation of This Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Database | Search String | N Results |
---|---|---|
Embase | (((Urinary AND (frequen* OR urgen* OR retent* OR pain OR bleed* OR difficul* OR irritat* OR incontinence)) OR (Urethra* AND (structure OR obstruct*)) OR Dysuria OR Nocturia OR haematuria OR hematuria OR (Diarrhoea OR diarrhea OR Tenesmus OR (Rectal AND (pain OR bleed*)) OR Proctitis OR Incontinence OR Intestinal Toxicity) OR (“toxicit*” OR morbidity OR “side effect*” OR “complication*” OR “adverse effect*” OR “adverse event*” OR “symptom*”)):ti,kw) AND (((“radiotherap*” OR “radiation therap*” OR “stereotactic body*” OR “volumetric modulated arc therapy” OR “intensity modulated” OR “conformal radiotherapy” OR “3DCRT” OR “CRT” OR “SABR”) AND (radiomic* OR feature* OR predict* OR model* OR correlat* OR corresp* OR depend* OR assoc* OR relat* OR interact* OR link* OR “risk factor*” OR analy*) AND (prostate AND (cancer OR adenocarcinoma OR carcinoma))):ti,kw) | 706 |
Web of Science | TI = ((Urinary AND (frequen* OR urgen* OR retent* OR pain OR bleed* OR difficul* OR irritat* OR incontinence)) OR (Urethra* AND (structure OR obstruct*)) OR Dysuria OR Nocturia OR haematuria OR hematuria OR (Diarrhoea OR diarrhea OR Tenesmus OR (Rectal AND (pain OR bleed*)) OR Proctitis OR Incontinence OR Intestinal Toxicity) OR (“toxicit*” OR morbidity OR “side effect*” OR “complication*” OR “adverse effect*” OR “adverse event*” OR “symptom*”)) AND TI = (“radiotherap*” OR “radiation therap*” OR “stereotactic body*” OR “volumetric modulated arc therapy” OR “intensity modulated” OR “conformal radiotherapy” OR “3DCRT” OR “CRT” OR “SABR”) AND TI = (radiomic* OR feature* OR predict* OR model* OR correlat* OR corresp* OR depend* OR assoc* OR relat* OR interact* OR link* OR “risk factor*” OR analy*) AND TI = (prostate AND (cancer OR adenocarcinoma OR carcinoma)) | 573 |
Scopus | TITLE ((urinary AND frequen* OR urgen* OR retent* OR pain OR bleed* OR difficul* OR irritat* OR incontinence)) OR urethra* AND structure OR obstruct* )) OR dysuria OR nocturia OR haematuria OR hematuria OR (diarrhoea OR diarrhea OR tenesmus OR (rectal AND (pain OR bleed*)) OR proctitis OR incontinence OR intestinal AND toxicity) OR (“toxicit*” OR morbidity OR “side effect*” OR “complication*” OR “adverse effect*” OR “adverse event*” OR “symptom*”)) AND TITLE ((“radiotherap*” OR “radiation therap*” OR “stereotactic body*” OR “volumetric modulated arc therapy” OR “intensity modulated” OR “conformal radiotherapy” OR “3DCRT” OR “CRT” OR “SABR”) AND (radiomic* OR feature* OR predict* OR model* OR correlat* OR corresp* OR depend* OR assoc* OR relat* OR interact* OR link* OR “risk factor*” OR analy*) AND (prostate AND (cancer OR adenocarcinoma OR carcinoma))) | 307 |
PubMed | ((“Urinary Tract Symptoms”[Mesh] OR (“Urinary”[ti] AND (frequen*[ti] OR urgen*[ti] OR retent*[ti] OR pain[ti] OR bleed*[ti] OR difficul*[ti] OR irritat*[ti] OR incontinence[ti])) ) OR ( “Urethral Obstruction”[Mesh] OR (“Urethra*”[ti] AND (structure[ti] OR obstruct*[ti]))) OR Dysuria[Mesh] OR Dysuria[ti] OR Nocturia[Mesh] OR Nocturia[ti] OR Haematuria[Mesh] OR Haematuria[ti] OR Hematuria[Mesh] OR Hematuria[ti] OR ( (“Diarrhea”[Mesh] OR Diarrhea[ti]) OR Tenesmus[Mesh] OR Tenesmus[ti] OR (“Rectal Diseases”[Mesh] AND (“pain”[ti] OR “bleeding”[ti])) OR Proctitis[Mesh] OR Proctitis[ti] OR Incontinence[Mesh] OR Incontinence[ti] OR “Intestinal Toxicity”[ti]) OR ((“Toxicity”[Mesh] OR “toxicit*”[ti]) OR Morbidity[Mesh] OR Morbidity[ti] OR “Side Effects”[Mesh] OR “side effect*”[ti] OR “Complications”[Mesh] OR “complication*”[ti] OR “Adverse Effects”[Mesh] OR “adverse effect*”[ti] OR “adverse event*”[ti] OR Symptom*[ti])) AND (((“Radiotherapy”[Mesh] OR “radiotherap*”[ti]) OR “Radiation Therapy”[Mesh] OR “radiation therap*”[ti] OR “Stereotactic Body Radiotherapy”[Mesh] OR “stereotactic body*”[ti] OR “Volumetric Modulated Arc Therapy”[ti] OR “Intensity-Modulated Radiotherapy”[Mesh] OR “intensity modulated”[ti] OR “Conformal Radiotherapy”[Mesh] OR “conformal radiotherapy”[ti] OR “3DCRT”[ti] OR “CRT”[ti] OR “SABR”[ti]) AND ((“Radiomics”[Mesh] OR radiomic*[ti]) OR feature*[ti] OR predict*[ti] OR model*[ti] OR correlat*[ti] OR corresp*[ti] OR depend*[ti] OR assoc*[ti] OR relat*[ti] OR interact*[ti] OR link*[ti] OR “risk factor*”[ti] OR analy*[ti]) AND ((“Prostatic Neoplasms”[Mesh] OR (prostate[ti] AND (cancer[ti] OR adenocarcinoma[ti] OR carcinoma[ti]))))) | 708 |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- James, N.D.; Tannock, I.; N’Dow, J.; Feng, F.; Gillessen, S.; Ali, S.A.; Trujillo, B.; Al-Lazikani, B.; Attard, G.; Bray, F.; et al. The Lancet Commission on prostate cancer: Planning for the surge in cases. Lancet 2024, 403, 1683–1722. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Litwin, M.S.; Tan, H.J. The Diagnosis and Treatment of Prostate Cancer: A Review. JAMA 2017, 317, 2532–2542. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically localized prostate cancer: AUA/ASTRO guideline. J. Urol. 2022, 208, 10–33. [Google Scholar] [CrossRef]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Prostate Cancer, Version 1.2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 4 December 2024).
- Bauman, G.; Rumble, R.B.; Chen, J.; Loblaw, A.; Warde, P.; Members of the IMRT Indications Expert Panel. Intensity-modulated radiotherapy in the treatment of prostate cancer. Clin. Oncol. (R. Coll. Radiol.) 2012, 24, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Hatano, K.; Tohyama, N.; Kodama, T.; Okabe, N.; Sakai, M.; Konoeda, K. Current status of intensity-modulated radiation therapy for prostate cancer: History, clinical results and future directions. Int. J. Urol. 2019, 26, 775–784. [Google Scholar] [CrossRef]
- Latorzeff, I.; Mazurier, J.; Boutry, C.; Dudouet, P.; Richaud, P.; de Crevoisier, R. Benefit of intensity modulated and image-guided radiotherapy in prostate cancer. Cancer Radiother. 2010, 14, 479–487. [Google Scholar] [CrossRef]
- Wortel, R.C.; Incrocci, L.; Pos, F.J.; Lebesque, J.V.; Witte, M.G.; van der Heide, U.A.; van Herk, M.; Heemsbergen, W.D. Acute toxicity after image-guided intensity modulated radiation therapy compared to 3D conformal radiation therapy in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 737–744. [Google Scholar] [CrossRef]
- Viani, G.A.; Viana, B.S.; Martin, J.E.; Rossi, B.T.; Zuliani, G.; Stefano, E.J. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: A randomized clinical trial. Cancer 2016, 122, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Vogelius, I.R.; Bentzen, S.M. Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: Bad news, good news, or no news? Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Kishan, A.U.; Yu, J.B.; Trifiletti, D.M.; Showalter, T.N.; Ellis, R.; Zaorsky, N.G. Ultrahypofractionated versus hypofractionated and conventionally fractionated radiation therapy for localized prostate cancer: A systematic review and meta-analysis of phase III randomized trials. Radiother. Oncol. 2020, 148, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.C.; Silva, J.; Hartman, H.E.; Dess, R.T.; Kishan, A.U.; Beeler, W.H.; Gharzai, L.A.; Jaworski, E.M.; Mehra, R.; Hearn, J.W.D.; et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 778–789. [Google Scholar] [CrossRef]
- van As, N.; Griffin, C.; Tree, A.; Patel, J.; Ostler, P.; van der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; et al. Phase 3 Trial of Stereotactic Body Radiotherapy in Localized Prostate Cancer. N. Engl. J. Med. 2024, 391, 1413–1425. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.L.; Davidson, M.; Cheung, P.; Chung, H.; Chu, W.; Detsky, J.; Liu, S.; Morton, G.; Szumacher, E.; Tseng, C.L.; et al. Dosimetric correlates of toxicities and quality of life following two-fraction stereotactic ablative radiotherapy (SABR) for prostate cancer. Radiother. Oncol. 2023, 188, 109864. [Google Scholar] [CrossRef]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm (accessed on 7 March 2025).
- International Prostate Symptom Score (IPSS). Available online: https://reference.medscape.com/calculator/338/international-prostate-symptom-score-ipss (accessed on 7 March 2025).
- Tree, A.C.; Ostler, P.; van der Voet, H.; Chu, W.; Loblaw, A.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; Staffurth, J.; et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2022, 23, 1308–1320. [Google Scholar] [CrossRef]
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Bjornlinger, K.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef]
- Iacovacci, J.; Serafini, M.S.; Avuzzi, B.; Badenchini, F.; Cicchetti, A.; Devecchi, A.; Dispinzieri, M.; Doldi, V.; Giandini, T.; Gioscio, E.; et al. Intestinal microbiota composition is predictive of radiotherapy-induced acute gastrointestinal toxicity in prostate cancer patients. EBioMedicine 2024, 106, 105246. [Google Scholar] [CrossRef]
- Francolini, G.; Detti, B.; Becherini, C.; Caini, S.; Ingrosso, G.; Di Cataldo, V.; Stocchi, G.; Salvestrini, V.; Lancia, A.; Scartoni, D.; et al. Toxicity after moderately hypofractionated versus conventionally fractionated prostate radiotherapy: A systematic review and meta-analysis of the current literature. Crit. Rev. Oncol. Hematol. 2021, 165, 103432. [Google Scholar] [CrossRef] [PubMed]
- Sargos, P.; Faye, M.D.; Bacci, M.; Supiot, S.; Latorzeff, I.; Azria, D.; Niazi, T.M.; Vuong, T.; Vendrely, V.; de Crevoisier, R. Late Gastrointestinal Tolerance After Prostate Radiotherapy: Is the Anal Canal the Culprit? A Narrative Critical Review. Front. Oncol. 2021, 11, 666962. [Google Scholar] [CrossRef]
- Poon, D.M.C.; Yuan, J.; Wong, O.L.; Yang, B.; Tse, M.Y.; Lau, K.K.; Chiu, S.T.; Chiu, P.K.; Ng, C.F.; Chui, K.L.; et al. One-year clinical outcomes of MR-guided stereotactic body radiation therapy with rectal spacer for patients with localized prostate cancer. World J. Urol. 2024, 42, 97. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, B.; Then, C.K.; Harriss, E.; Kartsonaki, C.; Kiltie, A.E. The role of dietary supplements, including biotics, glutamine, polyunsaturated fatty acids and polyphenols, in reducing gastrointestinal side effects in patients undergoing pelvic radiotherapy: A systematic review and meta-analysis. Clin. Transl. Radiat. Oncol. 2021, 29, 11–19. [Google Scholar] [CrossRef]
- Hirata, T.; Ashida, R.; Takemoto, S.; Yoshida, K.; Ogawa, K. Increased toxicities associated with dose escalation of stereotactic body radiation therapy in prostate cancer: Results from a phase III study. Radiat. Oncol. 2023, 18, 488–494. [Google Scholar] [CrossRef]
- Tenti, M.V.; Ingrosso, G.; Bini, V.; Mariucci, C.; Saldi, S.; Alì, E.; Zucchetti, C.; Bellavita, R.; Aristei, C. Tomotherapy-based moderate hypofractionation for localized prostate cancer: A mono-institutional analysis. Rep. Pract. Oncol. Radiother. 2022, 27, 142–151. [Google Scholar] [CrossRef]
- Tree, A.; Hinder, V.; Chan, A.; Tolan, S.; Ostler, P.; van der Voet, H.; Kancherla, K.; Loblaw, A.; Naismith, O.; Jain, S.; et al. 3395: Acute toxicity from PACE-C comparing Stereotactic Body Radiotherapy (SBRT) with moderate hypofractionation (MHRT). Radiother. Oncol. 2024, 194, S2645–S2647. [Google Scholar] [CrossRef]
- Ong, A.L.K.; Knight, K.; Panettieri, V.; Dimmock, M.; Tuan, J.K.L.; Tan, H.Q.; Wright, C. Dose-volume analysis of planned versus accumulated dose as a predictor for late gastrointestinal toxicity in men receiving radiotherapy for high-risk prostate cancer. Phys. Imaging Radiat. Oncol. 2022, 23, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Mylona, E.; Ebert, M.; Kennedy, A.; Joseph, D.; Denham, J.; Steigler, A.; Supiot, S.; Acosta, O.; de Crevoisier, R. Rectal and Urethro-Vesical Subregions for Toxicity Prediction After Prostate Cancer Radiation Therapy: Validation of Voxel-Based Models in an Independent Population. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 1189–1195. [Google Scholar] [CrossRef]
- Aluwini, S.; Pos, F.; Schimmel, E.; Krol, S.; van der Toorn, P.P.; de Jager, H.; Alemayehu, W.G.; Heemsbergen, W.; Heijmen, B.; Incrocci, L. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): Late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol. 2016, 17, 464–474. [Google Scholar] [CrossRef]
- Sinzabakira, F.; Brand, V.; Heemsbergen, W.D.; Incrocci, L. Acute and late toxicity patterns of moderate hypo-fractionated radiotherapy for prostate cancer: A systematic review and meta-analysis. Clin. Transl. Radiat. Oncol. 2023, 40, 100612. [Google Scholar] [CrossRef]
- Wang, S.; Tang, W.; Luo, H.; Jin, F.; Wang, Y. The role of image-guided radiotherapy in prostate cancer: A systematic review and meta-analysis. Clin. Transl. Radiat. Oncol. 2023, 38, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanati on. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell. Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Nicol, A.J.; Ching, J.C.F.; Tam, V.C.W.; Liu, K.C.K.; Leung, V.W.S.; Cai, J.; Lee, S.W.Y. Predictive Factors for Chemoradiation-Induced Oral Mucositis and Dysphagia in Head and Neck Cancer: A Scoping Review. Cancers 2023, 15, 5705. [Google Scholar] [CrossRef]
- Skwarchuk, M.W.; Jackson, A.; Zelefsky, M.J.; Venkatraman, E.S.; Cowen, D.M.; Levegrün, S.; Burman, C.M.; Fuks, Z.; Leibel, S.A.; Ling, C.C. Late rectal toxicity after conformal radiotherapy of prostate cancer (I): Multivariate analysis and dose-response. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, J.D.; Khoo, V.S.; Nahum, A.E.; Sanchez-Nieto, B.; Dearnaley, D.P. Correlations between dose-surface histograms and the incidence of long-term rectal bleeding following conformal or conventional radiotherapy treatment of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Wachter, S.; Gerstner, N.; Goldner, G.; Pötzi, R.; Wambersie, A.; Pötter, R. Rectal sequelae after conformal radiotherapy of prostate cancer: Dose-volume histograms as predictive factors. Radiother. Oncol. 2001, 59, 65–70. [Google Scholar] [CrossRef]
- Nuyttens, J.J.; Milito, S.; Rust, P.F.; Turrisi, A.T. Dose–volume relationship for acute side effects during high dose conformal radiotherapy for prostate cancer. Radiother. Oncol. 2002, 64, 209–214. [Google Scholar] [CrossRef]
- Miralbell, R.; Taussky, D.; Rinaldi, O.; Lomax, A.; Canales, S.; Escude, L.; Nouet, P.; Özsoy, O.; Rouzaud, M. Influence of rectal volume changes during radiotherapy for prostate cancer: A predictive model for mild-to-moderate late rectal toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 1280–1284. [Google Scholar] [CrossRef]
- Taussky, D.; Schneider, U.; Rousson, V.; Pescia, R. Patient-reported toxicity correlated to dose-volume histograms of the rectum in radiotherapy of the prostate. Am. J. Clin. Oncol. 2003, 26, e144–e149. [Google Scholar] [CrossRef]
- Akimoto, T.; Muramatsu, H.; Takahashi, M.; Saito, J.; Kitamoto, Y.; Harashima, K.; Miyazawa, Y.; Yamada, M.; Ito, K.; Kurokawa, K.; et al. Rectal bleeding after hypofractionated radiotherapy for prostate cancer: Correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.; Tucker, S.L.; Ye, J.S.; Dong, L.; Liu, H.; Huang, E.; Mohan, R.; Kuban, D. Characterization of rectal normal tissue complication probability after high-dose external beam radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Harsolia, A.R.; Vargas, C.E.; Kestin, L.L.; Yan, D.; Brabbins, D.S.; Lockman, D.M.; Liang, J.; Gustafson, G.S.; Chen, P.Y.; Vicini, F.A.; et al. Predictors for chronic urinary toxicity following treatment of prostate cancer with 3-D conformal radiotherapy: Dose-volume analysis of a phase II dose escalation study. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, S437–S438. [Google Scholar] [CrossRef]
- Heemsbergen, W.D.; Hoogeman, M.S.; Hart, A.A.M.; Lebesque, J.V.; Koper, P. GI toxicity and its relation with dose distributions in the anorectal region after radiotherapy for prostate cancer. Radiother. Oncol. 2004, 73, S97. [Google Scholar]
- Karlsdóttir, Á.; Johannessen, D.C.; Muren, L.P.; Wentzel-Larsen, T.; Dahl, O. Acute morbidity related to treatment volume during 3D-conformal radiation therapy for prostate cancer. Radiother. Oncol. 2004, 71, 43–53. [Google Scholar] [CrossRef]
- Tucker, S.L.; Dong, L.; Cheung, R.; Johnson, J.; Mohan, R.; Huang, E.H.; Liu, H.H.; Thames, H.D.; Kuban, D. Comparison of rectal dose-wall histogram versus dose-volume histogram for modeling the incidence of late rectal bleeding after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1589–1601. [Google Scholar] [CrossRef]
- Vargas, C.; Martinez, A.; Kestin, L.L.; Yan, D.; Grills, I.; Brabbins, D.S.; Lockman, D.M.; Liang, J.; Gustafson, G.S.; Chen, P.Y.; et al. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1297–1308. [Google Scholar] [CrossRef]
- Jani, A.B.; Su, A.; Milano, M.T. Intensity-modulated versus conventional pelvic radiotherapy for prostate cancer: Analysis of acute toxicity. Urology 2006, 67, 147–151. [Google Scholar] [CrossRef]
- Peeters, S.T.H.; Hoogeman, M.S.; Heemsbergen, W.D.; Hart, A.A.M.; Koper, P.C.M.; Lebesque, J.V. Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: Normal tissue complication probability modeling. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 11–19. [Google Scholar] [CrossRef]
- Vavassori, V.; Fellin, G.; Rancati, T.; Fiorino, C.; Barra, S.; Casamassima, F.; Frezza, G.; Jacopino, G.; Meregalli, S.; Franzone, P.; et al. Predictors for rectal and intestinal acute toxicities from 3DCRT prostate cancer: Results of prospective multicenter study. Radiother. Oncol. 2006, 81, S91. [Google Scholar]
- Christiansen, H.; Saile, B.; Hermann, R.M.; Rave-Fränk, M.; Hille, A.; Schmidberger, H.; Hess, C.F.; Ramadori, G. Increase of hepcidin plasma and urine levels is associated with acute proctitis and changes in hemoglobin levels in primary radiotherapy for prostate cancer. J. Cancer Res. Clin. Oncol. 2007, 133, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Söhn, M.; Alber, M.; Yan, D. Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 230–239. [Google Scholar] [CrossRef]
- Söhn, M.; Yan, D.; Liang, J.; Meldolesi, E.; Vargas, C.; Alber, M. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1066–1073. [Google Scholar] [CrossRef]
- Fiorino, C.; Fellin, G.; Rancati, T.; Vavassori, V.; Bianchi, C.; Borca, V.C.; Girelli, G.; Mapelli, M.; Menegotti, L.; Nava, S.; et al. Clinical and Dosimetric Predictors of Late Rectal Syndrome After 3D-CRT for Localized Prostate Cancer: Preliminary Results of a Multicenter Prospective Study. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1130–1137. [Google Scholar] [CrossRef]
- Munbodh, R.; Jackson, A.; Bauer, J.; Ross Schmidtlein, C.; Zelefsky, M.J. Dosimetric and anatomic indicators of late rectal toxicity after high-dose intensity modulated radiation therapy for prostate cancer. Med. Phys. 2008, 35, 2137–2150. [Google Scholar] [CrossRef]
- Taussky, D.; Bae, K.; Bahary, J.P.; Roach, M., 3rd; Lawton, C.A.; Shipley, W.U.; Sandler, H.M. Does timing of androgen deprivation influence radiation-induced toxicity? A secondary analysis of radiation therapy oncology group protocol 9413. Urology 2008, 72, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Valdagni, R.; Rancati, T.; Fiorino, C.; Franzone, P.; Mauro, F.; Munoz, F.; Cagna, E.; Fellin, G.; Greco, C.; Vavassori, V. Development of a nomogram to predict grade 2–3 acute GI toxicity (RTOG/EORTC) for prostate cancer 3DCRT. Radiother. Oncol. 2006, 81, S90–S91. [Google Scholar]
- van der Laan, H.P.; van den Bergh, A.; Schilstra, C.; Vlasman, R.; Meertens, H.; Langendijk, J.A. Grading-System-Dependent Volume Effects for Late Radiation-Induced Rectal Toxicity After Curative Radiotherapy for Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1138–1145. [Google Scholar] [CrossRef]
- Arcangeli, S.; Strigari, L.; Soete, G.; De Meerleer, G.; Gomellini, S.; Fonteyne, V.; Storme, G.; Arcangeli, G. Clinical and Dosimetric Predictors of Acute Toxicity After a 4-Week Hypofractionated External Beam Radiotherapy Regimen for Prostate Cancer: Results From a Multicentric Prospective Trial. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 39–45. [Google Scholar] [CrossRef]
- Ballar, A.; Salvo, M.D.; Lo, G.; Ferrari, G.; BeIdi, D.; Krengli, M. Conformal radiotherapy of clinically localized prostate cancer: Analysis of rectal and urinary toxicity and correlation with dose-volume parameters. Tumori 2009, 95, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Boulé, T.P.; Gallardo Fuentes, M.I.; Roselló, J.V.; Arrans Lara, R.; Torrecilla, J.L.; Plaza, A.L. Clinical comparative study of dose-volume and equivalent uniform dose based predictions in post radiotherapy acute complications. Acta Oncol. 2009, 48, 1044–1053. [Google Scholar] [CrossRef]
- Buettner, F.; Gulliford, S.L.; Webb, S.; Sydes, M.R.; Dearnaley, D.P.; Partridge, M. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: An analysis of data from the MRC RT01 trial (ISRCTN 47772397). Phys. Med. Biol. 2009, 54, 6535–6548. [Google Scholar] [CrossRef]
- Fellin, G.; Fiorino, C.; Rancati, T.; Vavassori, V.; Baccolini, M.; Bianchi, C.; Cagna, E.; Gabriele, P.; Mauro, F.; Menegotti, L.; et al. Clinical and dosimetric predictors of late rectal toxicity after conformal radiation for localized prostate cancer: Results of a large multicenter observational study. Radiother. Oncol. 2009, 93, 197–202. [Google Scholar] [CrossRef]
- Onal, C.; Topkan, E.; Efe, E.; Yavuz, M.; Sonmez, S.; Yavuz, A. Comparison of rectal volume definition techniques and their influence on rectal toxicity in patients with prostate cancer treated with 3D conformal radiotherapy: A dose-volume analysis. Radiat. Oncol. 2009, 4, 14. [Google Scholar] [CrossRef]
- Pella, A.; Cambria, R.; Jereczek-Fossa, B.A.; Zerini, D.; Fodor, C.; Serafini, F.; Baroni, G.; Riboldi, M.; Ciceri, M.; Spadea, M.F.; et al. Feasibility study of the use of artificial neural networks in predicting acute rectal and urinary bladder toxicity following prostate cancer radiotherapy. In Proceedings of the IFMBE Proceedings, Munich, Germany, 7–12 September 2009; pp. 453–456. [Google Scholar]
- Pinkawa, M.; Piroth, M.D.; Asadpour, B.; Gagel, B.; Fischedick, K.; Siluschek, J.; Kehl, M.; Krenkel, B.; Eble, M.J. Neoadjuvant hormonal therapy and external-beam radiotherapy versus external-beam irradiation alone for prostate cancer. A quality-of-life analysis. Strahlenther. Onkol. 2009, 185, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Pinkawa, M.; Piroth, M.D.; Fischedick, K.; Nussen, S.; Klotz, J.; Holy, R.; Eble, M.J. Self-assessed bowel toxicity after external beam radiotherapy for prostate cancer—Predictive factors on irritative symptoms, incontinence and rectal bleeding. Radiat. Oncol. 2009, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Ogawa, Y.; Ariga, H.; Koto, M.; Sakayauchi, T.; Fujimoto, K.; Narazaki, K.; Mitsuya, M.; Takai, Y.; Yamada, S. Clinical correlations between treatment with anticoagulants/antiaggregants and late rectal toxicity after radiotherapy for prostate cancer. Anticancer Res. 2009, 29, 1831–1834. [Google Scholar]
- Thor, M.; Væth, M.; Karlsdottir, A.; Muren, L.P. Rectum motion and morbidity prediction: Improving correlation between late morbidity and DVH parameters through use of rectum planning organ at risk volumes. Acta Oncol. 2010, 49, 1061–1068. [Google Scholar] [CrossRef]
- Tucker, S.L.; Dong, L.; Bosch, W.R.; Michalski, J.; Winter, K.; Mohan, R.; Purdy, J.A.; Kuban, D.; Lee, A.K.; Cheung, M.R.; et al. Late rectal toxicity on RTOG 94-06: Analysis using a mixture lyman model. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1253–1260. [Google Scholar] [CrossRef]
- Barnett, G.C.; De Meerleer, G.; Gulliford, S.L.; Sydes, M.R.; Elliott, R.M.; Dearnaley, D.P. The Impact of Clinical Factors on the Development of Late Radiation Toxicity: Results from the Medical Research Council RT01 Trial (ISRCTN47772397). Clin. Oncol. 2011, 23, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Fleming, C.; Kelly, C.; Thirion, P.; Fitzpatrick, K.; Armstrong, J. A method for the prediction of late organ-at-risk toxicity after radiotherapy of the prostate using equivalent uniform dose. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 608–613. [Google Scholar] [CrossRef]
- Koukourakis, M.I.; Kyrgias, G.; Papadopoulou, A.; Panteliadou, M.; Giatromanolaki, A.; Sivridis, E.; Mavropoulou, S.; Kalogeris, K.; Nassos, P.; Milioudis, N.; et al. Treatment of low-risk prostate cancer with radical hypofractionated accelerated radiotherapy with cytoprotection (HypoARC): An interim analysis of toxicity and efficacy. Anticancer Res. 2011, 31, 1745–1751. [Google Scholar] [PubMed]
- Langsenlehner, T.; Renner, W.; Gerger, A.; Hofmann, G.; Thurner, E.M.; Kapp, K.S.; Langsenlehner, U. Impact of VEGF gene polymorphisms and haplotypes on radiation-induced late toxicity in prostate cancer patients. Strahlenther. Onkol. 2011, 187, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.M.; Yan, Y.; Watkins-Bruner, D.; Walter, B.; Winter, K.; Galvin, J.M.; Bahary, J.; Morton, G.C.; Parliament, M.B.; Sandler, H. Preliminary analysis of 3D-CRT vs. imrton the high dose arm of the RTOG 0126 prostate cancer trial: Toxicity report. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, S1–S2. [Google Scholar] [CrossRef]
- Pella, A.; Cambria, R.; Riboldi, M.; Jereczek-Fossa, B.A.; Fodor, C.; Zerini, D.; Torshabi, A.E.; Cattani, F.; Garibaldi, C.; Pedroli, G.; et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy. Med. Phys. 2011, 38, 2859–2867. [Google Scholar] [CrossRef]
- Pinkawa, M.; Piroth, M.D.; Holy, R.; Djukic, V.; Klotz, J.; Krenkel, B.; Eble, M.J. Combination of dose escalation with technological advances (Intensity-Modulated and Image-Guided Radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther. Onkol. 2011, 187, 479–484. [Google Scholar] [CrossRef]
- Rancati, T.; Fiorino, C.; Fellin, G.; Vavassori, V.; Cagna, E.; Casanova Borca, V.; Girelli, G.; Menegotti, L.; Monti, A.F.; Tortoreto, F.; et al. Inclusion of clinical risk factors into NTCP modelling of late rectal toxicity after high dose radiotherapy for prostate cancer. Radiother. Oncol. 2011, 100, 124–130. [Google Scholar] [CrossRef]
- Fiorino, C.; Rancati, T.; Fellin, G.; Vavassori, V.; Cagna, E.; Casanova Borca, V.; Girelli, G.; Menegotti, L.; Monti, A.F.; Tortoreto, F.; et al. Late fecal incontinence after high-dose radiotherapy for prostate cancer: Better prediction using longitudinal definitions. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 38–45. [Google Scholar] [CrossRef]
- Musunuru, H.B.; Davidson, M.; Cheung, P.; Vesprini, D.; Liu, S.; Chung, H.; Chu, W.; Mamedov, A.; Ravi, A.; D’Alimonte, L.; et al. Predictive Parameters of Symptomatic Hematochezia Following 5-Fraction Gantry-Based SABR in Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 1043–1051. [Google Scholar] [CrossRef]
- Vesprini, D.; Sia, M.; Lockwood, G.; Moseley, D.; Rosewall, T.; Bayley, A.; Bristow, R.; Chung, P.; Ménard, C.; Milosevic, M.; et al. Role of principal component analysis in predicting toxicity in prostate cancer patients treated with hypofractionated intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e415–e421. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, E.E.; Botten, R.J.; Butters, J.; Di Matteo, A.C.; Holloway, R.H.; Fowler, J. Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: Final results of phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Defraene, G.; Van Den Bergh, L.; Al-Mamgani, A.; Haustermans, K.; Heemsbergen, W.; Van Den Heuvel, F.; Lebesque, J.V. The benefits of including clinical factors in rectal normal tissue complication probability modeling after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1233–1242. [Google Scholar] [CrossRef]
- Fachal, L.; Gómez-Caamaño, A.; Peleteiro, P.; Carballo, A.; Calvo-Crespo, P.; Sánchez-García, M.; Lobato-Busto, R.; Carracedo, A.; Vega, A. Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-induced gastrointestinal toxicity in prostate cancer patients. Radiother. Oncol. 2012, 105, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F.A.; Girelli, G.; Monti, A.; Baccolini, M.; et al. Late rectal bleeding after 3D-CRT for prostate cancer: Development of a neural-network-based predictive model. Phys. Med. Biol. 2012, 57, 1399–1412. [Google Scholar] [CrossRef]
- Tucker, S.L.; Dong, L.; Michalski, J.M.; Bosch, W.R.; Winter, K.; Cox, J.D.; Purdy, J.A.; Mohan, R. Do intermediate radiation doses contribute to late rectal toxicity? An analysis of data from Radiation Therapy Oncology Group Protocol 94-06. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 390–395. [Google Scholar] [CrossRef]
- Tucker, S.L.; Michalski, J.M.; Bosch, W.R.; Mohan, R.; Dong, L.; Winter, K.; Purdy, J.A.; Cox, J.D. Use of fractional dose-volume histograms to model risk of acute rectal toxicity among patients treated on RTOG 94-06. Radiother. Oncol. 2012, 104, 109–113. [Google Scholar] [CrossRef]
- Valdagni, R.; Kattan, M.W.; Rancati, T.; Yu, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Gabriele, P.; Mauro, F.A.; Baccolini, M.; et al. Is it time to tailor the prediction of radio-induced toxicity in prostate cancer patients? Building the first set of nomograms for late rectal syndrome. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1957–1966. [Google Scholar] [CrossRef]
- Acosta, O.; Drean, G.; Ospina, J.D.; Simon, A.; Haigron, P.; Lafond, C.; de Crevoisier, R. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Phys. Med. Biol. 2013, 58, 2581–2595. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Egleston, B.; Alcantara, P.; Li, L.; Pollack, A.; Horwitz, E.M.; Buyyounouski, M.K. A novel method for predicting late genitourinary toxicity after prostate radiation therapy and the need for age-based risk-adapted dose constraints. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 709–715. [Google Scholar] [CrossRef]
- Campostrini, F.; Musola, R.; Marchiaro, G.; Lonardi, F.; Verlato, G. Role of early proctoscopy in predicting late symptomatic proctitis after external radiation therapy for prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Cella, L.; D’Avino, V.; Liuzzi, R.; Conson, M.; Doria, F.; Faiella, A.; Loffredo, F.; Salvatore, M.; Pacelli, R. Multivariate normal tissue complication probability modeling of gastrointestinal toxicity after external beam radiotherapy for localized prostate cancer. Radiat. Oncol. 2013, 8, 221. [Google Scholar] [CrossRef] [PubMed]
- Fargeas, A.; Kachenoura, A.; Acosta, O.; Albera, L.; Drean, G.; De Crevoisier, R. Feature extraction and classification for rectal bleeding in prostate cancer radiotherapy: A PCA based method. IRBM 2013, 34, 296–299. [Google Scholar] [CrossRef]
- Ghadjar, P.; Jackson, A.; Spratt, D.E.; Oh, J.H.; Munck Af Rosenschöld, P.; Kollmeier, M.; Yorke, E.; Hunt, M.; Deasy, J.O.; Zelefsky, M.J. Patterns and predictors of amelioration of genitourinary toxicity after high-dose intensity-modulated radiation therapy for localized prostate cancer: Implications for defining postradiotherapy urinary toxicity. Eur. Urol. 2013, 64, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.A.; Colbert, L.; Nickleach, D.; Shelton, J.; Marcus, D.M.; Switchenko, J.; Rossi, P.J.; Godette, K.; Cooper, S.; Jani, A.B. Reduced acute toxicity associated with the use of volumetric modulated arc therapy for the treatment of adenocarcinoma of the prostate. Pract. Radiat. Oncol. 2013, 3, e157–e164. [Google Scholar] [CrossRef]
- Hamstra, D.A.; Stenmark, M.H.; Ritter, T.; Litzenberg, D.; Jackson, W.; Johnson, S.; Albrecht-Unger, L.; Donaghy, A.; Phelps, L.; Blas, K.; et al. Age and comorbid illness are associated with late rectal toxicity following dose-escalated radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1246–1253. [Google Scholar] [CrossRef]
- Michalski, J.M.; Yan, Y.; Watkins-Bruner, D.; Bosch, W.R.; Winter, K.; Galvin, J.M.; Bahary, J.P.; Morton, G.C.; Parliament, M.B.; Sandler, H.M. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 932–938. [Google Scholar] [CrossRef]
- Norkus, D.; Karklelyte, A.; Engels, B.; Versmessen, H.; Griskevicius, R.; De Ridder, M.; Storme, G.; Aleknavicius, E.; Janulionis, E.; Valuckas, K.P. A randomized hypofractionation dose escalation trial for high risk prostate cancer patients: Interim analysis of acute toxicity and quality of life in 124 patients. Radiat. Oncol. 2013, 8, 206. [Google Scholar] [CrossRef]
- Singh, J.; Greer, P.B.; White, M.A.; Parker, J.; Patterson, J.; Tang, C.I.; Capp, A.; Wratten, C.; Denham, J.W. Treatment-related morbidity in prostate cancer: A comparison of 3-dimensional conformal radiation therapy with and without image guidance using implanted fiducial markers. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1018–1023. [Google Scholar] [CrossRef]
- Thomas, R.J.; Holm, M.; Williams, M.; Bowman, E.; Bellamy, P.; Andreyev, J.; Maher, J. Lifestyle factors correlate with the risk of late pelvic symptoms after prostatic radiotherapy. Clin. Oncol. 2013, 25, 246–251. [Google Scholar] [CrossRef]
- Thor, M.; Apte, A.; Deasy, J.O.; Karlsdóttir, À.; Moiseenko, V.; Liu, M.; Muren, L.P. Dose/volume-response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions. Radiother. Oncol. 2013, 109, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Thor, M.; Apte, A.; Deasy, J.O.; Muren, L.P. Statistical simulations to estimate motion-inclusive dose-volume histograms for prediction of rectal morbidity following radiotherapy. Acta Oncol. 2013, 52, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Thor, M.; Bentzen, L.; Hysing, L.B.; Ekanger, C.; Helle, S.I.; Karlsd Óttir, A.; Muren, L.P. VARIAN AWARD: Prediction of normal tissue morbidity in radiotherapy of prostate cancer using motion-inclusive dose distributions. Eur. J. Cancer 2013, 49, S219. [Google Scholar] [CrossRef]
- Carillo, V.; Cozzarini, C.; Rancati, T.; Avuzzi, B.; Botti, A.; Borca, V.C.; Cattari, G.; Civardi, F.; Esposti, C.D.; Franco, P.; et al. Relationships between bladder dose-volume/surface histograms and acute urinary toxicity after radiotherapy for prostate cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2014, 111, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Fellin, G.; Rancati, T.; Fiorino, C.; Vavassori, V.; Antognoni, P.; Baccolini, M.; Bianchi, C.; Cagna, E.; Borca, V.C.; Girelli, G.; et al. Long term rectal function after high-dose prostatecancer radiotherapy: Results from a prospective cohort study. Radiother. Oncol. 2014, 110, 272–277. [Google Scholar] [CrossRef]
- Kong, M.; Hong, S.E.; Chang, S.G. Hypofractionated helical tomotherapy (75 Gy at 2.5 Gy per fraction) for localized prostate cancer: Long-term analysis of gastrointestinal and genitourinary toxicity. OncoTargets Ther. 2014, 7, 553–566. [Google Scholar] [CrossRef]
- Kouloulias, V.; Zygogianni, A.; Kantzou, I.; Tolia, M.; Platoni, K.; Antypas, C.; Chaldeopoulos, D.; Pantelakos, P.; Siatelis, A.; Chrysofos, M.; et al. A hypofractionated radiotherapy schedule with 57.75 Gy in 21 fractions for T1-2N0 prostate carcinoma: Analysis of late toxicity and efficacy. J. BU ON 2014, 19, 763–769. [Google Scholar]
- Macias, V.A.; Blanco, M.L.; Barrera, I.; Garcia, R. A phase II study of stereotactic body radiation therapy for low-intermediate-high-risk prostate cancer using helical tomotherapy: Dose-volumetric parameters predicting early toxicity. Front. Oncol. 2014, 4, 336. [Google Scholar] [CrossRef]
- Munbodh, R.; Jackson, A. Quantifying cell migration distance as a contributing factor to the development of rectal toxicity after prostate radiotherapy. Med. Phys. 2014, 41, 021724. [Google Scholar] [CrossRef]
- Ospina, J.D.; Zhu, J.; Chira, C.; Bossi, A.; Delobel, J.B.; Beckendorf, V.; Dubray, B.; Lagrange, J.L.; Correa, J.C.; Simon, A.; et al. Random forests to predict rectal toxicity following prostate cancer radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1024–1031. [Google Scholar] [CrossRef]
- Yahya, N.; Ebert, M.A.; Bulsara, M.; Haworth, A.; Kearvell, R.; Foo, K.; Kennedy, A.; Richardson, S.; Krawiec, M.; Joseph, D.J.; et al. Impact of treatment planning and delivery factors on gastrointestinal toxicity: An analysis of data from the RADAR prostate radiotherapy trial. Radiat. Oncol. 2014, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.; Jeyaseelan, A.K.; Ybarra, N.; David, M.; Faria, S.; Souhami, L.; Cury, F.; Duclos, M.; El Naqa, I. Contrasting analytical and data-driven frameworks for radiogenomic modeling of normal tissue toxicities in prostate cancer. Radiother. Oncol. 2015, 115, 107–113. [Google Scholar] [CrossRef]
- Coloigner, J.; Fargeas, A.; Kachenoura, A.; Wang, L.; Drean, G.; Lafond, C.; Senhadji, L.; De Crevoisier, R.; Acosta, O.; Albera, L. A novel classification method for prediction of rectal bleeding in prostate cancer radiotherapy based on a semi-nonnegative ICA of 3D planned dose distributions. IEEE J. Biomed. Health Inform. 2015, 19, 1168–1177. [Google Scholar] [CrossRef]
- Cozzarini, C.; Rancati, T.; Carillo, V.; Civardi, F.; Garibaldi, E.; Franco, P.; Avuzzi, B.; Esposti, C.D.; Girelli, G.; Iotti, C.; et al. Multi-variable models predicting specific patient-reported acute urinary symptoms after radiotherapy for prostate cancer: Results of a cohort study. Radiother. Oncol. 2015, 116, 185–191. [Google Scholar] [CrossRef]
- D’Avino, V.; Palma, G.; Liuzzi, R.; Conson, M.; Doria, F.; Salvatore, M.; Pacelli, R.; Cella, L. Prediction of gastrointestinal toxicity after external beam radiotherapy for localized prostate cancer. Radiat. Oncol. 2015, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Fargeas, A.; Arango, J.D.; Kachenoura, A.; Costet, N.; Albera, L.; Lafond, C.; Acosta, O.; De Crevoisier, R. A new parameter computed with independent component analysis to predict rectal toxicity following prostate cancer radiotherapy. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 2657–2660. [Google Scholar] [CrossRef]
- Fargeas, A.; Albera, L.; Kachenoura, A.; Dréan, G.; Ospina, J.D.; Coloigner, J.; Lafond, C.; Delobel, J.B.; De Crevoisier, R.; Acosta, O. On feature extraction and classification in prostate cancer radiotherapy using tensor decompositions. Med. Eng. Phys. 2015, 37, 126–131. [Google Scholar] [CrossRef]
- Hamlett, L.J.; McPartlin, A.J.; Maile, E.J.; Webster, G.; Swindell, R.; Rowbottom, C.G.; Choudhury, A.; Aitkenhead, A.H. Parametrized rectal dose and associations with late toxicity in prostate cancer radiotherapy. Br. J. Radiol. 2015, 88, 20150110. [Google Scholar] [CrossRef] [PubMed]
- Seymour, Z.A.; Chang, A.J.; Zhang, L.; Kirby, N.; Descovich, M.; Roach, M.; Hsu, I.C.; Gottschalk, A.R. Dose-volume analysis and the temporal nature of toxicity with stereotactic body radiation therapy for prostate cancer. Pract. Radiat. Oncol. 2015, 5, e465–e472. [Google Scholar] [CrossRef]
- Someya, M.; Hori, M.; Tateoka, K.; Nakata, K.; Takagi, M.; Saito, M.; Hirokawa, N.; Hareyama, M.; Sakata, K.I. Results and DVH analysis of late rectal bleeding in patients treated with 3D-CRT or IMRT for localized prostate cancer. J. Radiat. Res. 2015, 56, 122–127. [Google Scholar] [CrossRef]
- Someya, M.; Yamamoto, H.; Nojima, M.; Hori, M.; Tateoka, K.; Nakata, K.; Takagi, M.; Saito, M.; Hirokawa, N.; Tokino, T.; et al. Relation between Ku80 and microRNA-99a expression and late rectal bleeding after radiotherapy for prostate cancer. Radiother. Oncol. 2015, 115, 235–239. [Google Scholar] [CrossRef]
- Steinberger, E.; Kollmeier, M.; McBride, S.; Novak, C.; Pei, X.; Zelefsky, M.J. Cigarette smoking during external beam radiation therapy for prostate cancer is associated with an increased risk of prostate cancer-specific mortality and treatment-related toxicity. BJU Int. 2015, 116, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Yahya, N.; Ebert, M.A.; Bulsara, M.; Haworth, A.; Kennedy, A.; Joseph, D.J.; Denham, J.W. Dosimetry, clinical factors and medication intake influencing urinary symptoms after prostate radiotherapy: An analysis of data from the RADAR prostate radiotherapy trial. Radiother. Oncol. 2015, 116, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Yahya, N.; Ebert, M.A.; Bulsara, M.; House, M.J.; Kennedy, A.; Joseph, D.J.; Denham, J.W. Urinary symptoms following external beam radiotherapy of the prostate: Dose–symptom correlates with multiple-event and event-count models. Radiother. Oncol. 2015, 117, 277–282. [Google Scholar] [CrossRef]
- Bagalà, P.; Ingrosso, G.; Falco, M.; Petrichella, S.; D’Andrea, M.; Rago, M.; Lancia, A.; Bruni, C.; Ponti, E.; Santoni, R. Predicting genitourinary toxicity in three-dimensional conformal radiotherapy for localized prostate cancer: A dose-volume parameters analysis of the bladder. J. Cancer Res. Ther. 2016, 12, 1018–1024. [Google Scholar] [CrossRef]
- Cicchetti, A.; Rancati, T.; Ebert, M.; Fiorino, C.; Palorini, F.; Kennedy, A.; Joseph, D.J.; Denham, J.W.; Vavassori, V.; Fellin, G.; et al. Modelling late stool frequency and rectal pain after radical radiotherapy in prostate cancer patients: Results from a large pooled population. Phys. Med. 2016, 32, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Cozzarini, C.; Rancati, T.; Badenchini, F.; Palorini, F.; Avuzzi, B.; Degli Esposti, C.; Girelli, G.; Improta, I.; Vavassori, V.; Valdagni, R.; et al. Baseline status and dose to the penile bulb predict impotence 1 year after radiotherapy for prostate cancer. Strahlenther. Onkol. 2016, 192, 297–304. [Google Scholar] [CrossRef]
- Dréan, G.; Acosta, O.; Ospina, J.D.; Fargeas, A.; Lafond, C.; Corrégé, G.; Lagrange, J.L.; Créhange, G.; Simon, A.; Haigron, P.; et al. Identification of a rectal subregion highly predictive of rectal bleeding in prostate cancer IMRTRectal subregion involved in bleeding. Radiother. Oncol. 2016, 119, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Hostova, B.; Matula, P.; Dubinsky, P. Prediction of toxicities of prostate cancer radiotherapy. Neoplasma 2016, 63, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.M.; Hou, W.H.; Huang, C.Y.; Wang, C.C.; Tsai, C.L.; Tsai, Y.C.; Yu, H.J.; Pu, Y.S.; Cheng, J.C.H. Differences in toxicity and outcome associated with circadian variations between patients undergoing daytime and evening radiotherapy for prostate adenocarcinoma. Chronobiol. Int. 2016, 33, 210–219. [Google Scholar] [CrossRef]
- Improta, I.; Palorini, F.; Cozzarini, C.; Rancati, T.; Avuzzi, B.; Franco, P.; Degli Esposti, C.; Del Mastro, E.; Girelli, G.; Iotti, C.; et al. Bladder spatial-dose descriptors correlate with acute urinary toxicity after radiation therapy for prostate cancer. Phys. Medica 2016, 32, 1681–1689. [Google Scholar] [CrossRef]
- Kanemoto, A.; Matsumoto, Y.; Sugita, T.; Abe, E.; Yamana, N.; Saito, T.; Kobayashi, K.; Yamazaki, H.; Bilim, V.; Tanikawa, T. Risk factors and time to occurrence of genitourinary toxicity after external beam radiotherapy for prostate cancer. Anticancer Res. 2016, 36, 2441–2444. [Google Scholar] [PubMed]
- Kapoor, R.; Bansal, A.; Kumar, N.; Oinam, A.S. Dosimetric correlation of acute and late toxicities in high-risk prostate cancer patients treated with three-dimensional conformal radiotherapy followed by intensity modulated radiotherapy boost. Indian J. Urol. 2016, 32, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Kole, T.P.; Tong, M.; Wu, B.; Lei, S.; Obayomi-Davies, O.; Chen, L.N.; Suy, S.; Dritschilo, A.; Yorke, E.; Collins, S.P. Late urinary toxicity modeling after stereotactic body radiotherapy (SBRT) in the definitive treatment of localized prostate cancer. Acta Oncol. 2016, 55, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Mirjolet, C.; Walker, P.M.; Gauthier, M.; Dalban, C.; Naudy, S.; Mazoyer, F.; Martin, E.; Maingon, P.; Créhange, G. Absolute volume of the rectum and AUC from rectal DVH between 25 Gy and 50 Gy predict acute gastrointestinal toxicity with IG-IMRT in prostate cancer. Radiat. Oncol. 2016, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Palorini, F.; Cozzarini, C.; Gianolini, S.; Botti, A.; Carillo, V.; Iotti, C.; Rancati, T.; Valdagni, R.; Fiorino, C. First application of a pixel-wise analysis on bladder dose-surface maps in prostate cancer radiotherapy. Radiother. Oncol. 2016, 119, 123–128. [Google Scholar] [CrossRef]
- Pinkawa, M.; Brzozowska, K.; Kriehuber, R.; Eble, M.J.; Schmitz, S. Prediction of radiation-induced toxicity by in vitro radiosensitivity of lymphocytes in prostate cancer patients. Future Oncol. 2016, 12, 617–624. [Google Scholar] [CrossRef]
- Qi, X.S.; Wang, J.P.; Gomez, C.L.; Shao, W.; Xu, X.; King, C.; Low, D.A.; Steinberg, M.; Kupelian, P. Plan quality and dosimetric association of patient-reported rectal and urinary toxicities for prostate stereotactic body radiotherapy. Radiother. Oncol. 2016, 121, 113–117. [Google Scholar] [CrossRef]
- Schaake, W.; van der Schaaf, A.; van Dijk, L.V.; Bongaerts, A.H.H.; van den Bergh, A.C.M.; Langendijk, J.A. Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer NTCP models for anorectal side effects patients. Radiother. Oncol. 2016, 119, 381–387. [Google Scholar] [CrossRef]
- Stankovic, V.; Nikitovic, M.; Pekmezovic, T.; Tepavcevic, D.K.; Saranovic, D.; Djuric, A.S.; Saric, M. Toxicity of the lower gastrointestinal tract and its predictive factors after 72 Gy conventionally fractionated 3D conformal radiotherapy of localized prostate cancer. J. BU ON 2016, 21, 1224–1232. [Google Scholar]
- Yeoh, E.K.; Krol, R.; Dhillon, V.S.; Botten, R.; Di Matteo, A.; Butters, J.; Brock, A.R.; Esterman, A.; Salisbury, C.; Fenech, M. Predictors of radiation-induced gastrointestinal morbidity: A prospective, longitudinal study following radiotherapy for carcinoma of the prostate. Acta Oncol. 2016, 55, 604–610. [Google Scholar] [CrossRef]
- Arunsingh, M.; Mallick, I.; Prasath, S.; Arun, B.; Sarkar, S.; Shrimali, R.K.; Chatterjee, S.; Achari, R. Acute toxicity and its dosimetric correlates for high-risk prostate cancer treated with moderately hypofractionated radiotherapy. Med. Dosim. 2017, 42, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Casares-Magaz, O.; Muren, L.P.; Moiseenko, V.; Petersen, S.E.; Pettersson, N.J.; Høyer, M.; Deasy, J.O.; Thor, M. Spatial rectal dose/volume metrics predict patient-reported gastro-intestinal symptoms after radiotherapy for prostate cancer. Acta Oncol. 2017, 56, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Cozzarini, C.; Rancati, T.; Palorini, F.; Avuzzi, B.; Garibaldi, E.; Balestrini, D.; Cante, D.; Munoz, F.; Franco, P.; Girelli, G.; et al. Patient-reported urinary incontinence after radiotherapy for prostate cancer: Quantifying the dose–effect. Radiother. Oncol. 2017, 125, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Delobel, J.B.; Gnep, K.; Ospina, J.D.; Beckendorf, V.; Chira, C.; Zhu, J.; Bossi, A.; Messai, T.; Acosta, O.; Castelli, J.; et al. Nomogram to predict rectal toxicity following prostate cancer radiotherapy. PLoS ONE 2017, 12, e0179845. [Google Scholar] [CrossRef]
- Inokuchi, H.; Mizowaki, T.; Norihisa, Y.; Takayama, K.; Ikeda, I.; Nakamura, K.; Hiraoka, M. Correlation between urinary dose and delayed radiation cystitis after 78 Gy intensity-modulated radiotherapy for high-risk prostate cancer: A 10-year follow-up study of genitourinary toxicity in clinical practice. Clin. Transl. Radiat. Oncol. 2017, 6, 31–36. [Google Scholar] [CrossRef]
- Jolnerovski, M.; Salleron, J.; Beckendorf, V.; Peiffert, D.; Baumann, A.S.; Bernier, V.; Huger, S.; Marchesi, V.; Chira, C. Intensity-modulated radiation therapy from 70 Gy to 80 Gy in prostate cancer: Six- year outcomes and predictors of late toxicity. Radiat. Oncol. 2017, 12, 99. [Google Scholar] [CrossRef]
- Katahira-Suzuki, R.; Omura, M.; Takano, S.; Matsui, K.; Hongo, H.; Yamakabe, W.; Nagata, H.; Hashimoto, H.; Miura, I.; Inoue, T. Clinical and dosimetric predictors of late rectal bleeding of prostate cancer after TomoTherapy intensity modulated radiation therapy. J. Med. Radiat. Sci. 2017, 64, 172–179. [Google Scholar] [CrossRef]
- Oh, J.H.; Kerns, S.; Ostrer, H.; Powell, S.N.; Rosenstein, B.; Deasy, J.O. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci. Rep. 2017, 7, 43381. [Google Scholar] [CrossRef]
- Schack, L.M.H.; Petersen, S.E.; Nielsen, S.; Lundby, L.; Høyer, M.; Bentzen, L.; Overgaard, J.; Andreassen, C.N.; Alsner, J. Validation of genetic predictors of late radiation-induced morbidity in prostate cancer patients. Acta Oncol. 2017, 56, 1514–1521. [Google Scholar] [CrossRef]
- Shelley, L.E.A.; Scaife, J.E.; Romanchikova, M.; Harrison, K.; Forman, J.R.; Bates, A.M.; Noble, D.J.; Jena, R.; Parker, M.A.; Sutcliffe, M.P.F.; et al. Delivered dose can be a better predictor of rectal toxicity than planned dose in prostate radiotherapy. Radiother. Oncol. 2017, 123, 466–471. [Google Scholar] [CrossRef]
- Yahya, N.; Ebert, M.A.; House, M.J.; Kennedy, A.; Matthews, J.; Joseph, D.J.; Denham, J.W. Modeling Urinary Dysfunction After External Beam Radiation Therapy of the Prostate Using Bladder Dose-Surface Maps: Evidence of Spatially Variable Response of the Bladder Surface. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Johnson, J.; Gottschalk, A.R.; Chang, A.J.; Hsu, I.C.; Roach, M.; Seymour, Z.A. Receiver operating curves and dose-volume analysis of late toxicity with stereotactic body radiation therapy for prostate cancer. Pract. Radiat. Oncol. 2017, 7, e109–e116. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Massari, E.; Cicchetti, A.; Giandini, T.; Avuzzi, B.; Palorini, F.; Stucchi, C.; Fellin, G.; Gabriele, P.; Vavassori, V.; et al. Development of a Ready-to-Use Graphical Tool Based on Artificial Neural Network Classification: Application for the Prediction of Late Fecal Incontinence After Prostate Cancer Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1533–1542. [Google Scholar] [CrossRef]
- Fargeas, A.; Acosta, O.; Ospina Arrango, J.D.; Ferhat, A.; Costet, N.; Albera, L.; Azria, D.; Fenoglietto, P.; Créhange, G.; Beckendorf, V.; et al. Independent component analysis for rectal bleeding prediction following prostate cancer radiotherapy. Radiother. Oncol. 2018, 126, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.R.; Murray, J.R.; Gulliford, S.L.; Tree, A.C.; Harrington, K.J.; Van As, N.J. An Investigation of Dosimetric Correlates of Acute Toxicity in Prostate Stereotactic Body Radiotherapy: Dose to Urinary Trigone is Associated with Acute Urinary Toxicity. Clin. Oncol. (R. Coll. Radiol.) 2018, 30, 539–547. [Google Scholar] [CrossRef]
- Ingrosso, G.; Carosi, A.; Cristino, D.D.; Ponti, E.; Lancia, A.; Bottero, M.; Cancelli, A.; Murgia, A.; Turturici, I.; Santoni, R. Volumetric image-guided conformal radiotherapy for localized prostate cancer: Analysis of dosimetric and clinical factors affecting acute and late toxicity. Rep. Pract. Oncol. Radiother. 2018, 23, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Kotabe, K.; Nakayama, H.; Takashi, A.; Takahashi, A.; Tajima, T.; Kume, H. Association between rectal bleeding and the absolute dose volume of the rectum following image-guided radiotherapy for patients with prostate cancer. Oncol. Lett. 2018, 16, 2741–2749. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, H.; Tanha, K.; Mofid, B.; Razzaghdoust, A.; Saadipoor, A.; Khalafi, L.; Bakhshandeh, M.; Mahdavi, S.R. MRI Radiomic Analysis of IMRT-Induced Bladder Wall Changes in Prostate Cancer Patients: A Relationship with Radiation Dose and Toxicity. J. Med. Imaging Radiat. Sci. 2019, 50, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.R.; Thomas, K.; Truelove, L.; Khan, A.; Parker, C.; Dearnaley, D.P.; Gulliford, S. Dosimetry and Gastrointestinal Toxicity Relationships in a Phase II Trial of Pelvic Lymph Node Radiotherapy in Advanced Localised Prostate Cancer. Clin. Oncol. 2019, 31, 374–384. [Google Scholar] [CrossRef]
- Huang, C.C.; Chao, P.J.; Guo, S.S.; Wang, C.J.; Luo, H.L.; Su, Y.L.; Lee, T.F.; Fang, F.M. Developing a multivariable normal tissue complication probability model to predict late rectal bleeding following intensity-modulated radiation therapy. J. Cancer 2019, 10, 2588–2593. [Google Scholar] [CrossRef]
- Cicchetti, A.; Avuzzi, B.; Palorini, F.; Ballarini, F.; Stucchi, C.; Fellin, G.; Gabriele, P.; Vavassori, V.; Esposti, C.D.; Cozzarini, C.; et al. Predicting Late Fecal Incontinence Risk After Radiation Therapy for Prostate Cancer: New Insights From External Independent Validation. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Mylona, E.; Acosta, O.; Lizee, T.; Lafond, C.; Crehange, G.; Magné, N.; Chiavassa, S.; Supiot, S.; Ospina Arango, J.D.; Campillo-Gimenez, B.; et al. Voxel-Based Analysis for Identification of Urethrovesical Subregions Predicting Urinary Toxicity After Prostate Cancer Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 343–354. [Google Scholar] [CrossRef]
- Ng, B.Y.H.; Yu, E.L.M.; Lau, T.T.S.; Law, K.S.; Cheng, A.C.K. Associations of clinical and dosimetric parameters with late rectal toxicities after radical intensity-modulated radiation therapy for prostate cancer: A single-centre retrospective study. Hong Kong Med. J. 2019, 25, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Alayed, Y.; Davidson, M.; Quon, H.; Cheung, P.; Chu, W.; Chung, H.T.; Vesprini, D.; Ong, A.; Chowdhury, A.; Liu, S.K.; et al. Dosimetric predictors of toxicity and quality of life following prostate stereotactic ablative radiotherapy. Radiother. Oncol. 2020, 144, 135–140. [Google Scholar] [CrossRef]
- Mostafaei, S.; Abdollahi, H.; Kazempour Dehkordi, S.; Shiri, I.; Razzaghdoust, A.; Zoljalali Moghaddam, S.H.; Saadipoor, A.; Koosha, F.; Cheraghi, S.; Mahdavi, S.R. CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm. Radiol. Med. 2020, 125, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Mylona, E.; Cicchetti, A.; Rancati, T.; Palorini, F.; Fiorino, C.; Supiot, S.; Magne, N.; Crehange, G.; Valdagni, R.; Acosta, O.; et al. Local dose analysis to predict acute and late urinary toxicities after prostate cancer radiotherapy: Assessment of cohort and method effects. Radiother. Oncol. 2020, 147, 40–49. [Google Scholar] [CrossRef]
- Ozkan, E.E.; Ozseven, A.; Cerkesli, Z.A.K. Evaluating the predictive value of quantec rectum tolerance dose suggestions on acute rectal toxicity in prostate carcinoma patients treated with IMRT. Rep. Pract. Oncol. Radiother. 2020, 25, 50–54. [Google Scholar] [CrossRef]
- Shelley, L.E.A.; Sutcliffe, M.P.F.; Thomas, S.J.; Noble, D.J.; Romanchikova, M.; Harrison, K.; Bates, A.M.; Burnet, N.G.; Jena, R. Associations between voxel-level accumulated dose and rectal toxicity in prostate radiotherapy. Phys. Imaging Radiat. Oncol. 2020, 14, 87–94. [Google Scholar] [CrossRef]
- Groen, V.H.; Zuithoff, N.P.A.; van Schie, M.; Monninkhof, E.M.; Kunze-Busch, M.; de Boer, H.C.J.; van der Voort van Zyp, J.; Pos, F.J.; Smeenk, R.J.; Haustermans, K.; et al. Anorectal dose–effect relations for late gastrointestinal toxicity following external beam radiotherapy for prostate cancer in the FLAME trial. Radiother. Oncol. 2021, 162, 98–104. [Google Scholar] [CrossRef]
- Ito, M.; Yoshioka, Y.; Takase, Y.; Suzuki, J.; Matsunaga, T.; Takahashi, H.; Takeuchi, A.; Adachi, S.; Abe, S.; Oshima, Y.; et al. Stereotactic body radiation therapy for Japanese patients with localized prostate cancer: 2-year results and predictive factors for acute genitourinary toxicities. Jpn. J. Clin. Oncol. 2021, 51, 1253–1260. [Google Scholar] [CrossRef]
- David, R.; Hiwase, M.; Kahokehr, A.A.; Lee, J.; Watson, D.I.; Leung, J.; O’Callaghan, M.E. Predicting post-radiation genitourinary hospital admissions in patients with localised prostate cancer. World J. Urol. 2022, 40, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Marco, N.; Schulz-Jaavall, M.B.; Steinberg, M.L.; Tran, P.T.; Juarez, J.E.; Dang, A.; Telesca, D.; Lilleby, W.A.; Weidhaas, J.B. Germline variants disrupting microRNAs predict long-term genitourinary toxicity after prostate cancer radiation. Radiother. Oncol. 2022, 167, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Kopčalić, K.; Matić, I.Z.; Besu, I.; Stanković, V.; Bukumirić, Z.; Stanojković, T.P.; Stepanović, A.; Nikitović, M. Circulating levels of IL-6 and TGF-β1 in patients with prostate cancer undergoing radiotherapy: Associations with acute radiotoxicity and fatigue symptoms. BMC Cancer 2022, 22, 1167. [Google Scholar] [CrossRef]
- Leeman, J.E.; Chen, Y.H.; Catalano, P.; Bredfeldt, J.; King, M.; Mouw, K.W.; D’Amico, A.V.; Orio, P.; Nguyen, P.L.; Martin, N. Radiation Dose to the Intraprostatic Urethra Correlates Strongly With Urinary Toxicity After Prostate Stereotactic Body Radiation Therapy: A Combined Analysis of 23 Prospective Clinical Trials. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 75–82. [Google Scholar] [CrossRef]
- Maulik, S.; Arunsingh, M.; Arun, B.; Prasath, S.; Mallick, I. Moderately Hypofractionated Radiotherapy and Androgen Deprivation Therapy for High-risk Localised Prostate Cancer: Predictors of Long-term Biochemical Control and Toxicity. Clin. Oncol. 2022, 34, e52–e60. [Google Scholar] [CrossRef] [PubMed]
- Ong, A.L.K.; Knight, K.; Panettieri, V.; Dimmock, M.; Tuan, J.K.L.; Tan, H.Q.; Wright, C. Predictive modelling for late rectal and urinary toxicities after prostate radiotherapy using planned and delivered dose. Front. Oncol. 2022, 12, 1084311. [Google Scholar] [CrossRef]
- Pisani, C.; Galla, A.; Loi, G.; Beldì, D.; Krengli, M. Urinary toxicity in patients treated with radical EBRT for prostate cancer: Analysis of predictive factors in an historical series. Bull. Cancer 2022, 109, 826–833. [Google Scholar] [CrossRef]
- Tonetto, F.; Magli, A.; Moretti, E.; Guerini, A.E.; Tullio, A.; Reverberi, C.; Ceschia, T.; Spiazzi, L.; Titone, F.; Prisco, A.; et al. Prostate Cancer Treatment-Related Toxicity: Comparison between 3D-Conformal Radiation Therapy (3D-CRT) and Volumetric Modulated Arc Therapy (VMAT) Techniques. J. Clin. Med. 2022, 11, 6913. [Google Scholar] [CrossRef]
- Willigenburg, T.; van der Velden, J.M.; Zachiu, C.; Teunissen, F.R.; Lagendijk, J.J.W.; Raaymakers, B.W.; de Boer, J.C.J.; van der Voort van Zyp, J.R.N. Accumulated bladder wall dose is correlated with patient-reported acute urinary toxicity in prostate cancer patients treated with stereotactic, daily adaptive MR-guided radiotherapy. Radiother. Oncol. 2022, 171, 182–188. [Google Scholar] [CrossRef]
- Alexander, G.S.; Krc, R.F.; Assif, J.W.; Sun, K.; Molitoris, J.K.; Tran, P.; Rana, Z.; Mishra, M.V. Conditional Risk and Predictive Factors Associated with Late Toxicity in Patients with Prostate Cancer Treated with External Beam Radiation Therapy Alone in the Randomized Trial RTOG 0126. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 990–998. [Google Scholar] [CrossRef]
- Fujii, K.; Nakano, M.; Kawakami, S.; Tanaka, Y.; Kainuma, T.; Tsumura, H.; Tabata, K.I.; Satoh, T.; Iwamura, M.; Ishiyama, H. Dosimetric Predictors of Toxicity after Prostate Stereotactic Body Radiotherapy: A Single-Institutional Experience of 145 Patients. Curr. Oncol. 2023, 30, 5062–5071. [Google Scholar] [CrossRef] [PubMed]
- Gregucci, F.; Carbonara, R.; Surgo, A.; Ciliberti, M.P.; Curci, D.; Ciocia, A.; Branà, L.; Ludovico, G.M.; Scarcia, M.; Portoghese, F.; et al. Extreme hypofractionated stereotactic radiotherapy for elderly prostate cancer patients: Side effects preliminary analysis of a phase II trial. La Radiol. Medica 2023, 128, 501–508. [Google Scholar] [CrossRef]
- Jang, B.S.; Chung, M.G.; Lee, D.S. Association between gut microbial change and acute gastrointestinal toxicity in patients with prostate cancer receiving definitive radiation therapy. Cancer Med. 2023, 12, 20727–20735. [Google Scholar] [CrossRef] [PubMed]
- Li Kuan Ong, A.; Knight, K.; Panettieri, V.; Dimmock, M.; Kit Loong Tuan, J.; Qi Tan, H.; Wright, C. Predictors for late genitourinary toxicity in men receiving radiotherapy for high-risk prostate cancer using planned and accumulated dose. Phys. Imaging Radiat. Oncol. 2023, 25, 100421. [Google Scholar] [CrossRef]
- Otsuka, K.; Otsuka, M.; Itaya, T.; Matsumoto, A.; Sato, R.; Sagara, Y.; Oga, M.; Asayama, Y. Risk factors for rectal bleeding after volumetric-modulated arc radiotherapy of prostate cancer. Rep. Pract. Oncol. Radiother. 2023, 28, 15–23. [Google Scholar] [CrossRef]
- Ratnakumaran, R.; Hinder, V.; Brand, D.; Staffurth, J.; Hall, E.; van As, N.; Tree, A. The Association between Acute and Late Genitourinary and Gastrointestinal Toxicities: An Analysis of the PACE B Study. Cancers 2023, 15, 1288. [Google Scholar] [CrossRef] [PubMed]
- Repka, M.C.; Carrasquilla, M.; Paydar, I.; Wu, B.; Lei, S.; Suy, S.; Collins, S.P.; Kole, T.P. Dosimetric predictors of acute bowel toxicity after Stereotactic Body Radiotherapy (SBRT) in the definitive treatment of localized prostate cancer. Acta Oncol. 2023, 62, 174–179. [Google Scholar] [CrossRef]
- Delgadillo, R.; Deana, A.M.; Ford, J.C.; Studenski, M.T.; Padgett, K.R.; Abramowitz, M.C.; Pra, A.D.; Spieler, B.O.; Dogan, N. Increasing the efficiency of cone-beam CT based delta-radiomics using automated contours to predict radiotherapy-related toxicities in prostate cancer. Sci. Rep. 2024, 14, 9563. [Google Scholar] [CrossRef]
- Maitre, P.; Maheshwari, G.; Sarkar, J.; Singh, P.; Kannan, S.; Dutta, S.; Phurailatpam, R.; Raveendran, V.; Prakash, G.; Menon, S.; et al. Late Urinary Toxicity and Quality of Life With Pelvic Radiation Therapy for High-Risk Prostate Cancer: Dose-Effect Relations in the POP-RT Randomized Phase 3 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 537–543. [Google Scholar] [CrossRef]
- Obara, H.; Tatara, Y.; Monzen, S.; Murakami, S.; Yamamoto, H.; Kimura, N.; Suzuki, M.; Komai, F.; Narita, M.; Hatayama, Y.; et al. Exploring predictive molecules of acute adverse events in response to volumetric-modulated arc therapy for prostate cancer using urinary metabolites. Mol. Clin. Oncol. 2024, 21, 62. [Google Scholar] [CrossRef]
- Onal, C.; Guler, O.C.; Elmali, A.; Demirhan, B.; Yavuz, M. The impact of age on clinicopathological features and treatment results in patients with localised prostate cancer receiving definitive radiotherapy. Acta Oncol. 2024, 63, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, E.E.; Serel, T.A.; Soyupek, A.S.; Kaymak, Z.A. Utilization of machine learning methods for prediction of acute and late rectal toxicity due to curative prostate radiotherapy. Radiat. Prot. Dosim. 2024, 200, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Pham, J.; Neilsen, B.K.; Liu, H.; Cao, M.; Yang, Y.; Sheng, K.; Ma, T.M.; Kishan, A.U.; Ruan, D. Dosimetric predictors for genitourinary toxicity in MR-guided stereotactic body radiation therapy (SBRT): Substructure with fraction-wise analysis. Med. Phys. 2024, 51, 612–621. [Google Scholar] [CrossRef]
- Tanabe, K.; Kobayashi, S.; Tamiya, T.; Konishi, T.; Hinoto, R.; Tsukamoto, N.; Kashiyama, S.; Eriguchi, T.; Noro, A. Risk factors for the long-term persistent genitourinary toxicity after stereotactic body radiation therapy for localized prostate cancer: A single-center, retrospective study of 306 patients. Int. J. Urol. 2024, 31, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, M.B.; Abedi, I.; Abdollahi, H.; Amouheidari, A.; Azmoonfar, R.; Saber, K.; Hassaninejad, H. Comparison prediction models of bladder toxicity based on radiomic features of CT and MRI in patients with prostate cancer undergoing radiotherapy. J. Med. Imaging Radiat. Sci. 2024, 55, 101765. [Google Scholar] [CrossRef]
- Walburn, T.; Chen, M.H.; Loffredo, M.; McMahon, E.; Orio, P.F.; Nguyen, P.L.; D’Amico, A.V.; Sayan, M. Secondary analysis of late major gastrointestinal and genitourinary toxicities in unfavorable-risk prostate cancer patients receiving docetaxel: Insights from a randomized trial. Cancer 2024, 130, 2287–2293. [Google Scholar] [CrossRef]
- Jongen, C.A.M.; Heijmen, B.J.M.; Schillemans, W.; Zolnay, A.; Witte, M.G.; Pos, F.J.; Vanneste, B.; Dubois, L.J.; van Klaveren, D.; Incrocci, L.; et al. Normal tissue complication probability modeling for late rectal bleeding after conventional or hypofractionated radiotherapy for prostate cancer. Clin. Transl. Radiat. Oncol. 2025, 50, 100886. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Ching, J.C.F.; Lam, S.; Lam, C.C.H.; Lui, A.O.Y.; Kwong, J.C.K.; Lo, A.Y.H.; Chan, J.W.H.; Cai, J.; Leung, W.S.; Lee, S.W.Y. Integrating CT-based radiomic model with clinical features improves long-term prognostication in high-risk prostate cancer. Front. Oncol. 2023, 13, 1060687. [Google Scholar] [CrossRef]
- Leung, V.W.S.; Ng, C.K.C.; Lam, S.-K.; Wong, P.-T.; Ng, K.-Y.; Tam, C.-H.; Lee, T.-C.; Chow, K.-C.; Chow, Y.-K.; Tam, V.C.W.; et al. Computed Tomography-Based Radiomics for Long-Term Prognostication of High-Risk Localized Prostate Cancer Patients Received Whole Pelvic Radiotherapy. J. Pers. Med. 2023, 13, 1643. [Google Scholar] [CrossRef]
- Nicol, A.J.; Lam, S.-K.; Ching, J.C.F.; Tam, V.C.W.; Teng, X.; Zhang, J.; Lee, F.K.H.; Wong, K.C.W.; Cai, J.; Lee, S.W.Y. A multi-center, multi-organ, multi-omic prediction model for treatment-induced severe oral mucositis in nasopharyngeal carcinoma. La Radiol. Medica 2025, 130, 161–178. [Google Scholar] [CrossRef] [PubMed]
Summary Statistic | GI | GU | Overall |
---|---|---|---|
Full-text articles (N,%) | 127 (75.1) | 78 (46.2) | 169 |
Patient cohort size (median, range) | 156 (9–1499) | 158 (11–3243) | 168 (9–3243) |
RTOG reporting scale (N,%) | 58 (45.7) | 26 (33.3) | 68 (40.2) |
CTCAE reporting scale (N,%) | 53 (41.7) | 37 (47.4) | 68 (40.2) |
CFRT (N,%) | 85 (66.9) | 31 (39.7) | 123 (72.8) |
MHRT (N,%) | 13 (10.2) | 12 (15.4) | 34 (20.1) |
UHRT (N,%) | 7 (7.1) | 15 (19.2) | 21 (12.4) |
Univariate analysis available (N,%) | 104 (81.9) | 61 (78.2) | 139 (82.2) |
Multivariate analysis available (N,%) | 68 (53.5) | 41 (52.6) | 94 (55.6) |
Internal validation of model (N,%) | 29 (37.2) | 18 (23.1) | 40 (23.7) |
External validation of model (N,%) | 5 (6.4) | 1 (1.3) | 5 (3.0) |
Toxicity Outcome | Predictor Category | Predictor | Univariate Analysis (N) | Multivariate Analysis (N) |
---|---|---|---|---|
G1+ | Dosimetric | Rectal dose (V10–73; MHRT: Dmax; UHRT: V28) | 4 | 1 |
Principle component analysis features | 1 | 1 | ||
Patient | Age | 1 | ||
Rectal volume | 1 | 1 | ||
Hemorrhoids | 1 | 1 | ||
GI co-morbidities | 1 | 1 | ||
Alcohol consumption | 1 | |||
Microbial alpha diversity/elevated MCPI | 1 | |||
Clinical | TURP | 1 | ||
Previous abdominal/pelvic surgery | 1 | |||
Hormone therapy | 1 | |||
G2 | Dosimetric | Rectal dose (V37–70, Dmean) | 2 | |
Genetic | Polymorphisms (XRCC3 rs1799794 SNP) | 1 | 1 | |
G2+ | Patient | History of diabetes mellitus | 1 | |
Clinical | Use of anti-coagulants | 1 | ||
Statin medication (MHRT only) | 1 | |||
ADT (MHRT only) | 1 | |||
Dosimetric | Rectal dose (V70, D2cc; MHRT: V50–65; UHRT: V10–30, D25.3/50/10cc, Dmean) | 4 | 2 | |
Dose region (V65) | 1 | |||
G1+ rectal toxicity | Clinical | History of diabetes mellitus | 1 | |
ADT | 1 | 1 | ||
Treatment | Pelvic nodes irradiation | 1 | 1 | |
Dosimetric | Rectal dose (V60–70, Dmean; MHRT: D50 and V70) | 3 | 1 | |
G2 rectal toxicity | Dosimetric | Rectal dose (V60–70; MHRT: V53) | 1 | 1 |
Treatment | Hormone therapy | 1 | ||
G2+ rectal toxicity | Dosimetric | Rectum/rectal subregion dose (V70, Dmean; MHRT: V67–68) | 5 | 2 |
Structural geometry (rectum cross-sectional area/surface area/extension, PTV volume/height) | 1 | |||
Clinical | Use of anti-coagulants | 1 | 1 | |
ADT | 1 | |||
Treatment | Pelvic nodes irradiation | 1 | ||
Patient | Hemorrhoids | 1 | ||
Rectal bleeding | Patient | Hemorrhoids | 1 | 3 |
Dosimetric | Rectal dose (Dmean) | 2 | ||
Rectal dose (MHRT: V51–65) (MHRT only) | 1 | |||
Diarrhea | Dosimetric | Rectal dose (V60–75) | 1 | |
Patient | History of diabetes mellitus | 1 | 1 | |
Proctitis | Patient | Biomarkers (pro-hepcidin/IL-6/TNF/hemoglobin/ferritin/transferrin) | 1 | |
Clinical | High dose amifostine (MHRT only) | 1 | ||
Incontinence | Patient | Age | 1 | |
Rectal urgency | Dosimetric | Rectal dose (V70) | 1 | |
Treatment | NHT | 1 | ||
Patient | Hemorrhoids | 1 | ||
Tenesmus | Treatment | Irradiation of seminal vesicle | 1 | 1 |
Dosimetric | Rectal dose (Dmean) | 1 | ||
Complication requiring drugs | Treatment | Irradiation of seminal vesicle | 1 | |
Disease | Target volume | 1 | 1 | |
Dosimetric | Rectal dose (Dmean) | 1 | 1 | |
Stool frequency | Treatment | ADT | 1 | 1 |
Irradiation of seminal vesicle | 1 | |||
Painful bowel movement | Patient | Hemorrhoids | 1 | |
Bowel habits | Dosimetric | Rectal dose (V70) | 1 | |
Patient | Hemorrhoids | 1 |
Toxicity Outcome | Predictor Category | Predictor | Univariate Analysis (N) | Multivariate Analysis (N) |
---|---|---|---|---|
G1+ | Dosimetric | Rectal dose (V35–70; MHRT: V70) | 3 | 3 |
Prostate subregion dose (Dmean) | 1 | 1 | ||
Clinical | Use of anti-hypertensives/anti-coagulants | 2 | 1 | |
Patient | Acute GI toxicity | 2 | 1 | |
Rectal volume | 1 | |||
Age (MHRT only) | 1 | |||
Pretreatment GI symptoms (MHRT only) | 1 | |||
G2+ | Dosimetric | Rectum/rectal subregion dose (V45–70, Dmean/0.03/50%; MHRT: V40–66, D0.1/1cc, Dmax; UHRT: D0.1/0.5/1cc) | 9 | 5 |
Principal component analysis features (MHRT only) | 1 | |||
Patient | Age | 2 | 3 | |
Age-comorbidity score | 1 | |||
Caucasian race | 1 | |||
History of myocardial infarction/congestive heart failure | 1 | 1 | ||
Acute/baseline GI toxicity | 2 | 2 | ||
Hemorrhoids | 1 | |||
Rectum volume | 1 | |||
Prostate/prostate subregion dose (D98, isotropic expansion) | 1 | 1 | ||
G2+ acute GI toxicity (MHRT and UHRT only) | 3 | 1 | ||
Acute bowel symptoms (UHRT only) | 1 | |||
Baseline EPIC-26 bowel sub-domain score (UHRT only) | 1 | |||
Clinical | Use of anti-coagulants/anti-aggregants | 1 | 1 | |
ADT | 1 | 1 | ||
Treatment | RT field (prostate + pelvic field vs. prostate only) | 1 | ||
RT technique (3DCRT vs. IMRT) | 2 | 1 | ||
Evening RT timing | 1 | 1 | ||
Disease | Clinical staging | 1 | ||
G3+ | Patient | Acute G2+ GI toxicity | 2 | |
Age | 1 | 1 | ||
History of myocardial infarction/congestive heart failure | 1 | 1 | ||
Increasing CCMI | 1 | |||
Age-comorbidity score | 1 | |||
Treatment | RT technique (IG-3DCRT/IG-IMRT vs. 3DCRT) | 1 | ||
G1 rectal bleeding | Dosimetric | Rectal wall dose (V6) | 1 | |
G1+ rectal bleeding | Dosimetric | Rectum/rectal subregion dose (V40–75, Dmean, length-based integral dose; MHRT: V51–55) | 8 | 5 |
Principal component analysis features | 1 | 1 | ||
Damage integrated over rectal surface (cm) | 1 | |||
Patient | Hemorrhoids | 1 | ||
Structural geometry (volume of rectum/PTV) | 2 | |||
History of cardiovascular disease | 1 | 1 | ||
Smoking | 1 | |||
Clinical | Previous abdominal surgery | 1 | 1 | |
G2 rectal bleeding | Dosimetric | Rectal dose (V90, EUD, AUC-DVH 50/80/90) | 2 | 2 |
Patient | Hemorrhoids | 1 | 1 | |
Rectum size | 1 | |||
Clinical | Use of anti-coagulants/ADT | 1 | 1 | |
Previous abdominal surgery | 1 | 1 | ||
G2+ rectal bleeding | Dosimetric | Rectum/rectal subregion dose (V30–75, Dmean, Dmax, EUD; MHRT: V30–90; UHRT: V38–40) | 13 | 5 |
ICA parameter | 1 | |||
Clinical | Previous abdominal/pelvic surgery | 2 | 2 | |
Use of anti-coagulants/anti-aggregants (CFRT and UHRT) | 4 | 2 | ||
Patient | Structural geometry (volume of rectum/rectal wall, length of rectum/PTV, rectal area) | 2 | ||
Age | 2 | 2 | ||
Acute rectal toxicity | 2 | 1 | ||
History of diabetes mellitus (CFRT and MHRT) | 3 | 3 | ||
Platelet count | 1 | 1 | ||
Hemorrhoids (CFRT and UHRT) | 1 | |||
Disease | Risk group | 1 | ||
Clinical staging (CFRT and MHRT) | 3 | 2 | ||
Initial PSA | 1 | |||
Treatment volume (UHRT only) | 1 | |||
Genetic | MicroRNAs (Ku80, miR-99a, miR-147, miR-508, miR-199b) | 1 | 1 | |
Treatment | Prescription dose (CFRT and UHRT) | 2 | ||
PTV margins (UHRT only) | 1 | |||
RT beam geometry | 1 | |||
Fiducial marker | 1 | |||
G3+ rectal bleeding | Clinical | Previous abdominal/pelvic surgery | 1 | 2 |
G1+ rectal toxicity | Dosimetric | Rectum/rectal ring/anal wall dose (V40–70; UHRT: V35–40, D1/2/5cc, Dmax, Dmean) | 3 | 2 |
Genetic | Micronuclei indices | 1 | ||
G1–2 rectal toxicity | Dosimetric | Rectal dose (V40–60) | 1 | |
G2 rectal toxicity | Dosimetric | Rectal dose (V70–75, Dmax) | 3 | 1 |
Treatment | Prescribed dose | 1 | ||
G2+ rectal toxicity | Dosimetric | Rectum/rectal subregion dose (V50–75, Dmean, Dmedian, EUD; UHRT: V35–40, D1/2/5cc, Dmax, Dmean) | 7 | 4 |
Clinical | Use of anti-coagulants/anti-aggregants | 1 | ||
Patient | Acute rectal toxicity/diarrhea/tenesmus/any rectal symptoms | 1 | 1 | |
Rectum volume | 1 | |||
Caucasian race | 1 | |||
History of cardiovascular disease | 1 | |||
Genetic | Polymorphism (VEGF -7C > T, ATTGT haplotype) | 1 | 1 | |
Disease | Tumor risk group | 1 | ||
Treatment | Prescribed dose/dose per fraction | 1 | 1 | |
RT technique (3DCRT vs. IMRT) | 1 | 1 | ||
Fecal incontinence | Dosimetric | Rectal dose (V15–75; MHRT: Dmean) | 5 | 3 |
Dose of anal sphincters, iliococcygeal muscle, levator ani muscle (V15–55) | 1 | 1 | ||
Patient | Acute G2+ fecal incontinence | 1 | 3 | |
Previous bowel symptoms | 1 | |||
History of diabetes mellitus | 1 | 1 | ||
Previous diseases of the colon (CHRT and MHRT) | 2 | |||
Hemorrhoids | 1 | |||
Clinical | Previous abdominal/pelvic surgery (CFRT and MHRT) | 3 | 3 | |
Use of anti-hypertensive | 1 | |||
Stool frequency | Dosimetric | Rectal dose (V60–65, EUD) | 1 | 1 |
Dose of iliococcygeal muscle/puborectalis muscle/levator ani muscle (V40–45, Dmean, EUD) | 1 | 1 | ||
Patient | Age | 1 | 1 | |
Acute complaint | 1 | 1 | ||
Presence of cardiovascular diseases | 1 | 1 | ||
Baseline stool frequency | 1 | 1 | ||
G2+ acute GI toxicity | 1 | |||
Treatment | ADT before RT | 1 | ||
Clinical | Previous abdominal/pelvic surgery | 1 | ||
Tenesmus | Dosimetric | Rectum/rectal subregion dose (V50–65; MHRT: V51–59) | 1 | 1 |
Patient | Rectum volume | 1 | ||
Clinical | Previous abdominal/pelvic surgery | 1 | ||
Abdominal pain | Dosimetric | Rectal dose (V50–70; MHRT: V43) | 1 | 1 |
Patient | Chronic renal failure | 1 | ||
Treatment | RT technique (3DCRT vs. IMRT) | 1 | ||
Clinical | Previous abdominal/pelvic surgery | 1 | ||
Proctitis | Dosimetric | Rectum/rectal subregion dose (V50–70, EUD; MHRT: V59) | 4 | 1 |
Patient | Acute rectal toxicities/endoscopic proctitis/clinical proctitis | 2 | 2 | |
Age | 1 | 1 | ||
Treatment | RT planning constraints 3rd criteria | 1 | ||
RT technique | 1 | |||
Diarrhea | Dosimetric | Rectal dose (V50) | 1 | |
Treatment | RT technique (IGRT vs. Non-IGRT) | 1 | 1 | |
Bowel/rectal urgency | Dosimetric | Rectal dose/rectal subregion dose (V50–75; MHRT: V59) | 1 | 1 |
Patient | Chronic renal failure | 1 | ||
Acute complaint | 1 | |||
Hemorrhoids | 1 | |||
Treatment | RT technique (IGRT vs. Non-IGRT) | 1 | 1 | |
Mucosal loss | Dosimetric | Rectal dose (V60–65; MHRT: V51–59) | 1 | |
Patient | Acute complaint | 1 | ||
Underwear soil | Dosimetric | Rectal subregion dose (V75) | 1 | |
Patient | Acute complaint | 1 | 1 | |
Smoking | 1 | |||
Rectal pain | Treatment | RT technique (IGRT vs. Non-IGRT) | 1 | 1 |
Patient | G2+ acute GI toxicity | 1 | 1 | |
Dosimetric | Rectal dose (EUD) | 1 | ||
Loose stools | Dosimetric | Rectum/rectal subregion dose (DSH V23; MHRT: V43–59) | 2 | 1 |
Involuntary gas discharge/strain upon defecation | Dosimetric | Rectal subregion dose (V50–75) | 1 | |
Bowel distress | Dosimetric | Rectal dose (V59) (MHRT only) | 1 | |
Change in bowel habits | Treatment | RT technique (IGRT vs. Non-IGRT) | 1 | 1 |
Spontaneous gaps and breaks | 1 | |||
Patient | Chronic renal failure | 1 | ||
Hemorrhoids | 1 | |||
% of early apoptotic cells | 1 | 1 | ||
Higher spontaneous chromatid aberration yield | 1 | |||
Dosimetric | Rectal dose (V50) | 1 |
Toxicity Outcome | Predictor Category | Predictor | Univariate Analysis (N) | Multivariate Analysis (N) |
---|---|---|---|---|
Increase in GU toxicity | Patient | IPSS pretreatment score (MHRT only) | 1 | |
G1+ | Dosimetric | Bladder dose (V14–27; MHRT: V40–50) | 1 | 2 |
Clinical | Pre-treatment/mid-course TGF-β1 concentration | 1 | ||
G1–2 | Treatment | Irradiation of seminal vesicle/pelvic LNs (MHRT only) | 1 | |
G2 | Patient | Age (UHRT only) | 1 | |
Baseline GU toxicity (UHRT only) | 1 | 1 | ||
Treatment | Dose escalation (UHRT only) | 1 | ||
Disease | Risk group (UHRT only) | 1 | ||
Dosimetric | Bladder Dmean (UHRT only) | 1 | 1 | |
G2+ | Patient | Smoking habit | 2 | 1 |
Structural geometry (volume of bladder/PTV) | 2 | |||
Baseline IPSS/IPSS-QoL (UHRT only) | 3 | 1 | ||
Bladder volume (UHRT only) | 1 | |||
Age (UHRT only) | 1 | 1 | ||
Dosimetric | Bladder dose (V80; UHRT: EQD2 = 10, MUDM) | 2 | 1 | |
Radiomic features | CBCT features (bladder): NGTDM coarseness/strength, GLSZM LZHGE | 1 | ||
GLRLM-GLN, GLSZM-ZSN, GLSZM-ZSV, global kurtosis (MHRT only) | 1 | |||
Clinical | Use of anti-aggregants/anti-coagulants (MHRT only) | 1 | ||
Disease | Prostate volume (MHRT and UHRT) | 3 | 1 | |
G2+ urinary toxicity | Dosimetric | Bladder dose (V52–70) (MHRT only) | 1 | |
Dysuria | Patient | Age | 2 | |
Clinical | Use of anti-hypertensives | 1 | ||
Disease | Prostate volume | 1 | ||
Urinary frequency | Clinical | TURP | 1 | |
Baseline retention/frequency | 1 | |||
Urinary retention | Dosimetric | Bladder/bladder subregion dose (V56–71, Dmean) | 2 | |
Urethral dose (V74) | 1 | |||
Clinical | TURP | 1 | ||
Patient | Baseline retention | 1 | ||
Hematuria | Clinical | TURP | 2 | |
Previous abdominal surgery | 1 | |||
Use of anti-coagulants | 1 | |||
Incontinence | Dosimetric | Bladder/bladder subregion dose (V71, Dmean) | 1 | |
Urethral dose (V71) | 1 | |||
IPSS total score + 10 OR start alpha blockers | Dosimetric | Bladder/bladder wall dose (V10–35, D5cc, Dmean) (UHRT only) | 1 | 1 |
IPSS 15+ | Patient | Baseline IPSS (MHRT only) | 1 | |
Smoking (MHRT only) | 1 | |||
Dosimetric | Bladder subregion dose (V50–70) (MHRT only) | 1 | 1 |
Toxicity Outcome | Predictor Category | Predictor | Univariate Analysis (N) | Multivariate Analysis (N) |
---|---|---|---|---|
G1+ | Dosimetric | Bladder surface/bladder wall/bladder subregion dose (V80; UHRT: V35–40, Dmax, D1/2/5cc) | 4 | 3 |
Patient | Acute urinary toxicity | 2 | ||
Baseline IPSS | 1 | 2 | ||
Clinical | Use of anti-hypertensives | 1 | ||
Disease | Prostate/PTV volume | 1 | ||
Treatment | RT technique | 1 | ||
G2 | Dosimetric | Bladder dose (V60–75) (MHRT only) | 1 | 1 |
Clinical | Pre-treatment TURP (MHRT only) | 1 | ||
Patient | Pretreatment GU symptoms (MHRT only) | 1 | ||
Acute GU toxicity (MHRT only) | 1 | |||
G2+ | Patient | Baseline/acute urinary/hematologic/rectal toxicity (EPIC-26, IPSS) (CFRT and UHRT) | 6 | 4 |
Age (CFRT and MHRT) | 2 | 2 | ||
History of diabetes/smoking | 3 | 1 | ||
Dosimetric | Bladder/bladder wall dose (V55–80, Dmedian, EUD; MHRT: V10; UHRT: V28–40, D0.5/1/5cc, Dmax) | 6 | 3 | |
Urethral dose (V42–44, Dmax, MUDM) (UHRT only) | 3 | 1 | ||
Dose region volume (V73) | 1 | |||
Prostate dose (V46–50) (UHRT only) | 1 | 1 | ||
Homogeneity index V120% (UHRT only) | 1 | |||
Prescription isodose line (UHRT only) | 1 | |||
Clinical | TURP | 3 | 1 | |
ADT | 1 | |||
Disease | Clinical staging | 1 | ||
Prostate/PTV volume (CFRT and UHRT) | 5 | 4 | ||
Treatment | RT field size | 2 | 1 | |
Prescription dose (70.2 Gy vs. 79.2 Gy) | 1 | |||
RT technique (IMRT vs. 3DCRT) | 1 | |||
SBRT modality (UHRT only) | 1 | |||
Fiducial use (UHRT only) | 1 | |||
Treatment duration (UHRT only) | 1 | |||
Genetic | mirSNPs (CFRT and MHRT) | 1 | ||
G3+ | Patient | Age | 1 | |
Acute urinary/hematologic toxicity | 1 | 1 | ||
Disease | Prostate/PTV volume (CFRT and UHRT) | 2 | 1 | |
Dosimetric | Bladder/bladder wall dose (V10–82) | 1 | 1 | |
Urethral dose (MUDM) (UHRT only) | 1 | 1 | ||
G2+ urinary toxicity | Dosimetric | Bladder/bladder wall dose (V17–57) (MHRT only) | 1 | |
Dysuria | Dosimetric | Bladder/bladder subregion dose (Dmean, V64–68) | 4 | |
Urethral dose (V70) | 1 | |||
Urinary retention | Dosimetric | Bladder/bladder wall/bladder subregion dose (V10–82, Demean) | 3 | |
Urethral dose (V67) | 1 | |||
Patient | Structural geometry (volume of bladder/bladder wall/prostate/PTV, bladder length) | 2 | ||
Baseline retention | 1 | |||
Age | 1 | |||
Acute urinary/hematologic/rectal toxicity | 1 | |||
Clinical | Previous abdominal surgery | 1 | ||
Use of anti-hypertensives | 1 | |||
Hematuria | Dosimetric | Bladder/bladder wall/bladder neck/bladder subregion dose (V48–75, Dmean) | 5 | 1 |
Urethral dose (V71) | 1 | |||
Disease | Clinical staging | 1 | ||
Incontinence | Patient | Age | 1 | |
TURP | 1 | |||
History of diabetes mellitus | 1 | |||
Clinical | Use of anti-coagulants | 1 | ||
Dosimetric | Bladder subregion dose | 1 | ||
Urinary frequency | Patient | Age | 1 | |
History of diabetes | 1 | |||
Baseline frequency | 1 | |||
Use of anti-hypertensives/ADT | 1 | |||
Bladder dose (R39) | 1 | |||
High dose amifostine (MHRT only) | 1 | |||
Cytitis | Radiomic features | S5.0SumVarnc, S2.2SumVarnc, S1.0AngScMom, S0.4SumAverg, S5._5InvDfMom, WavEnHL_sN3, S4._4Contrast, S0.4InvDfMom, S4._4DifVarnc, S5._5AngScMom, S5._5DifEntrp, S3._3DifEntrp, S4._4SumOfSqs, S3.3SumVarnc, Perc.01, S4.4SumAverg, S3.3Correlat, S3.3SumAverg (MHRT only) | 1 | |
Late urinary flare | Patient | Age (UHRT only) | 1 | 1 |
QOL reduction in urinary irritation | Dosimetric | Bladder dose (V85–100, D2/10cc, Dmean) (UHRT only) | 1 | |
Erectile dysfunction | Treatment | Hormonal therapy scheme (NHT+HT vs. NHT only) | 1 | |
RT technique (IMRT vs. 3DCRT) | 1 | |||
IPSS ≥ 15 | Clinical | Use of anti-hypertensives (MHRT only) | 1 | |
Patient | Baseline IPSS (MHRT only) | 1 | ||
Dosimetric | Bladder dose (surface V80) (MHRT only) | 1 |
Fractionation | Toxicity Timeframe | Toxicity Outcome | Model Type | Model Features | Testing AUC |
---|---|---|---|---|---|
CFRT | Acute | G1+ GI toxicity | Stacking algorithm and elastic net (clinical model) | Rectal wall: Min/max/modal dose, V60 | 0.66 |
Stacking algorithm and elastic net (clinical-radiomics model) | CT features (rectal wall): Shape-Elongation, first order, GLRLM, modal dose | 0.65 | |||
Stacking algorithm and elastic net (radiomics only model) | CT features (rectal wall): GLDM, GLSZM | 0.71 | |||
Late | G2 rectal bleeding | ANN | EUD, abdominal surgery, hemorrhoids, anti-coagulants, ADT | 0.714 | |
Acute | G1+ GU toxicity | Stacking algorithm and elastic net (clinical model) | PTV D95, bladder volume, mean/median dose, D60/55 | 0.67 | |
Stacking algorithm and elastic net (clinical-radiomics model) | CT features (bladder wall): Shape, first order, GLCM, median dose, D40, V45 | 0.77 | |||
Stacking algorithm and elastic net (radiomics only model) | CT features (bladder wall): GLDM, GLRLM, GLSZM | 0.71 | |||
Acute | G1+ cystitis | RF | Stage, grade, MRI features (bladder wall): RLN, strength, LAE, 10 percentiles, IDMN, run percentage, run entropy, GLN, correlation, gray level variance | 0.95 | |
MHRT | Acute | G2–3 GI toxicity | ANN | Age, risk group, monotherapy or not, prescription volume, RT days, rectum D30%/D60%, volume of rectum/PTV | AUC N/A (MSE = 1.62) |
Acute | G2–3 GU toxicity | ANN | Age, risk group, monotherapy or not, prescription volume, RT days, rectum D30%/D60%, bladder D50%, volume of rectum/PTV/bladder | AUC N/A (MSE = 1.22) | |
UHRT | Acute | G2+ GU toxicity | IGA | CTV/urethra/bladder wall/rectal wall/rectum/trigone dose V1.2–44.1 | 0.57 |
CFRT and MHRT | Acute | G2–4 GI and GU toxicity | ANN | Age, risk group, TURP, HT, prescription, field, RT days, IGRT, bladder D50%, volume of bladder/rectum/PTV | 0.697 |
SVM | Age, risk group, TURP, HT, prescription, field, RT days, IGRT, rectum D30%/D60%, bladder D50%, volume of bladder/rectum/PTV | 0.717 | |||
CFRT and MHRT | Acute | G2+ GI toxicity | RF | Rectum Dmax/Dmean/V35–65/D70–76 Gy, prostate weight, rectal volume | 0.95 |
Late | G1+ late fecal incontinence | ANN | Rectum Dmean, abdominal surgery, anti-coagulants, anti-hypertensives, HT | 0.77 | |
LASSO | Antihypertensives, abdominal surgery, colon diseases | 0.71 |
Category | Item |
---|---|
Clinical Characteristics | Age (years) Weight (kg) BMI PSA (ng/dL) AJCC clinical TNM stage Diabetes (yes/no) Hypertension (yes/no) Hypercholesterolemia (yes/no) Underlying cardiovascular adverse event/disease (yes/no) Smoking (pack-year) Drinking (unit) Baseline GU toxicity (CTCAE v5 or above) Baseline GI toxicity (CTCAE v5 or above) Prostate volume (cm3) |
Treatment | History of abdominal/pelvic surgery (yes/no) History of transurethral resection of prostate (TURP) (yes/no) RT photon energy RT fractional dose (Gy) RT total dose (Gy) RT duration (days) and schedule (daily, every other day) RT techniques (IMRT, IGRT, LINAC, TOMO, CK, MR-LINAC, US-guidance) RT treatment setup (supine/prone, immobilization device) RT prescription point (VxDx) RT treatment positioning tolerance (directions, mm) Use of hydrogel (yes/no) Use of MRI for target delineation (yes/no) Use of MRI for OAR delineation (yes/no) Use of MRI for treatment position verification (yes/no) Adaptive treatment (online, offline, no) CTV extent (whole prostate, proximal SV, whole SV, PLNs) OAR contouring definition (superior, interior, anterior, posterior, and lateral borders) RT dose calculation algorithm |
Medication | ADT (drug type) ADT scheme (neoadjuvant and/or concurrent and/or adjuvant) ADT duration (months) Anti-coagulant (yes/no) Antiaggregant (yes/no) Any other medication for underlying diseases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ching, J.C.F.; Liu, K.C.K.; Pang, I.K.H.; Nicol, A.J.; Leung, V.W.S.; Cai, J.; Lee, S.W.Y. Predictive Factors for Gastrointestinal and Genitourinary Toxicities in Prostate Cancer External Beam Radiotherapy: A Scoping Review. Diagnostics 2025, 15, 1331. https://doi.org/10.3390/diagnostics15111331
Ching JCF, Liu KCK, Pang IKH, Nicol AJ, Leung VWS, Cai J, Lee SWY. Predictive Factors for Gastrointestinal and Genitourinary Toxicities in Prostate Cancer External Beam Radiotherapy: A Scoping Review. Diagnostics. 2025; 15(11):1331. https://doi.org/10.3390/diagnostics15111331
Chicago/Turabian StyleChing, Jerry C. F., Kelvin C. K. Liu, Isaac K. H. Pang, Alexander J. Nicol, Vincent W. S. Leung, Jing Cai, and Shara W. Y. Lee. 2025. "Predictive Factors for Gastrointestinal and Genitourinary Toxicities in Prostate Cancer External Beam Radiotherapy: A Scoping Review" Diagnostics 15, no. 11: 1331. https://doi.org/10.3390/diagnostics15111331
APA StyleChing, J. C. F., Liu, K. C. K., Pang, I. K. H., Nicol, A. J., Leung, V. W. S., Cai, J., & Lee, S. W. Y. (2025). Predictive Factors for Gastrointestinal and Genitourinary Toxicities in Prostate Cancer External Beam Radiotherapy: A Scoping Review. Diagnostics, 15(11), 1331. https://doi.org/10.3390/diagnostics15111331