Bayesian Integration of Bronchoalveolar Lavage miRNAs and KL-6 in Progressive Pulmonary Fibrosis Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Bronchoalveolar Lavage: Procedure and Diagnostic Utility
- Exosome purification from BAL;
- Western blotting Multiplex and Surface Marker Analysis;
- Isolation of RNA;
- RNA reverse transcription and expression of miRNA through q-PCR.
2.3. Dataset
2.4. Workflow
2.4.1. Data Preparation
- Missing values: no imputation methods have been considered adequate to estimate the missing values; therefore, the rows containing missing values were removed from the dataset when a processing method could not be applied with missing data.
- Outliers: potential outliers detected from boxplots were discussed with the domain experts, and their inclusion in the dataset was eventually confirmed.
- Normalization: we opted for the z-score normalization of all numerical features, so that each feature would be centered around the mean and would have a unitary standard deviation.
2.4.2. Feature Augmentation
2.4.3. Feature Ranking and Selection
- Feature ranking: the adopted method is based on three stages.
- Random Forest feature ranking was applied [48], whereas ranking was performed by sorting the features based on their importance, which was estimated by Gini impurity.
- Since we worked with linear models, we needed to avoid the presence of highly correlated features. To this end, a Pearson correlation matrix among features was computed, and features with an absolute correlation coefficient ≥0.5 (generally interpreted as moderate to high correlation) with higher ranked feaures were removed.
- Finally, gender was removed because it introduced label-leakage bias in classification. Also, the DLCO/VA feature was discarded due to the high number of missing values.
- The choice of the final feature subset was made according to the Wrapper method by using the ranked list of features obtained in the previous stage. Starting from the most important feature, several models were induced by increasingly adding new features according to the rank. These models were then evaluated according to ELPD-LOO (described henceforth), and the model showing the highest value of this measure (with the corresponding feature subset) was selected.
2.4.4. Bayesian Model
2.4.5. Expected Log Pointwise Predictive Density (ELPD-LOO)
3. Results
3.1. Feature Ranking and Selection
3.2. Performance Evaluation
3.3. Uncertainty Evaluation
3.4. Interpretation of the Linear CoefficientsUncertainty Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Zhao, H.; Li, B.L.; Fu, G.; Liu, H.; Cai, J.M.; Zheng, M. CpG-oligodeoxynucleotides may be effective for preventing ionizing radiation-induced pulmonary fibrosis. Toxicol. Lett. 2018, 292, 181–189. [Google Scholar] [CrossRef]
- Li, N.; Lin, Z.; Zhou, Q.; Wang, Y.; Guan, Y.; Li, H.; Zhao, Y.; Liu, N.; Jin, Y.; Yao, S. Metformin alleviates crystalline silica-induced pulmonary fibrosis by remodeling endothelial cells to mesenchymal transition via autophagy signaling. Ecotoxicol. Environ. Saf. 2022, 245, 114100. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef] [PubMed]
- Cottin, V.; Hirani, N.A.; Hotchkin, D.L.; Nambiar, A.M.; Ogura, T.; Otaola, M.; Skowasch, D.; Park, J.S.; Poonyagariyagorn, H.K.; Wuyts, W.; et al. Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur. Respir. Rev. 2018, 27, 180076. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.P.; Ribeiro, R.; Melo, L.; Grima, B.; Oliveira, S.; Alves, J.D. Connective tissue disease-associated interstitial lung disease. Pulmonology 2022, 28, 113–118. [Google Scholar] [CrossRef]
- Jindal, S.K.; Aggarwal, A.N.; Gupta, D. Dust-induced interstitial lung disease in the tropics. Curr. Opin. Pulm. Med. 2001, 7, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Bonham, C.A.; Strek, M.E.; Patterson, K.C. From granuloma to fibrosis: Sarcoidosis associated pulmonary fibrosis. Curr. Opin. Pulm. Med. 2016, 22, 484–491. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Nagata, N.; Kumazoe, H.; Oda, K.; Ishimoto, H.; Yoshimi, M.; Takata, S.; Hamada, M.; Koreeda, Y.; Takakura, K.; et al. Prognostic value of serial serum KL-6 measurements in patients with idiopathic pulmonary fibrosis. Respir. Investig. 2017, 55, 16–23. [Google Scholar] [CrossRef]
- Yokoyama, A.; Kohno, N.; Hamada, H.; Sakatani, M.; Ueda, E.; Kondo, K.; Hirasawa, Y.; Hiwada, K. Circulating KL-6 predicts the outcome of rapidly progressive idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 1998, 158, 1680–1684. [Google Scholar] [CrossRef]
- Ohshimo, S.; Ishikawa, N.; Horimasu, Y.; Hattori, N.; Hirohashi, N.; Tanigawa, K.; Kohno, N.; Bonella, F.; Guzman, J.; Costabe, U.; et al. Baseline KL-6 predicts increased risk for acute exacerbation of idiopathic pulmonary fibrosis. Respir. Med. 2014, 108, 1031–1039. [Google Scholar] [CrossRef]
- d’Alessandro, M.; Bergantini, L.; Cameli, P.; Pieroni, M.; Refini, R.M.; Sestini, P.; Bargagli, E. Serum concentrations of KL-6 in patients with IPF and lung cancer and serial measurements of KL-6 in IPF patients treated with antifibrotic therapy. Cancers 2021, 13, 689. [Google Scholar] [CrossRef] [PubMed]
- Soccio, P.; Moriondo, G.; d’Alessandro, M.; Scioscia, G.; Bergantini, L.; Gangi, S.; Tondo, P.; Foschino Barbaro, M.P.; Cameli, P.; Bargagli, E.; et al. Role of BAL and serum Krebs von den Lungen-6 (KL-6) in patients with pulmonary fibrosis. Biomedicines 2024, 12, 269. [Google Scholar] [CrossRef]
- Pandit, K.V.; Milosevic, J.; Kaminski, N. MicroRNAs in idiopathic pulmonary fibrosis. Transl. Res. 2011, 157, 191–199. [Google Scholar] [CrossRef]
- Liang, H.; Liu, S.; Chen, Y.; Bai, X.; Liu, L.; Dong, Y.; Hu, M.; Su, X.; Chen, Y.; Huangfu, L.; et al. miR-26a suppresses EMT by disrupting the Lin28B/let-7d axis: Potential cross-talks among miRNAs in IPF. J. Mol. Med. 2016, 94, 655–665. [Google Scholar] [CrossRef]
- Liu, R.H.; Ning, B.; Ma, X.E.; Gong, W.M.; Jia, T.H. Regulatory roles of microRNA-21 in fibrosis through interaction with diverse pathways (Review). Mol. Med. Rep. 2016, 13, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Admyre, C.; Grunewald, J.; Thyberg, J.; Gripenbäck, S.; Tornling, G.; Eklund, A.; Scheynius, A.; Gabrielsson, S. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur. Respir. J. 2003, 22, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Njock, M.S.; Fish, J.E. Endothelial miRNAs as cellular messengers in cardiometabolic diseases. Trends Endocrinol. Metab. 2017, 28, 237–246. [Google Scholar] [CrossRef]
- Sánchez-Vidaurre, S.; Eldh, M.; Larssen, P.; Daham, K.; Martinez-Bravo, M.J.; Dahlén, S.E.; Dahlén, B.; van Hage, M.; Gabrielsson, S. RNA-containing exosomes in induced sputum of asthmatic patients. J. Allergy Clin. Immunol. 2017, 140, 1459–1461.e2. [Google Scholar] [CrossRef]
- Soccio, P.; Moriondo, G.; Scioscia, G.; Leo, V.; Tondo, P.; Salerno, L.; Palange, P.; Foschino Barbaro, M.P.; Lacedonia, D. Searching for airways biomarkers useful to identify progressive pulmonary fibrosis. BMC Pulm. Med. 2023, 23, 407. [Google Scholar] [CrossRef]
- Lacedonia, D.; Scioscia, G.; Soccio, P.; Conese, M.; Catucci, L.; Palladino, G.P.; Simone, F.; Quarato, C.M.I.; Di Gioia, S.; Rana, R.; et al. Downregulation of exosomal let-7d and miR-16 in idiopathic pulmonary fibrosis. BMC Pulm. Med. 2021, 21, 188. [Google Scholar] [CrossRef]
- Jacob, J.; Bartholmai, B.J.; Rajagopalan, S.; van Moorsel, C.H.M.; van Es, H.W.; van Beek, F.T.; Struik, M.H.L.; Kokosi, M.; Egashira, R.; Brun, A.L.; et al. Predicting Outcomes in Idiopathic Pulmonary Fibrosis Using Automated Computed Tomographic Analysis. Am. J. Respir. Crit. Care Med. 2018, 198, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Sabir, W.; Farhan, M.; Almalki, N.S.; Alnfiai, M.M.; Sampedro, G.A. FibroVit-Vision transformer-based framework for detection and classification of pulmonary fibrosis from chest CT images. Front. Med. 2023, 10, 1282200. [Google Scholar] [CrossRef]
- Röhrich, M.; Leitz, D.; Glatting, F.M.; Wefers, A.K.; Weinheimer, O.; Flechsig, P.; Kahn, N.; Mall, M.A.; Giesel, F.L.; Kratochwil, C.; et al. Fibroblast Activation Protein-Specific PET/CT Imaging in Fibrotic Interstitial Lung Diseases and Lung Cancer: A Translational Exploratory Study. J. Nucl. Med. 2022, 63, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Aloisio, E.; Braga, F.; Puricelli, C.; Panteghini, M. Prognostic role of Krebs von den Lungen-6 (KL-6) measurement in idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2021, 59, 1400–1408. [Google Scholar] [CrossRef]
- Ramirez-Santana, M. Limitations and biases in cohort studies. In Cohort Studies in Health Sciences; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Larson, C.; Kaplan, D.; Girolamo, T.; Kover, S.T.; Eigsti, I.M. A Bayesian statistics tutorial for clinical research: Prior distributions and meaningful results for small clinical samples. J. Clin. Psychol. 2023, 79, 2602–2624. [Google Scholar] [CrossRef]
- Sondhi, A.; Segal, B.; Snider, J.; Humblet, O.; McCusker, M. Bayesian additional evidence for decision making under small sample uncertainty. BMC Med. Res. Methodol. 2021, 21, 221. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Proctor, R.W. Change of Variable-Foreperiod Effects within an Experiment: A Bayesian Modeling Approach. J. Cogn. 2022, 5, 40. [Google Scholar] [CrossRef]
- Han, J.; Sauberan, J.; Tran, M.T.; Adler-Shohet, F.C.; Michalik, D.E.; Tien, T.H.; Tran, L.; DO, D.H.; Bradley, J.S.; Le, J. Implementation of Vancomycin Therapeutic Monitoring Guidelines: Focus on Bayesian Estimation Tools in Neonatal and Pediatric Patients. Ther. Drug Monit. 2022, 44, 241–252. [Google Scholar] [CrossRef]
- Meltzer, E.B.; Barry, W.T.; D’Amico, T.A.; Davis, R.D.; Lin, S.S.; Onaitis, M.W.; Morrison, L.D.; Sporn, T.A.; Steele, M.P.; Noble, P.W. Bayesian probit regression model for the diagnosis of pulmonary fibrosis: Proof-of-principle. BMC Med. Genom. 2011, 4, 70. [Google Scholar] [CrossRef]
- Meltzer, E.B.; Barry, W.T.; Yang, I.V.; Brown, K.K.; Schwarz, M.I.; Patel, H.; Ashley, A.; Noble, P.W.; Schwartz, D.A.; Steele, M.P. Familial and sporadic idiopathic pulmonary fibrosis: Making the diagnosis from peripheral blood. BMC Genom. 2014, 15, 902. [Google Scholar] [CrossRef]
- Cottin, V.; Tomassetti, S.; Valenzuela, C.; Walsh, S.L.F.; Antoniou, K.M.; Bonella, F.; Brown, K.K.; Collard, H.R.; Corte, T.J.; Flaherty, K.R.; et al. Integrating Clinical Probability into the Diagnostic Approach to Idiopathic Pulmonary Fibrosis: An International Working Group Perspective. Am. J. Respir. Crit. Care Med. 2022, 206, 247–259. [Google Scholar] [CrossRef]
- Fan, W.; Chen, Q.; Maccarrone, V.; Luk, L.; Navot, B.; Salvatore, M. Developing radiology diagnostic tools for pulmonary fibrosis using machine learning methods. Clin. Imaging 2024, 106, 110047. [Google Scholar] [CrossRef]
- Tomoto, M.; Mineharu, Y.; Sato, N.; Tamada, Y.; Nogami-Itoh, M.; Kuroda, M.; Adachi, J.; Takeda, Y.; Mizuguchi, K.; Kumanogoh, A.; et al. Idiopathic pulmonary fibrosis-specific Bayesian network integrating extracellular vesicle proteome and clinical information. Sci. Rep. 2024, 14, 1315. [Google Scholar] [CrossRef]
- Zhao, C.; Yin, Y.; Zhu, C.; Zhu, M.; Ji, T.; Li, Z.; Cai, J. Drug therapies for treatment of idiopathic pulmonary fibrosis: A systematic review, Bayesian network meta-analysis, and cost-effectiveness analysis. EClinicalMedicine 2023, 61, 102071. [Google Scholar] [CrossRef] [PubMed]
- Canestaro, W.J.; Forrester, S.H.; Raghu, G.; Ho, L.; Devine, B.E. Drug Treatment of Idiopathic Pulmonary Fibrosis. Chest 2016, 149, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Skandamis, A.; Kani, C.; Markantonis, S.L.; Souliotis, K. Systematic review and network meta-analysis of approved medicines for the treatment of idiopathic pulmonary fibrosis. J. Drug Assess. 2019, 8, 55–61. [Google Scholar] [CrossRef]
- Rochwerg, B.; Neupane, B.; Zhang, Y.; Garcia, C.C.; Raghu, G.; Richeldi, L.; Brozek, J.; Beyene, J.; Schünemann, H. Treatment of idiopathic pulmonary fibrosis: A network meta-analysis. BMC Med. 2016, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Hambly, N.; Farooqi, M.M.; Dvorkin-Gheva, A.; Donohoe, K.; Garlick, K.; Scallan, C.; Chong, S.G.; MacIsaac, S.; Assayag, D.; Johannson, K.A.; et al. Prevalence and characteristics of progressive fibrosing interstitial lung disease in a prospective registry. Eur. Respir. J. 2022, 60, 2102571. [Google Scholar] [CrossRef]
- Clinical guidelines and indications for bronchoalveolar lavage (BAL): Report of the European Society of Pneumology Task Group on BAL. Eur. Respir. J. 1990, 3, 937–976. [CrossRef]
- Haslam, P.L.; Baughman, R.P. Report of ERS Task Force: Guidelines for measurement of acellular components and standardization of BAL. Eur. Respir. J. 1999, 14, 245–248. [Google Scholar] [CrossRef]
- Meyer, K.C.; Raghu, G.; Baughman, R.P.; Brown, K.K.; Costabel, U.; du Bois, R.M.; Drent, M.; Haslam, P.L.; Kim, D.S.; Nagai, S.; et al. An official American Thoracic Society clinical practice guideline: The clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Danese, E.; Minicozzi, A.M.; Benati, M.; Paviati, E.; Lima-Oliveira, G.; Gusella, M.; Pasini, F.; Salvagno, G.L.; Montagnana, M.; Lippi, G. Reference miRNAs for colorectal cancer: Analysis and verification of current data. Sci. Rep. 2017, 7, 8413. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.R.; Waldenström, J. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS ONE 2015, 10, e0141853. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kawano-Dourado, L.; Glassberg, M.K.; Assayag, D.; Borie, R.; Johannson, K.A. Sex and gender in interstitial lung diseases. Eur. Respir. Rev. 2021, 30, 210105. [Google Scholar] [CrossRef]
- Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. In Data Classification: Algorithms and Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014; p. 37. [Google Scholar]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning: A Guide For Making Black Box Models Explainable. 2022. Available online: https://christophmolnar.com/books/interpretable-machine-learning (accessed on 6 May 2025).
- Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 2017, 27, 1413–1432. [Google Scholar] [CrossRef]
- Pottier, N.; Maurin, T.; Chevalier, B.; Puisségur, M.P.; Lebrigand, K.; Robbe-Sermesant, K.; Bertero, T.; Lino Cardenas, C.L.; Courcot, E.; Rios, G.; et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: Implication in epithelial-mesenchymal interactions. PLoS ONE 2009, 4, e6718. [Google Scholar] [CrossRef]
- Lucà, S.; Pagliuca, F.; Perrotta, F.; Ronchi, A.; Mariniello, D.F.; Natale, G.; Bianco, A.; Fiorelli, A.; Accardo, M.; Franco, R. Multidisciplinary Approach to the Diagnosis of Idiopathic Interstitial Pneumonias: Focus on the Pathologist’s Key Role. Int. J. Mol. Sci. 2024, 25, 3618. [Google Scholar] [CrossRef]
- d’Alessandro, M.; Bergantini, L.; Cameli, P.; Vietri, L.; Lanzarone, N.; Alonzi, V.; Pieroni, M.; Refini, M.; Sestini, P.; Bonella, F.; et al. Krebs von den Lungen-6 as a biomarker for disease severity assessment in interstitial lung disease: A comprehensive review. Biomark Med. 2020, 14, 665–674. [Google Scholar] [CrossRef]
- Cardin, S.; Guasch, E.; Luo, X.; Naud, P.; Le Quang, K.; Shi, Y.; Tardif, J.C.; Comtois, P.; Nattel, S. Role for MicroRNA-21 in Atrial Profibrillatory Fibrotic Remodeling Associated with Experimental Postinfarction Heart Failure. Circ. Arrhythm. Electrophysiol. 2012, 5, 1027–1035. [Google Scholar] [CrossRef]
- Huang, Y.; He, Y.; Li, J. MicroRNA-21: A central regulator of fibrotic diseases via various targets. Curr. Pharm. Des. 2015, 21, 2236–2242. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.L.; Wang, X.H.; Sun, B.F.; Zhang, X.D.; Zhu, X.H.; Yu, Z.J.; Luo, H. Expression, regulation and mechanism of action of the miR-17-92 cluster in tumor cells (Review). Int. J. Mol. Med. 2017, 40, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Yanshen, Z.; Lifen, Y.; Xilian, W.; Zhong, D.; Huihong, M. miR-92a promotes proliferation and inhibits apoptosis of prostate cancer cells through the PTEN/Akt signaling pathway. Libyan J. Med. 2021, 16, 1971837. [Google Scholar] [CrossRef] [PubMed]
- Raftery, A.E. Bayesian Model Selection in Social Research. Sociol. Methodol. 1995, 25, 111–163. [Google Scholar] [CrossRef]
- Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 30, 3.22.1–3.22.29. [Google Scholar] [CrossRef]
- Liu, G.; Friggeri, A.; Yang, Y.; Milosevic, J.; Ding, Q.; Thannickal, V.J.; Kaminski, N.; Abraham, E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010, 207, 1589–1597. [Google Scholar] [CrossRef]
- Wollin, L.; Wex, E.; Pautsch, A.; Schnapp, G.; Hostettler, K.E.; Stowasser, S.; Kolb, M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 2015, 45, 1434–1445. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
Feature | Min | Max | Mean | Std. Dev. | Missing |
---|---|---|---|---|---|
Age | 46 | 80 | 66.46 | 7.56 | 0 |
FVC% | 23 | 107 | 71.66 | 17.62 | 1 |
FEV1% | 23 | 112 | 75.58 | 19.32 | 3 |
DLCO | 30 | 122 | 57.51 | 19.08 | 4 |
DLCO/VA | 50 | 167 | 100.67 | 26.05 | 9 |
Macro% | 19 | 93 | 73.95 | 18.43 | 0 |
Neu% | 0 | 74 | 12.71 | 16.16 | 1 |
Lin% | 2 | 28 | 9.38 | 6.01 | 0 |
2−ΔΔCT miR-21 | 0.07 | 3.41 | 0.81 | 0.95 | 0 |
2−ΔΔCT miR-92a | 0.02 | 3.31 | 0.5 | 0.64 | 0 |
2−ΔΔCT KL-6 | 0.0 | 56.87 | 11.23 | 14.76 | 5 |
Functional Parameters | BAL Markers | miRNA Biomarkers |
---|---|---|
AGE | MACRO% | miR-21 |
FVC% | NEU% | miR-92a |
FEV1% | LIN% | KL-6 |
DLCO | miR-21 × miR-92a | |
DLCO/VA | miR-92a × KL6 |
Diagnosis | Prognosis |
---|---|
FVC% | Age |
DLCO | DLCO |
Lin | Lin |
Neu | Neu |
miR-21 × miR-92a | KL6 |
miR-21 | miR-92a × KL6 |
Diagnosis | Prognosis |
---|---|
miR-21 × miR-92a | KL6 |
miR-21 | Age |
Lin | DLCO |
Model | Accuracy | Specificity | Sensitivity |
---|---|---|---|
Lin + miR-21 + miR-21 × miR-92a | 0.75 (0.036) | 0.67 (0.101) | 0.81 (0.094) |
Lin + miR-92a | 0.70 (0.077) | 0.58 (0.114) | 0.81 (0.152) |
Lin + miR-21 × miR-92a | 0.72 (0.046) | 0.62 (0.106) | 0.80 (0.133) |
Lin + miR-21 | 0.67 (0.050) | 0.54 (0.118) | 0.79 (0.143) |
Lin | 0.68 (0.046) | 0.55 (0.141) | 0.80 (0.168) |
miR-92a | 0.54 (0.048) | 0.35 (0.307) | 0.70 (0.328) |
miR-21 | 0.52 (0.061) | 0.34 (0.348) | 0.67 (0.359) |
Model | Accuracy | Specificity | Sensitivity |
---|---|---|---|
Age + KL6 + DLCO | 0.75 (0.058) | 0.73 (0.144) | 0.77 (0.107) |
DLCO + KL6 | 0.65 (0.052) | 0.59 (0.184) | 0.70 (0.168) |
Age + DLCO | 0.68 (0.057) | 0.63 (0.171) | 0.73 (0.135) |
DLCO | 0.62 (0.051) | 0.51 (0.227) | 0.71 (0.204) |
Age + KL6 | 0.67 (0.056) | 0.62 (0.155) | 0.71 (0.138) |
Age | 0.58 (0.047) | 0.51 (0.240) | 0.64 (0.219) |
KL6 | 0.57 (0.055) | 0.55 (0.309) | 0.59 (0.266) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soccio, P.; Longo, V.; Mencar, C.; Tondo, P.; Murgolo, F.; Scioscia, G.; Lacedonia, D. Bayesian Integration of Bronchoalveolar Lavage miRNAs and KL-6 in Progressive Pulmonary Fibrosis Diagnosis. Diagnostics 2025, 15, 1257. https://doi.org/10.3390/diagnostics15101257
Soccio P, Longo V, Mencar C, Tondo P, Murgolo F, Scioscia G, Lacedonia D. Bayesian Integration of Bronchoalveolar Lavage miRNAs and KL-6 in Progressive Pulmonary Fibrosis Diagnosis. Diagnostics. 2025; 15(10):1257. https://doi.org/10.3390/diagnostics15101257
Chicago/Turabian StyleSoccio, Piera, Valerio Longo, Corrado Mencar, Pasquale Tondo, Fabiola Murgolo, Giulia Scioscia, and Donato Lacedonia. 2025. "Bayesian Integration of Bronchoalveolar Lavage miRNAs and KL-6 in Progressive Pulmonary Fibrosis Diagnosis" Diagnostics 15, no. 10: 1257. https://doi.org/10.3390/diagnostics15101257
APA StyleSoccio, P., Longo, V., Mencar, C., Tondo, P., Murgolo, F., Scioscia, G., & Lacedonia, D. (2025). Bayesian Integration of Bronchoalveolar Lavage miRNAs and KL-6 in Progressive Pulmonary Fibrosis Diagnosis. Diagnostics, 15(10), 1257. https://doi.org/10.3390/diagnostics15101257