Bringing AI to Clinicians: Simplifying Pleural Effusion Cytology Diagnosis with User-Friendly Models
Abstract
:1. Introduction
1.1. Challenges in Diagnostic Pleural Effusion Cytopathology
1.2. Artificial Intelligence in Cytopathology: Enhancing Diagnostic Accuracy Through Cell and Nuclei Segmentation
1.3. Advancing Medical Diagnostics with YOLO: AI-Powered Object Detection in Healthcare
- Backbone: The backbone is responsible for feature extraction. It processes the input image and generates feature maps, which are representations of important patterns and objects in the image [41]. Essentially, the backbone functions as the algorithm’s “eyes”, capturing key elements in the visual data.
- Neck: The neck acts as an intermediary between the backbone and the head. It aggregates the features extracted by the backbone and refines them through networks like the Feature Pyramid Network (FPN). This component is crucial in improving the resolution and accuracy of object detection, especially in cases with complex object structures [42].
- Head: The head is responsible for generating the final predictions, such as the coordinates of bounding boxes (the rectangular areas that contain detected objects), objectness scores (indicating the likelihood that an area contains an object), and classification scores (identifying the type of object detected) [42].
- Object detection: identifying and localizing objects within images.
- Segmentation: dividing images into segments for more detailed analysis.
- Pose estimation: determining the orientation and position of objects, especially human figures.
- Tracking: monitoring the movement of objects across frames in video data.
- Classification: categorizing objects into predefined classes (e.g., car, dog, person) [43].
1.4. Expanding Access to Artificial Intelligence: Empowering Professionals with Accessible AI Tools for Practical Applications
1.5. Rationale for the Study and Purpose
2. Materials and Methods
2.1. Collection of Images, Dataset Preparation, and Morphological Criteria for Cells
2.2. Annotation, Data Augmentation, Model Training, and Metrics Evaluation
3. Results
3.1. Model Training Results: YOLOv8 vs. YOLOv11
3.2. Evaluation and Validation with External Datasets
- (a) Isolated adenocarcinoma (adk) cells among mesothelial (ms) cells.
- (b) A cluster of adenocarcinoma cells.
- (c) Adenocarcinoma cells within an area of marked inflammation.
- (a) to (d): Images from the external dataset that were correctly classified by both models, demonstrating consistency with the training dataset.
3.3. Final Performance Summary
4. Discussion
4.1. Summary and Added Values
4.2. Discussion on the Contribution of the Study to Advancing Diagnostic Techniques in Pleural Effusion
4.2.1. Recent Advances in AI for Pleural Effusion Diagnosis
4.2.2. YOLO Algorithm in Cytopathology
4.2.3. Study Contribution and Comparison to the Literature
- Assisting cytopathologists in the preliminary evaluation of cytological samples, effectively acting as a virtual second opinion during the screening phase;
- Reducing the number of cases requiring additional investigations, such as immunohistochemical analyses;
- Lowering overall diagnostic costs and minimizing turnaround times.
4.3. Challenges and Future Directions
4.4. Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gompelmann, D.; Eberhardt, R.; Herth, F.J. Advanced malignant lung disease: What the specialist can offer. Respiration 2011, 82, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Kastelik, J.A. Management of malignant pleural effusion. Lung 2013, 191, 165–175. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, F.M. The role of Indwelling pleural catheter in management of malignant pleural effusion: A creative new technique for an old method. Lung India 2015, 32, 81–82. [Google Scholar] [CrossRef]
- Bibby, A.C.; Clive, A.O.; Slade, G.C.; Morley, A.J.; Fallon, J.; Psallidas, I.; Pepperell, J.C.T.; Slade, M.G.; Stanton, A.E.; Rahman, N.M.; et al. Survival in patients with malignant pleural effusions who developed pleural infection: A retrospective case review from six UK centers. Chest 2015, 148, 235–241. [Google Scholar] [CrossRef]
- Terra, R.M.; Dela Vega, A. Treatment of malignant pleural effusion. J. Vis. Surg. 2018, 4, 110. [Google Scholar] [CrossRef]
- Ryu, J.-S.; Ryu, H.J.; Lee, S.-N.; Memon, A.; Lee, S.-K.; Nam, H.-S.; Kim, H.-J.; Lee, K.-H.; Cho, J.-H.; Hwang, S.-S. Prognostic impact of minimal pleural effusion in non-small-cell lung cancer. J. Clin. Oncol. 2014, 32, 960–967. [Google Scholar] [CrossRef]
- Eberhardt, W.E.; Mitchell, A.; Crowley, J.; Kondo, H.; Kim, Y.T.; Turrisi, A.; Goldstraw, P.; Rami-Porta, R. The IASLC lung cancer staging project: Proposals for the revision of the M descriptors in the forthcoming eighth edition of the TNM classification of lung cancer. J. Thorac. Oncol. 2015, 10, 1515–1522. [Google Scholar] [CrossRef]
- Heffner, J.E.; Klein, J.S. Recent advances in the diagnosis and management of malignant pleural effusions. Mayo Clin. Proc. 2008, 83, 235–250. [Google Scholar] [CrossRef]
- Shaw, P.; Agarwal, R. Pleurodesis for malignant pleural effusions. Cochrane Database Syst. Rev. 2004, 1, CD002916. [Google Scholar]
- Giarnieri, E.; Bellipanni, G.; Macaluso, M.; Mancini, R.; Holstein, A.C.; Milanese, C.; Giovagnoli, M.R.; Giordano, A.; Russo, G. Review: Cell Dynamics in Malignant Pleural Effusions. J. Cell. Physiol. 2015, 230, 272–277. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Yousefpoor, E.; Yousefpoor, M.S.; Mehmood, Z.; Haider, A.; Hosseinzadeh, M.; Ali Naqvi, R. Machine Learning (ML) in Medicine: Review, Applications, and Challenges. Mathematics 2021, 9, 2970. [Google Scholar] [CrossRef]
- Dermawan, J.K.T.; Policarpio-Nicolas, M.L. Malignancies in Pleural, Peritoneal, and Pericardial Effusions. A 17-Year Single-Institution review from 30085 Specimens. Arch. Pathol. Lab. Med. 2020, 144, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Layfield, L.J.; Yang, Z.; Vazmitsel, M.; Zhang, T.; Esebua, M.; Schmidt, R. The international system for serous fluid cytopathology: Interobserver agreement. Diagn. Cytopathol. 2022, 50, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Kassirian, S.; Hinton, S.N.; Cuninghame, S.; Chaudhary, R.; Iansavitchene, A.; Amjadi, K.; Dhaliwal, I.; Zeman-Pocrnich, C.; Mitchell, M.A. Diagnostic sensitivity of pleural fluid cytology in malignant pleural effusions: Systematic review and meta-analysis. Thorax 2023, 78, 32–40. [Google Scholar] [CrossRef]
- Wentzensen, N.; Lahrmann, B.; Clarke, M.A.; Kinney, W.; Tokugawa, D.; Poitras, N.; Locke, A.; Bartels, L.; Krauthoff, A.; Walker, J. Accuracy and efficiency of deep-learning–based automation of dual stain cytology in cervical Cancer screening. JNCI J. Natl. Cancer Inst. 2021, 113, 72–79. [Google Scholar] [CrossRef]
- Koss, L.G.; Lin, E.; Schreiber, K.; Elgert, P.; Mango, L. Evaluation of the Papnet cytologic screening system for quality control of cervical smears. Am. J. Clin. Pathol. 1994, 101, 220–229. [Google Scholar] [CrossRef]
- Lilli, L.; Giarnieri, E.; Scardapane, S. A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells. Comput. Math. Methods Med. 2021, 13, 5569458. [Google Scholar] [CrossRef]
- Park, H.S.; Chong, Y.; Lee, Y.; Yim, K.; Seo, K.J.; Hwang, G.; Kim, D.; Gong, G.; Cho, N.H.; Yoo, C.W.; et al. Deep Learning-Based Computational Cytopathologic Diagnosis of Metastatic Breast Carcinoma in Pleural Fluid. Cells 2023, 12, 1847. [Google Scholar] [CrossRef]
- Sanyal, P.; Mukherjee, T.; Barui, S.; Das, A.; Gangopadhyay, P. Artificial intelligence in cytopathology: A neural network to identify papillary carcinoma on thyroid fine-needle aspiration cytology smears. J. Pathol. Inform. 2018, 9, 43. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Barwad, A.; Dey, P.; Susheilia, S. Artificial neural network in diagnosis of metastatic carcinoma in effusion cytology. Cytometry 2012, 82, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, T.O.; Liman, U.U.; Abdullahi, H.; Koko, Y.S.; Ribah, S.S.; Adamu, Z.; Abubakar, S. Genes predisposing to syndromic and nonsyndromic infertility: A narrative review. Egypt J. Med. Hum. Genet. 2020, 22, 46. [Google Scholar] [CrossRef]
- Xie, X.; Fu, C.-C.; Lv, L.; Ye, Q.; Yu, Y.; Fang, Q.; Zhang, L.; Hou, L.; Wu, C. Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images. Mod. Pathol. 2022, 35, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Gao, Z.; Ran, C.; Li, C.; Ding, C. Multiple serous cavity effusion screening based on smear images using vision transformer. Sci. Rep. 2024, 14, 7395. [Google Scholar] [CrossRef]
- Ren, W.; Zhu, Y.; Wang, Q.; Jin, H.; Guo, Y.; Lin, D. Deep Learning-Based Classification and Targeted Gene Alteration Prediction from Pleural Effusion Cell Block Whole-Slide Images. Cancers 2023, 15, 752. [Google Scholar] [CrossRef]
- Thakur, N.; Alam, M.R.; Abdul-Ghafar, J.; Chong, Y. Recent Application of Artificial Intelligence in Non-Gynecological Cancer Cytopathology: A Systematic Review. Cancers 2022, 14, 3529. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, Y.; Lin, Y.; Chan, R.; Liu, J.; Chen, H. Deep learning for computational cytology: A survey. Med. Image Anal. 2023, 84, 102691. [Google Scholar] [CrossRef]
- Dey, P. The emerging role of deep learning in cytology. Cytopathology 2021, 32, 154–160. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Kong, W.; Wu, H.-Q.; Ji, J.-L. Deep learning for artificial intelligence aided cytological diagnosis on exfoliated adenocarcinoma cells of lung in pleural effusion. Chin. J. Clin. Med. 2022, 29, 396–400. [Google Scholar]
- Baykal, E.-D.; Hulya, E.-D.; Mustafa, E.-E.; Safak, E.; Murat, E. Modern convolutional object detectors for nuclei detection on pleural effusion cytology images. Multimed. Tools Appl. 2020, 79, 15417–15436. [Google Scholar] [CrossRef]
- Mavropoulos, A.; Johnson, C.; Lu, V.; Nieto, J.; Schneider, E.-C.; Saini, K.; Phelan, M.L.; Hsie, L.-X.; Wang, M.-J.; Cruz, J.; et al. Artificial intelligence-driven morphology-based enrichment of malignant cells from body fluid. Mod. Pathol. 2023, 36, 100195. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Sui, D.; Qin, H.; Hao, A. An Extended Type Cell Detection and Counting Method based on FCN. In Proceedings of the 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering, Washington, DC, USA, 23–25 October 2017; pp. 51–56. [Google Scholar]
- Zhao, T.; Yin, Z. Pyramid-Based Fully Convolutional Networks for Cell Segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018, Granada, Spain, 16–20 September 2018; Lecture Notes in Computer Science. Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer: Cham, Switzerland, 2018; p. 11073. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Available online: https://arxiv.org/abs/1505.04597 (accessed on 5 April 2025).
- Tingxi, W.; Tong, B.; Liu, Y.; Pan, T.; Du, Y.; Chen, Y.; Zhang, S. Review of research on the instance segmentation of cell images. Comput. Methods Programs Biomed. 2022, 227, 107211. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. Available online: https://arxiv.org/abs/1703.06870v3 (accessed on 5 April 2025).
- Schwendy, M.; Unger, R.E.; Parekh, S.H. EVICAN—A balanced dataset for algorithm development in cell and nucleus segmentation. Bioinformatics 2020, 36, 3863–3870. [Google Scholar] [CrossRef]
- Fujita, S.; Han, X.H. Cell Detection and Segmentation in Microscopy Images with Improved Mask R-CNN. In Proceedings of the Computer Vision—ACCV 2020 Workshops. ACCV 2020, Kyoto, Japan, 30 November–4 December 2020; Lecture Notes in Computer Science. Sato, I., Han, B., Eds.; Springer: Cham, Switzerland, 2021; p. 12628. [Google Scholar]
- Khalid, N.; Munir, M.; Edlund, C.; Jackson, T.R.; Trygg, J.; Sjögren, R. DeepCeNS: An end-to-end Pipeline for Cell and Nucleus Segmentation in Microscopic Images. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.-C.; Lo, W.-Y.; et al. Segment Anything. Available online: https://arxiv.org/abs/2304.02643 (accessed on 5 April 2025).
- YOLOv8. Ultralytics YOLOv8. 2023. Available online: https://docs.ultralytics.com/it/models/yolov8/ (accessed on 5 April 2025).
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.-D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. systems 2020, 33, 1877–1901. [Google Scholar]
- Pandey, S.; Chen, K.F.; Dam, B.-E. Comprensive Multimodal Segmentation in Medical Imaging: Combining YOLOv8 with SAM and HQ-SAM Models. Available online: https://arxiv.org/abs/2310.12995 (accessed on 5 April 2025).
- OpenAI. Gpt-4 Technical Report. 2023. Available online: https://arxiv.org/abs/2303.08774 (accessed on 5 April 2025).
- Nambu, Y.; Mariya, T.; Shinkai, S.; Umemoto, M.; Asanuma, H.; Sato, I.; Hirohashi, Y.; Torigoe, T.; Fujino, Y.; Saito, T. A screening assistance system for cervical cytology of squamous cell atypia based on a two-step combined CNN algorithm with label smoothing. Cancer Med. 2022, 11, 520–529. [Google Scholar] [CrossRef]
- Wu, P.; Weng, H.; Luo, W.; Zhan, Y.; Xiong, L.; Zhang, H.; Yan, H. An improved yolov5s based on transformer back-bone network for detection and classification of bronchoalveolar lavage cells. Comput. Struct. Biotechnol. J. 2023, 2, 2985–3001. [Google Scholar] [CrossRef]
- Shi, J.; Wu, K.; Zheng, Y.; He, Y.; Li, J.; Jiang, Z.; Yu, L. Global-local attention network for weakly supervised cervical cytology roi analysis. In Proceedings of the 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 28–31 March 2022; pp. 1–5. [Google Scholar]
- Tarimo, S.-A.; Mi-Ae Jang, M.-A.; Ngasa, E.-E.; Shin, H.-B.; Shin, H.; Woo, J. Wbc yolo-vit: 2 way—2 stage white blood cell detection and classification with a combination of yolov5 and vision transformer. Comput. Biol. Med. 2024, 169, 107875. [Google Scholar] [CrossRef]
- Wijaya, H.; Ryanto, T.; Sidhik, S.-C.; Liawatimena, S.; Riana, D. Cervical Cancer Cells Detection Using Yolov8 Algorithm. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4779266 (accessed on 5 April 2025).
- Wang, H.-H.; Guo, M.-X.; Sun, Y.-N.; Zhang, C.-Y.; Long, L.; Liang, Z.-X. Development and diagnostic value of artificial intelligence cytopathological diagnosis system for lung cancer. Acad. J. Chin. PLA Med. Sch. 2024, 45, 463–468. [Google Scholar]
- Mika, T.; Tanaka, S.; Ichito, S.; Etsuko, T.; Takakuma, S.; Tabata, R.; Sakae, K.; Kajimoto, Y.; Shinobu, K.; Akira, S.; et al. From Microscope to AI: Developing an Integrated Diagnostic System with Real-Time Object Detection for Endometrial Cytology. Res. Sq. 2024, 45, 463–468. [Google Scholar] [CrossRef]
- Rumpf, S.; Zufall, N. Is the use of Adam optimiser and label smoothing adequate for optimizing YOLOv7 and YOLOv7-E6E to attain a high-quality automated analysis and differential diagnostic evaluation of bronchoalveolar lavage fluid? Res. Sq. 2024. Available online: https://sciprofiles.com/publication/view/b0b32e213deba6f61689ccc58b1fec88 (accessed on 5 April 2025).
- Awad, A.; Hegazy, M.; Aly, S.-A. Early Diagnosis of Acute Lymphoblastic Leukemia Using YOLOv8 and YOLOv11 Deep Learning Models. Available online: https://arxiv.org/abs/2410.10701 (accessed on 5 April 2025).
- Available online: https://roboflow.com/ (accessed on 5 April 2025).
- Golchubian, A.; Marques, O.; Nojoumian, M. Photo quality classification using deep learning. In Multimedia Tools and Applications (MTAP); Springer: Berlin/Heidelberg, Germany, 2021; Volume 80, pp. 22193–22208. [Google Scholar]
- Di Piazza, T.; Boussel, L. An Ensemble-Based Two-Step Framework for Classification of Pap Smear Cell Images. Available online: https://arxiv.org/abs/2503.10312 (accessed on 5 April 2025).
- Level Up with the Largest AI & ML Community. Available online: https://www.kaggle.com (accessed on 5 April 2025).
- Lin, R.; Li, Y.; Lin, Y.; Tian, W.; Jiang, L.; Li, J. Role of molecular testing for malignant pleural effusion in targeted therapy for advanced non-small cell lung cancer. Diagn. Cytopathol. 2023, 51, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Scarpino, S.; Leone, A.; Galafate, D.; Pepe, F.; Malapelle, U.; Villani, S.; Giarnieri, E.; Maurizi, G.; De Vitis, C.; Mancini, R.; et al. Integrating the Idylla™ System Alongside a Real-Time Polymerase Chain Reaction and Next-Generation Sequencing for Investigating Gene Fusions in Pleural Effusions from Non-Small-Cell Lung Cancer Patients: A Pilot Study. Int. J. Mol. Sci. 2024, 25, 7594. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, R.; Cara, A.; Cassina, E.M.; Degiovanni, S.; Libretti, L.; Pirondini, E.; Raveglia, F.; Tuoro, A.; Vaquer, S.; Rizzo, S.; et al. Malignant Pleural Effusion: Diagnosis and Treatment—Up-to-Date Perspective. Curr. Oncol. 2024, 31, 6867–6878. [Google Scholar] [CrossRef]
- Pirovano, A.; Almeida, L.-G.; Ladjal, S.; Bloch, I.; Berlemont, S. Computer-aided diagnosis tool for cervical cancer screening with weakly supervised localization and detection of abnormalities using adaptable and explainable classifier. Med. Image Anal. 2021, 73, 102167. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, L.; Nogues, I.; Summers, R.M.; Liu, S.; Yao, J. DeepPap: Deep Convolutional Networks for Cervical Cell Classification. IEEE J. Biomed. Health Inform. 2017, 21, 633–1643. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Lin, H.; Heng, P.A. Deep Semi-supervised Knowledge Distillation for Overlapping Cervical Cell Instance Segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2020, Lima, Peru, 4–8 October 2020; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2020; p. 12261. [Google Scholar]
- Dey, P. Artificial neural network in diagnostic cytology. Cytojournal 2022, 2, 19–27. [Google Scholar] [CrossRef]
- Truong, H.; Morimoto, R.; Walts, A.E.; Erler, B.; Marchevsky, A. Neural networks as an aid in the diagnosis of lymphocyte-rich effusions. Anal. Quant. Cytol. Histol. 1995, 17, 48–54. [Google Scholar]
- Fang, W.; Wang, L.; Ren, P. Tinier-yolo: A real-time object detection method for constrained environments. IEEE Access 2019, 8, 1935–1944. [Google Scholar] [CrossRef]
- Ali, H.M.; El Abbadi, N.K. Optic disc localization in retinal fundus images based on you only look once network (yolo). Int. J. Intell. Eng. Syst. 2023, 16, 2. [Google Scholar]
- Liang, L.; Wang, Z.; Ye, X. Application of deep learning in imaging diagnosis of brain diseases. In Proceedings of the 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 3–5 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 166–175. [Google Scholar]
- Honda, H.; Mori, S.; Watanabe, A.; Sasagasako, N.; Sadashima, S.; Đồng, T.; Satoh, K.; Nishida, N.; Iwaki, T. Abnormal prion protein deposits with high seeding activities in the skeletal muscle, femoral nerve, and scalp of an autopsied case of sporadic Creutzfeldt–Jakob disease. Neuropathology 2021, 41, 152–158. [Google Scholar] [CrossRef]
- Zhuang, Z.; Liu, G.; Ding, W.; Sasagasako, N.; Sadashima, S.; Đồng, T.; Satoh, K.; Nishida, N.; Iwaki, T. Cardiac vfm visualization and analysis based on yolo deep learning model and modified 2d continuity equation. Comput. Med. Imaging Graph. 2020, 82, 101732. [Google Scholar] [CrossRef] [PubMed]
- Rong, R.; Sheng, H.; Jin, K.W.; Wu, F.; Luo, D.; Wen, Z.; Tang, C.; Donghan, M.; Yang, D.; Jia, L.; et al. A deep learning approach for histology-based nuclei segmentation and tumor microenvironment characterization. bioRxiv 2022, 12, 519641. [Google Scholar]
- Elazab, N.; Gab-Allah, W.-A.; Elmogy, M. A multi-class brain tumor grading system based on histopathological images using a hybrid YOLO and RESNET networks. Sci. Rep. 2024, 14, 4584. [Google Scholar] [CrossRef]
- Topuz, Y.; Yildiz, S.; Varli, S. Performance analysis of the YOLO series for object detection: Detection of mitosis cells in histopathology images. In Proceedings of the 2023 Medical Technologies Congress, Famagusta, Cyprus, 10–12 November 2023; pp. 1–4. [Google Scholar]
- Ikeda, K.; Sakabe, N.; Ito, C.; Shimoyama, Y.; Toda, K.; Fukuda, K.; Yoshizaki, Y.; Sato, S.; Nagata, K. Staining, magnification, and algorithmic conditions for highly accurate cell detection and cell classification by deep learning. Am. J. Clin. Pathol. 2024, 16, 399–441. [Google Scholar] [CrossRef]
- Wang, S.; Rong, R.; Yang, D.M.; Fujimoto, J.; Yan, S.; Cai, L.; Yang, L.; Luo, D.; Behrens, C.; Parra, E.R.; et al. Computational Staining of Pathology Images to Study the Tumor Microenvironment in Lung Cancer. Cancer Res. 2020, 80, 2056–2066. [Google Scholar] [CrossRef]
- Tomita, N.; Tafe, L.J.; Suriawinata, A.A.; Tsongalis, G.J.; Nasir-Moin, M.; Dragnev, K.; Hassanpour, S. Predicting Oncogene Mutations of Lung Cancer Using Deep Learning and Histopathologic Features on Whole-Slide Images. Transl. Oncol. 2022, 24, 101494. [Google Scholar] [CrossRef]
- Ragab, M.G.; Abdulkadir, S.G.; Muneer, A.; Alqushaibi, A.; Sumiea, E.H.; Qureshi, R.; Al-Selwi, S.M.; Alhussian, H. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access 2024, 12, 57815–57836. [Google Scholar] [CrossRef]
- Pao, J.J.; Biggs, M.; Duncan, D.; Lin, D.I.; Davis, R.; Huang, R.S.P.; Ferguson, D.; Janovitz, T.; Hiemenz, M.C.; Eddy, N.R.; et al. Predicting EGFR Mutational Status from Pathology Images Using a Real-World Dataset. Sci. Rep. 2023, 13, 4404. [Google Scholar] [CrossRef]
- McAlpine, E.; Michelow, P.; Liebenberg, E.; Turgay Celik, T. Are synthetic cytology images ready for prime time? A comparative assessment of real and synthetic urine cytology images. J. Am. Soc. Cytopathol. 2023, 12, 126–135. [Google Scholar] [CrossRef]
- Sabnam, S.; Rajagopal, S. Application of generative adversarial networks in image, face reconstruction and medical imaging: Challenges and the current progress. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2024, 12, 126–135. [Google Scholar] [CrossRef]
- Teramoto, A.; Tsukamoto, T.; Yamada, A.; Kiriyama, Y.; Imaizumi, K.; Saito, K.; Fujita, H. Deep Learning Approach to Classification of Lung Cytological Images: Two-Step Training Using Actual and Synthesized Images by Progressive Growing of Generative Adversarial Networks. PLoS ONE 2020, 15, 229951. [Google Scholar] [CrossRef] [PubMed]
Reference | Pleural Effusion Data Set | Cell Detection Approaches | Metrics |
---|---|---|---|
Xie et al. [23] | Lung adenocarcinoma | ResNet-18 | AUC 0.67–0.83 |
Park et al. [18] | Breast cancer | Inception-ResNet-V2 | Sensitivity 95% Specificity 98.6% Accuracy 81.1% |
Wang et al. [24] | Malignant/nonmalignant cells | ViT vision transformer ResNet-50 Vgg-16 Fundus-DeepNet | Accuracy 96.8 Accuracy 87.3 Accuracy 83.9 Accuracy 88.7 |
Ren et al. [25] | Lung adenocarcinoma Breast cancer Gastric adenocarcinoma | ResNet-2 | AUC 0.807 AUC 0.737 AUC 0.955 |
Chen et al. [29] | Lung adenocarcinoma | Inception v3 Yolov4 | mAP 20% Accuracy 98% |
Baykal et al. [30] | Pleural effusion Nuclear detection | Faster R-CNN with ResNet-101 | Precision 99.34% Recall 96.93% |
Mavropoulos et al. [31] | Breast cancer | Inception v3 | AUC 0.96 |
Reference | YOLO Model | Cytopathology Application |
---|---|---|
Chen et al. [29] | YOLOv4 | Pleural effusion cytology |
Nambu et al. [45] | YOLOv4 | Cervical cytology |
Wu et al. [46] | YOLOv5 | Bronchoalveolar lavage cells |
Shi et al. [47] | YOLOv4 | Cervical cytology |
Tarimo et al. [48] | YOLOv5 | Blood cells |
Wijaya et al. [49] | YOLOv8 | Cervical cytology |
Wang et al. [50] | YOLOv7 | Lung cancer cytology (biopsy) |
Terasaki et al. [51] | YOLOv5 | Endometrial cytology |
Rumpf et al. [52] | YOLOv7 | Bronchoalveolar lavage cells |
Awad et al. [53] | YOLOv8-YOLOv11 | Blood cells (ALL) |
Images 969 | Annotations 6390 | Average size 3.92 mp | Median image ratio 2288 × 1712 |
All splits adk cells 3260 ms cells 3130 | Training set adk 2573 ms 2468 | Validation set adk 345 ms 309 | Test set adk 342 ms 353 |
Models | F1 Score | Precision | Recall | mAP50 | mAP50-95 |
---|---|---|---|---|---|
YOLOv8 | 0.72 | 0.673 | 0.784 | 0.777 | 0.662 |
YOLOv11 | 0.72 | 0.701 | 0.756 | 0.796 | 0.681 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giarnieri, E.; Carico, E.; Scarpino, S.; Ricci, A.; Bruno, P.; Scardapane, S.; Giansanti, D. Bringing AI to Clinicians: Simplifying Pleural Effusion Cytology Diagnosis with User-Friendly Models. Diagnostics 2025, 15, 1240. https://doi.org/10.3390/diagnostics15101240
Giarnieri E, Carico E, Scarpino S, Ricci A, Bruno P, Scardapane S, Giansanti D. Bringing AI to Clinicians: Simplifying Pleural Effusion Cytology Diagnosis with User-Friendly Models. Diagnostics. 2025; 15(10):1240. https://doi.org/10.3390/diagnostics15101240
Chicago/Turabian StyleGiarnieri, Enrico, Elisabetta Carico, Stefania Scarpino, Alberto Ricci, Pierdonato Bruno, Simone Scardapane, and Daniele Giansanti. 2025. "Bringing AI to Clinicians: Simplifying Pleural Effusion Cytology Diagnosis with User-Friendly Models" Diagnostics 15, no. 10: 1240. https://doi.org/10.3390/diagnostics15101240
APA StyleGiarnieri, E., Carico, E., Scarpino, S., Ricci, A., Bruno, P., Scardapane, S., & Giansanti, D. (2025). Bringing AI to Clinicians: Simplifying Pleural Effusion Cytology Diagnosis with User-Friendly Models. Diagnostics, 15(10), 1240. https://doi.org/10.3390/diagnostics15101240