PEBP1 and 15-LO-1 in Asthma: Biomarker Potential for Diagnosis and Severity Stratification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
- The inclusion criteria were as follows:
- -
- Confirmed asthmatics aged 18–65 years, diagnosed according to the Global Initiative for Asthma (GINA) 2022 guidelines [1].
- The exclusion criteria were as follows:
- -
- Patients with conditions like cancer, renal diseases, hepatic diseases, and neurogenerative disorders;
- -
- Patients aged below 18 years or above 65 years;
- -
- Pregnant individuals;
- -
- Patients who did not provide informed consent.
2.3. Recruitment and Diagnostic Criteria
2.4. Control Group
2.5. Sample Collection and Processing
2.6. Enzyme-Linked Immunosorbent Assay
2.7. Statistical Analysis
3. Results
4. Discussion
Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2020, p. 225. Available online: www.ginasthma.org (accessed on 26 November 2020).
- To, T.; Stanojevic, S.; Moores, G.; Gershon, A.S.; Bateman, E.D.; Cruz, A.A.; Boulet, L.-P. Global Asthma Prevalence in Adults: Findings from the Cross-Sectional World Health Survey. BMC Public Health 2012, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Jindal, S.K.; Aggarwal, A.N.; Gupta, D.; Agarwal, R.; Kumar, R.; Kaur, T.; Chaudhry, K.; Shah, B. Indian Study on Epidemiology of Asthma, Respiratory Symptoms and Chronic Bronchitis in Adults (INSEARCH). Int. J. Tuberc. Lung Dis. 2012, 16, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-J.; Kong, X.-M.; Zhao, Y.; Li, X.-Y.; Guo, Z.-L.; Zhang, Y.-J.; Cheng, Z.-H. Global, Regional and National Epidemiology of Allergic Disorders in Children from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. BMJ Open 2024, 14, e080612. [Google Scholar] [CrossRef] [PubMed]
- Momtazmanesh, S.; Moghaddam, S.S.; Ghamari, S.-H.; Rad, E.M.; Rezaei, N.; Shobeiri, P.; Aali, A.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z.; Abdelmasseh, M.; et al. Global Burden of Chronic Respiratory Diseases and Risk Factors, 1990–2019: An Update from the Global Burden of Disease Study 2019. eClinicalMedicine 2023, 59, 101936. [Google Scholar] [CrossRef]
- Singh, S.; Salvi, S.; Mangal, D.K.; Singh, M.; Awasthi, S.; Mahesh, P.A.; Kabra, S.K.; Mohammed, S.; Sukumaran, T.U.; Ghoshal, A.G.; et al. Prevalence, Time Trends and Treatment Practices of Asthma in India: The Global Asthma Network Study. ERJ Open Res. 2022, 8, 00528–02021. [Google Scholar] [CrossRef]
- Pu, F.; Chen, F.; Zhang, Z.; Shi, D.; Zhong, B.; Lv, X.; Tucker, A.B.; Fan, J.; Li, A.J.; Qin, K.; et al. Ferroptosis as a Novel Form of Regulated Cell Death: Implications in the Pathogenesis, Oncometabolism and Treatment of Human Cancer. Genes Dis. 2022, 9, 347–357. [Google Scholar] [CrossRef]
- Zhao, J.; Dar, H.H.; Deng, Y.; St. Croix, C.M.; Li, Z.; Minami, Y.; Shrivastava, I.H.; Tyurina, Y.Y.; Etling, E.; Rosenbaum, J.C.; et al. PEBP1 Acts as a Rheostat between Prosurvival Autophagy and Ferroptotic Death in Asthmatic Epithelial Cells. Proc. Natl. Acad. Sci. USA 2020, 117, 14376–14385. [Google Scholar] [CrossRef]
- Nagasaki, T.; Schuyler, A.J.; Zhao, J.; Samovich, S.N.; Yamada, K.; Deng, Y.; Ginebaugh, S.P.; Christenson, S.A.; Woodruff, P.G.; Fahy, J.V.; et al. 15LO1 Dictates Glutathione Redox Changes in Asthmatic Airway Epithelium to Worsen Type 2 Inflammation. J. Clin. Investig. 2022, 132, e151685. [Google Scholar] [CrossRef]
- Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016, 26, 165–176. [Google Scholar] [CrossRef]
- Jacobsen, E.A.; Helmers, R.A.; Lee, J.J.; Lee, N.A. The Expanding Role(s) of Eosinophils in Health and Disease. Blood 2012, 120, 3882–3890. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. The Immunology of Asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Licona-Limón, P.; Kim, L.K.; Palm, N.W.; Flavell, R.A. TH2, Allergy and Group 2 Innate Lymphoid Cells. Nat. Immunol. 2013, 14, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Georas, S.N.; Donohue, P.; Connolly, M.; Wechsler, M.E. JAK Inhibitors for Asthma. J. Allergy Clin. Immunol. 2021, 148, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.H. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics. Pharmaceuticals 2011, 4, 429–456. [Google Scholar] [CrossRef]
- Mabalirajan, U.; Rehman, R.; Ahmad, T.; Kumar, S.; Singh, S.; Leishangthem, G.D.; Aich, J.; Kumar, M.; Khanna, K.; Singh, V.P.; et al. Linoleic Acid Metabolite Drives Severe Asthma by Causing Airway Epithelial Injury. Sci. Rep. 2013, 3, 1349. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, H.; Balzar, S.; Trudeau, J.B.; Wenzel, S.E. MAPK Regulation of IL-4/IL-13 Receptors Contributes to the Synergistic Increase in CCL11/Eotaxin-1 in Response to TGF-Β1 and IL-13 in Human Airway Fibroblasts. J. Immunol. 2012, 188, 6046–6054. [Google Scholar] [CrossRef]
- Kühn, H.; O’Donnell, V.B. Inflammation and Immune Regulation by 12/15-Lipoxygenases. Prog. Lipid Res. 2006, 45, 334–356. [Google Scholar] [CrossRef]
- Zhao, J.; O’Donnell, V.B.; Balzar, S.; St. Croix, C.; Trudeau, J.; Wenzel, S.E. 15-Lipoxygenase 1 Interacts with PEBP1 To Regulate MEK/ERK Pathway in Asthmatic Airway Epithelial Cells. Am. J. Respir. Crit. Care Med. 2011, 183, A2823. [Google Scholar]
- Wenzel, S.E.; Tyurina, Y.Y.; Zhao, J.; St Croix, C.M.; Dar, H.H.; Mao, G.; Tyurin, V.A.; Anthonymuthu, T.S.; Kapralov, A.A.; Amoscato, A.A.; et al. PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell 2017, 171, 628–641.e26. [Google Scholar] [CrossRef]
- Manivarma, T.; Kapralov, A.A.; Samovich, S.N.; Tyurina, Y.Y.; Tyurin, V.A.; VanDemark, A.P.; Nowak, W.; Bayır, H.; Bahar, I.; Kagan, V.E.; et al. Membrane Regulation of 15LOX-1/PEBP1 Complex Prompts the Generation of Ferroptotic Signals, Oxygenated PEs. Free Radic. Biol. Med. 2023, 208, 458–467. [Google Scholar] [CrossRef]
- Boyce, J.A. The Role of 15 Lipoxygenase 1 in Asthma Comes into Focus. J. Clin. Investig. 2022, 132, e155884. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Gon, Y.; Takeshita, I.; Maruoka, S.; Horie, T. IL-4 and IL-13 Induce Myofibroblastic Phenotype of Human Lung Fibroblasts through c-Jun NH2-Terminal Kinase–Dependent Pathway. J. Allergy Clin. Immunol. 2001, 107, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Deng, H.; Hu, S.; Zhang, Y.; Zheng, L.; Liu, M.; Chen, Y.; Wei, J.; Yang, H.; Lv, X. Role of Ferroptosis in Lung Diseases. J. Inflamm. Res. 2021, 14, 2079–2090. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Hu, B.; Huang, M.; Zhao, S.; Wu, X.; Zhang, M.; Xie, Z. Phosphatidylethanolamine-Binding Protein 1 (PEBP1) Mediates the Regulatory Role of microRNAs (miRNAs)-205-5p in Degranulation and Histamine Release. Bioengineered 2022, 13, 13341–13351. [Google Scholar] [CrossRef]
- Chen, T.; Ding, L.; Zhao, M.; Song, S.; Hou, J.; Li, X.; Li, M.; Yin, K.; Li, X.; Wang, Z. Recent Advances in the Potential Effects of Natural Products from Traditional Chinese Medicine against Respiratory Diseases Targeting Ferroptosis. Chin. Med. 2024, 19, 49. [Google Scholar] [CrossRef]
- Ma, T.-L.; Zhou, Y.; Wang, C.; Wang, L.; Chen, J.-X.; Yang, H.-H.; Zhang, C.-Y.; Zhou, Y.; Guan, C.-X. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid. Med. Cell. Longev. 2021, 2021, 1098970. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Khajotia, R. Classifying Asthma Severity and Treatment Determinants: National Guidelines Revisited. Malays. Fam. Physician Off. J. Acad. Fam. Physicians Malays. 2008, 3, 131–136. [Google Scholar]
- Patanè, G.T.; Putaggio, S.; Tellone, E.; Barreca, D.; Ficarra, S.; Maffei, C.; Calderaro, A.; Laganà, G. Ferroptosis: Emerging Role in Diseases and Potential Implication of Bioactive Compounds. Int. J. Mol. Sci. 2023, 24, 17279. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular Mechanisms and Health Implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Fuseini, H.; Newcomb, D.C. Mechanisms Driving Gender Differences in Asthma. Curr. Allergy Asthma Rep. 2017, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; St. Croix, C.; Stolz, D.B.; Tyurina, Y.Y.; Tyurin, V.A.; Bradley, L.R.; Kapralov, A.A.; Deng, Y.; Zhou, X.; Wei, Q.; et al. Compartmentalized Mitochondrial Ferroptosis Converges with Optineurin-Mediated Mitophagy to Impact Airway Epithelial Cell Phenotypes and Asthma Outcomes. Nat. Commun. 2024, 15, 5818. [Google Scholar] [CrossRef] [PubMed]
- Bradding, P.; Porsbjerg, C.; Côté, A.; Dahlén, S.-E.; Hallstrand, T.S.; Brightling, C.E. Airway Hyperresponsiveness in Asthma: The Role of the Epithelium. J. Allergy Clin. Immunol. 2024, 153, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Majellano, E.C.; Clark, V.L.; Winter, N.A.; Gibson, P.G.; McDonald, V.M. Approaches to the Assessment of Severe Asthma: Barriers and Strategies. J. Asthma Allergy 2019, 12, 235–251. [Google Scholar] [CrossRef]
- Kuruvilla, M.E.; Lee, F.E.-H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Agache, I.; Akdis, C.A. Endotypes of Allergic Diseases and Asthma: An Important Step in Building Blocks for the Future of Precision Medicine. Allergol. Int. 2016, 65, 243–252. [Google Scholar] [CrossRef]
- Zhao, J.; O’Donnell, V.B.; Balzar, S.; St Croix, C.M.; Trudeau, J.B.; Wenzel, S.E. 15-Lipoxygenase 1 Interacts with Phosphatidylethanolamine-Binding Protein to Regulate MAPK Signaling in Human Airway Epithelial Cells. Proc. Natl. Acad. Sci. USA 2011, 108, 14246–14251. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, H.; Zhang, J.; Liu, Y.; Zhong, W.; Chen, W.; Lu, Y.; Qiao, Y.; Zhao, H.; Meng, X.; et al. HDM Induce Airway Epithelial Cell Ferroptosis and Promote Inflammation by Activating Ferritinophagy in Asthma. FASEB J. 2022, 36, e22359. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Y.; Gu, J.; Chen, O.; Yue, S. Ferroptosis-Related Genes Are Involved in Asthma and Regulate the Immune Microenvironment. Front. Pharmacol. 2023, 14, 1087557. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity 2019, 50, 975–991. [Google Scholar] [CrossRef]
- Gomulka, K.; Liebhart, J.; Jaskula, E.; Lange, A.; Medrala, W. The –2549 –2567 Del18 Polymorphism in VEGF and Irreversible Bronchoconstriction in Asthmatics. J. Investig. Allergol. Clin. Immunol. 2019, 29, 431–435. [Google Scholar] [CrossRef]
- Çolak, Y.; Afzal, S.; Marott, J.L.; Vestbo, J.; Nordestgaard, B.G.; Lange, P. Type-2 Inflammation and Lung Function Decline in Chronic Airway Disease in the General Population. Thorax 2024, 79, 349–358. [Google Scholar] [CrossRef]
Asthmatics (N = 45) | Healthy Controls (N = 45) | p-Value | |
---|---|---|---|
Age in years | 45.0 (24.0–55.0) | 43.0 (32.7–51.3) | 0.89 * |
Gender | 0.20 † | ||
Male | 22.0 (48.9%) | 28.0 (62.2%) | |
Female | 23.0 (51.1%) | 17.0 (37.8%) | |
BMI (kg/m2) | 22.9 (21.6–28.0) | 24.3 (22.5–25.9) | 0.68 * |
Smoking | 0.50 † | ||
No | 39.0 (86.7%) | 41.0 (91.1%) | |
Yes | 6.0 (13.3%) | 4.0 (8.9%) | |
Allergy triggers | |||
Dust | 26.0 (57.8%) | 0.0 (0.0%) | |
Fumes and smoke | 2.0 (4.4%) | 0.0 (0.0%) | |
No identified triggers | 9.0 (20.0%) | 45.0 (100%) | |
Seasonal symptoms | 8.0 (17.8%) | 0.0 (0.0%) | |
Family history | <0.001 † | ||
No | 17.0 (37.8%) | 45.0 (100.0%) | |
Yes | 28.0 (62.2%) | 0.0 (0.0%) | |
PFT parameters | |||
FVC pre-percent predicted | 84.0 (68.0–90.3) | 88.0 (75.3–95.0) | 0.17 * |
FEV1 pre-percent predicted | 68.0 (56.0–80.3) | 86.0 (72.3–95.0) | <0.001 * |
Pre FEV1/FVC ratio | 0.7 (0.6–0.8) | 0.8 (0.8–0.8) | <0.001 * |
PEF pre % predicted | 58.0 (43.0–71.0) | 96.0 (86.7–113.3) | <0.001 * |
Levels of biomarkers | |||
PEBP1 (pg/mL) | 805.2 (662–984.0) | 2046.1 (1805.2–2884.8) | <0.001 * |
15-LO-1 (pg/mL) | 167.1 (144.7–203.2) | 121.1 (103.4–133.3) | <0.001 * |
15-LO-1/PEBP1 ratio | 0.76 (0.73–0.80) | 0.62 (0.59–0.65) | <0.001 * |
Eosinophil % | 6.7 (3.3–8.6) | 3.0 (1.6–5.0) | <0.001 * |
AEC | 640.0 (246.7–863.3) | 300.0 (233.3–400.0) | <0.001 * |
Moderate (N = 28) | Severe (N = 17) | Healthy Controls (N = 45) | p-Value | |
---|---|---|---|---|
Age in years | 27.0 (23.0–50.8) | 51.0 (45.7–60.0) | 43.0 (32.7–51.3) | <0.001 # |
Gender | 0.44 † | |||
Female | 14.0 (50.0%) | 9.0 (52.9%) | 17.0 (37.8%) | |
Male | 14.0 (50.0%) | 8.0 (47.1%) | 28.0 (62.2%) | |
BMI (kg/m2) | 22.5 (20.5–26.2) | 26.1 (22.1–29.2) | 24.3 (22.5–25.9) | 0.16 # |
Smoking | 0.19 † | |||
No | 26.0 (92.9%) | 13.0 (76.5%) | 41.0 (91.1%) | |
Yes | 2.0 (7.1%) | 4.0 (23.5%) | 4.0 (8.9%) | |
Duration of the disease | 7.8 (5.2–10.6) | 10.0 (6.0–14.7) | - | 0.039 * |
Allergy triggers | <0.001 † | |||
Dust | 14.0 (50.0%) | 12.0 (70.6%) | 4.0 (8.9%) | |
Fumes and smoke | 2.0 (7.1%) | 0.0 (0.0%) | 0.0 (0.0%) | |
No identified triggers | 5.0 (17.9%) | 4.0 (23.5%) | 41.0 (91.1%) | |
Seasonal symptoms | 7.0 (25.0%) | 1.0 (5.9%) | 0.0 (0.0%) | <0.001 † |
Family history | <0.001 † | |||
No | 7.0 (25.0%) | 10.0 (58.8%) | 45.0 (100.0%) | |
Yes | 21.0 (75.0%) | 7.0 (41.2%) | 0.0 (0.0%) | |
PFT parameters | ||||
FVC pre-percent predicted | 88.5 (82.8–94.6) | 61.0 (55.3–77.0) | 88.0 (75.3–95.0) | <0.001 # |
FEV1 pre-percent predicted | 74.0 (66.7–82.0) | 49.0 (38.3–60.7) | 86.0 (72.3–95.0) | <0.001 # |
Pre FEV1/FVC ratio | 0.7 (0.7–0.8) | 0.6 (0.5–0.7) | 0.8 (0.8–0.8) | <0.001 # |
FEF 25–75 pre % predicted | 40.0 (33.0–55.2) | 20.0 (13.0–33.3) | - | <0.001 * |
PEF pre % predicted | 64.5 (57.4–71.0) | 43.0 (37.3–49.7) | 96.0 (86.7–113.3) | <0.001 # |
Levels of biomarkers | ||||
PEBP1 (pg/mL) | 803.0 (614.3–1034.0) | 837.0 (762.0–964.3) | 2046.1 (1805.2–2884.8) | <0.001 # |
15-LO-1 (pg/mL) | 172.5 (144.6–204.7) | 162.8 (142.1–198.5) | 121.1 (103.4–133.3) | <0.001 # |
15-LO-1/PEBP1 Ratio | 0.76 (0.73–0.81) | 0.76 (0.73–0.78) | 0.62 (0.59–0.65) | <0.001 # |
Eosinophil % | 6.0 (3.8–8.4) | 7.0 (2.7–9.3) | 3.0 (1.6–5.0) | <0.001 # |
AEC | 620.0 (295.8–850.0) | 700.0 (180.0–1096.7) | 300.0 (233.3–400.0) | <0.001 # |
Dependent: Asthma | No | Yes | OR (Multivariable) | ||
---|---|---|---|---|---|
Model 1 | Model 2 | ||||
Age in years | Mean (SD) | 41.2 (16.0) | 41.6 (11.7) | 1.00 (0.94–1.06) | 0.97 (0.92–1.03) |
BMI (kg/m2) | Mean (SD) | 24.8 (5.4) | 24.1 (2.8) | 1.03 (0.86–1.22) | 0.90 (0.74–1.05) |
Smoking | No | 39 (48.8) | 41 (51.2) | - | - |
Yes | 6 (60.0) | 4 (40.0) | 0.29 (0.01–4.04) | 1.29 (0.16–12.73) | |
Gender | Female | 23 (57.5) | 17 (42.5) | - | - |
Male | 22 (44.0) | 28 (56.0) | 2.99 (0.58–22.57) | 3.63 (0.94–16.59) | |
PEBP1 (pg/mL) | ≥1509.8 | 44 (88.0) | 6 (12.0) | - | - |
<1509.8 | 1 (2.5) | 39 (97.5) | 416.71 (58.33–11,043.30) *** | ||
15-LO-1 (pg/mL) | <144.8 | 34 (97.1) | 1 (2.9) | ||
≥144.8 | 11 (20.0) | 44 (80.0) | 262.54 (37.57–6178.39) *** |
Dependent: Severity | Moderate | Severe | OR (Multivariable) | |||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
Age in years | Mean (SD) | 35.1 (15.8) | 51.1 (10.4) | 1.10 (1.02–1.21) * | 1.09 (1.02–1.18) * | 1.09 (1.01–1.21) * |
Gender | Male | 14 (63.6) | 8 (36.4) | - | - | - |
Female | 14 (60.9) | 9 (39.1) | 80.49 (2.95–15,153.93) * | 14.26 (1.55–308.71) * | 77.30 (3.05–13,683.44) * | |
BMI (kg/m2) | Mean (SD) | 23.9 (5.1) | 26.3 (5.7) | 1.36 (1.08–1.92) * | 1.21 (1.01–1.51) | 1.36 (1.08–1.92) * |
Smoking | No | 26 (66.7) | 13 (33.3) | - | - | - |
Yes | 2 (33.3) | 4 (66.7) | 44.88 (0.68–10,061.31) | 9.47 (0.38–404.05) | 39.38 (0.71–9471.83) | |
Duration of the disease | Mean (SD) | 8.0 (3.7) | 10.9 (5.7) | 1.14 (0.88–1.59) | 1.10 (0.87–1.45) | 1.14 (0.88–1.60) |
AEC | Mean (SD) | 619.6 (353.1) | 682.4 (475.8) | 1.00 (1.00–1.01) | 1.00 (1.00–1.01) | 1.00 (1.00–1.01) |
PLR | Mean (SD) | 188.5 (281.9) | 134.6 (69.3) | 0.98 (0.97–1.00) * | 0.99 (0.97–1.00) | 0.98 (0.96–1.00) * |
NLR | Mean (SD) | 2.6 (2.8) | 2.6 (1.3) | 4.18 (1.09–21.58) * | 3.03 (0.84–13.35) | 4.45 (1.11–26.59) |
PEBP1 (pg/mL) | ≥1112.0 | 6 (85.7) | 1 (14.3) | - | - | - |
<1112.0 | 22 (57.9) | 16 (42.1) | 216.15 (1.92–215,555.09) * | - | 227.57 (2.03–210,000.33) * | |
15-LO-1 (pg/mL) | <202.5 | 19 (57.6) | 14 (42.4) | - | - | - |
≥202.5 | 9 (75.0) | 3 (25.0) | - | 0.88 (0.08–9.46) | 0.62 (0.04–10.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadde, V.; Kaleem Ullah, M.; Greeshma, M.V.; Laila, M.M.A.; Nair, A.; Karunakaran, S.; Madhunapantula, S.V.; Chaya, S.K.; Lokesh, K.S.; Siddaiah, J.B.; et al. PEBP1 and 15-LO-1 in Asthma: Biomarker Potential for Diagnosis and Severity Stratification. Diagnostics 2025, 15, 1322. https://doi.org/10.3390/diagnostics15111322
Vadde V, Kaleem Ullah M, Greeshma MV, Laila MMA, Nair A, Karunakaran S, Madhunapantula SV, Chaya SK, Lokesh KS, Siddaiah JB, et al. PEBP1 and 15-LO-1 in Asthma: Biomarker Potential for Diagnosis and Severity Stratification. Diagnostics. 2025; 15(11):1322. https://doi.org/10.3390/diagnostics15111322
Chicago/Turabian StyleVadde, Vijayalakshmi, Mohammed Kaleem Ullah, Mandya Venkateshmurthy Greeshma, Muhlisa Muhammed Ali Laila, Athira Nair, Sivasubramaniam Karunakaran, SubbaRao V. Madhunapantula, Sindaghatta Krishnarao Chaya, Komarla Sundararaja Lokesh, Jayaraj Biligere Siddaiah, and et al. 2025. "PEBP1 and 15-LO-1 in Asthma: Biomarker Potential for Diagnosis and Severity Stratification" Diagnostics 15, no. 11: 1322. https://doi.org/10.3390/diagnostics15111322
APA StyleVadde, V., Kaleem Ullah, M., Greeshma, M. V., Laila, M. M. A., Nair, A., Karunakaran, S., Madhunapantula, S. V., Chaya, S. K., Lokesh, K. S., Siddaiah, J. B., & Mahesh, P. A. (2025). PEBP1 and 15-LO-1 in Asthma: Biomarker Potential for Diagnosis and Severity Stratification. Diagnostics, 15(11), 1322. https://doi.org/10.3390/diagnostics15111322