Atrial Cardiomyopathy in Atrial Fibrillation: A Multimodal Diagnostic Framework
Abstract
:1. Introduction
- Early (subclinical) stage: characterized by the presence of subtle atrial abnormalities identifiable through advanced imaging or electrophysiologic assessment, in the absence of overt arrhythmia or mechanical dysfunction. These changes are often asymptomatic and represent early atrial remodeling;
- Intermediate (clinically overt) stage: defined by measurable structural alterations (e.g., atrial enlargement), impaired atrial contractility, or elevated circulating biomarkers such as B-type natriuretic peptide (BNP) or atrial natriuretic peptide (ANP). Atrial fibrillation may be present at this stage, indicating clinically significant substrate dysfunction;
- Advanced (severe) stage: reflects substantial deterioration of atrial function, including marked reduction in left atrial ejection fraction (≤35%), low atrial appendage flow velocities (≤20 cm/s), or severely impaired strain parameters. This stage may also involve extensive structural remodeling such as dense interstitial fibrosis (≥35% of atrial wall volume), fatty or amyloid infiltration, or active inflammation. Severe left atrial enlargement (diameter ≥ 5.0 cm or volume index ≥ 50 mL/m2) and the presence of long-standing persistent or permanent atrial fibrillation are common.
2. Advancements in Diagnostic Imaging
2.1. Advanced Atrial Imaging in the Diagnostic Evaluation of AtCM
2.2. Quantitative Assessment of Atrial Chamber Dimensions and Functional Dynamics
2.3. Late Gadolinium-Enhanced Cardiac Magnetic Resonance for Left Atrial Tissue Characterization
2.4. Electroanatomic Mapping
2.5. Imaging Predictors of AF Onset
2.6. Recurrent AF
2.7. Atrial Remodeling and Reverse Remodeling
2.8. Imaging and Risk Stratification
3. Biomarkers, Omics, and ECG Parameters
3.1. Blood Biomarkers
Limitations of Blood Biomarkers
3.2. Mult-Omics, AF, and AtCM
3.3. ECG Abnormalities in AtCM
Artificial Intelligence-Based ECG Analysis in AtCM
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, S.; Zhou, J.; Veang, T.; Lin, Q.; Liu, Q. Global, Regional, and National Burden of Atrial Fibrillation and Atrial Flutter from 1990 to 2021: Sex Differences and Global Burden Projections to 2046—A Systematic Analysis of the Global Burden of Disease Study 2021. Europace 2025, 27, euaf027. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef]
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial Fibrillation: Epidemiology, Screening and Digital Health. Lancet Reg. Health Eur. 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Bengtson, L.G.S. A Rising Tide: The Global Epidemic of Atrial Fibrillation. Circulation 2014, 129, 829–830. [Google Scholar] [CrossRef] [PubMed]
- Linz, D.; Andrade, J.G.; Arbelo, E.; Boriani, G.; Breithardt, G.; Camm, A.J.; Caso, V.; Nielsen, J.C.; De Melis, M.; De Potter, T.; et al. Longer and Better Lives for Patients with Atrial Fibrillation: The 9th AFNET/EHRA Consensus Conference. Europace 2024, 26, euae070. [Google Scholar] [CrossRef]
- Karakasis, P.; Pamporis, K.; Siontis, K.C.; Theofilis, P.; Samaras, A.; Patoulias, D.; Stachteas, P.; Karagiannidis, E.; Stavropoulos, G.; Tzikas, A.; et al. Major Clinical Outcomes in Symptomatic vs. Asymptomatic Atrial Fibrillation: A Meta-Analysis. Eur. Heart J. 2024, 46, 1189–1202. [Google Scholar] [CrossRef]
- Pamporis, K.; Karakasis, P.; Sagris, M.; Theofilis, P.; Milaras, N.; Pantelidaki, A.; Mourouzis, I.; Fragakis, N.; Vlachos, K.; Kordalis, A.; et al. Prevalence of Asymptomatic Atrial Fibrillation and Risk Factors Associated with Asymptomatic Status: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2025, zwaf138. [Google Scholar] [CrossRef]
- Goette, A.; Corradi, D.; Dobrev, D.; Aguinaga, L.; Cabrera, J.-A.; Chugh, S.S.; de Groot, J.R.; Soulat-Dufour, L.; Fenelon, G.; Hatem, S.N.; et al. Atrial Cardiomyopathy Revisited-Evolution of a Concept: A Clinical Consensus Statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace 2024, 26, euae204. [Google Scholar] [CrossRef]
- Shen, M.J.; Arora, R.; Jalife, J. Atrial Myopathy. JACC Basic Transl. Sci. 2019, 4, 640–654. [Google Scholar] [CrossRef]
- Boriani, G.; Gerra, L.; Mantovani, M.; Tartaglia, E.; Mei, D.A.; Imberti, J.F.; Vitolo, M.; Bonini, N. Atrial Cardiomyopathy: An Entity of Emerging Interest in the Clinical Setting. Eur. J. Intern. Med. 2023, 118, 14–21. [Google Scholar] [CrossRef]
- Sade, L.E.; Faletra, F.F.; Pontone, G.; Gerber, B.L.M.; Muraru, D.; Edvardsen, T.; Cosyns, B.; Popescu, B.A.; Klein, A.; Marwick, T.H.; et al. The Role of Multi-Modality Imaging for the Assessment of Left Atrium and Left Atrial Appendage: A Clinical Consensus Statement of the European Association of Cardiovascular Imaging (EACVI), European Heart Rhythm Association (EHRA) of the European Society. Eur. Heart J. Cardiovasc. Imaging 2025, 26, 385–413. [Google Scholar] [CrossRef]
- Nattel, S. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin. Electrophysiol. 2017, 3, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Heijman, J.; Muna, A.P.; Veleva, T.; Molina, C.E.; Sutanto, H.; Tekook, M.; Wang, Q.; Abu-Taha, I.H.; Gorka, M.; Künzel, S.; et al. Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for Postoperative Atrial Fibrillation. Circ. Res. 2020, 127, 1036–1055. [Google Scholar] [CrossRef]
- Yao, C.; Veleva, T.; Scott, L.J.; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.D.; et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018, 138, 2227–2242. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G. Epicardial Adipose Tissue in Contemporary Cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Moñivas-Palomero, V.; Mingo-Santos, S.; Andersen, Ø.S.; Gude, E.; et al. Determinants of Left Atrial Reservoir and Pump Strain and Use of Atrial Strain for Evaluation of Left Ventricular Filling Pressure. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 61–70. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Morris, D.A.; Cardim, N.; Cikes, M.; Delgado, V.; Donal, E.; Flachskampf, F.A.; Galderisi, M.; Gerber, B.L.; Gimelli, A.; et al. Multimodality Imaging in Patients with Heart Failure and Preserved Ejection Fraction: An Expert Consensus Document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e34–e61. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Raniga, D.; Goda, M.; Hattingh, L.; Thorning, S.; Rowe, M.; Howes, L. Left Atrial Volume Index: A Predictor of Atrial Fibrillation Recurrence Following Direct Current Cardioversion—A Systematic Review and Meta-Analysis. Int. J. Cardiol. Heart Vasc. 2024, 51, 101364. [Google Scholar] [CrossRef] [PubMed]
- Meucci, M.C.; Fortuni, F.; Galloo, X.; Bootsma, M.; Crea, F.; Bax, J.J.; Marsan, N.A.; Delgado, V. Left Atrioventricular Coupling Index in Hypertrophic Cardiomyopathy and Risk of New-Onset Atrial Fibrillation. Int. J. Cardiol. 2022, 363, 87–93. [Google Scholar] [CrossRef]
- Pezel, T.; Ambale-Venkatesh, B.; Quinaglia, T.; Heckbert, S.R.; Kato, Y.; de Vasconcellos, H.D.; Wu, C.O.; Post, W.S.; Henry, P.; Bluemke, D.A.; et al. Change in Left Atrioventricular Coupling Index to Predict Incident Atrial Fibrillation: The Multi-Ethnic Study of Atherosclerosis (MESA). Radiology 2022, 303, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Shih, J.-Y.; Tsai, W.-C.; Huang, Y.-Y.; Liu, Y.-W.; Lin, C.-C.; Huang, Y.-S.; Tsai, L.-M.; Lin, L.-J. Association of Decreased Left Atrial Strain and Strain Rate with Stroke in Chronic Atrial Fibrillation. J. Am. Soc. Echocardiogr. 2011, 24, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Kurotobi, T.; Iwakura, K.; Inoue, K.; Kimura, R.; Toyoshima, Y.; Ito, N.; Mizuno, H.; Shimada, Y.; Fujii, K.; Nanto, S.; et al. The Significance of the Shape of the Left Atrial Roof as a Novel Index for Determining the Electrophysiological and Structural Characteristics in Patients with Atrial Fibrillation. Europace 2011, 13, 803–808. [Google Scholar] [CrossRef]
- Mangiafico, V.; Saberwal, B.; Lavalle, C.; Raharja, A.; Ahmed, Z.; Papageorgiou, N.; Ahsan, S. The Role of CT in Detecting AF Substrate. Trends Cardiovasc. Med. 2021, 31, 457–466. [Google Scholar] [CrossRef]
- Nedios, S.; Sanatkhani, S.; Oladosu, M.; Seewöster, T.; Richter, S.; Arya, A.; Heijman, J.; Crijns, H.J.; Hindricks, G.; Bollmann, A.; et al. Association of Low-Voltage Areas with the Regional Wall Deformation and the Left Atrial Shape in Patients with Atrial Fibrillation: A Proof of Concept Study. Int. J. Cardiol. Heart Vasc. 2021, 33, 100730. [Google Scholar] [CrossRef]
- Obokata, M.; Negishi, K.; Kurosawa, K.; Tateno, R.; Tange, S.; Arai, M.; Amano, M.; Kurabayashi, M. Left Atrial Strain Provides Incremental Value for Embolism Risk Stratification over CHA₂DS₂-VASc Score and Indicates Prognostic Impact in Patients with Atrial Fibrillation. J. Am. Soc. Echocardiogr. 2014, 27, 709–716.e4. [Google Scholar] [CrossRef]
- Azemi, T.; Rabdiya, V.M.; Ayirala, S.R.; McCullough, L.D.; Silverman, D.I. Left Atrial Strain Is Reduced in Patients with Atrial Fibrillation, Stroke or TIA, and Low Risk CHADS(2) Scores. J. Am. Soc. Echocardiogr. 2012, 25, 1327–1332. [Google Scholar] [CrossRef]
- Watanabe, E.; Miyagawa, M.; Uetani, T.; Kinoshita, M.; Kitazawa, R.; Kurata, M.; Ishimura, H.; Matsuda, T.; Tanabe, Y.; Kido, T.; et al. Positron Emission Tomography/Computed Tomography Detection of Increased (18)F-Fluorodeoxyglucose Uptake in the Cardiac Atria of Patients with Atrial Fibrillation. Int. J. Cardiol. 2019, 283, 171–177. [Google Scholar] [CrossRef]
- Niemelä, M.; Uusitalo, V.; Pöyhönen, P.; Schildt, J.; Lehtonen, J.; Kupari, M. Incidence and Predictors of Atrial Fibrillation in Cardiac Sarcoidosis: A Multimodality Imaging Study. JACC Cardiovasc. Imaging 2022, 15, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Kupusovic, J.; Kessler, L.; Bruns, F.; Bohnen, J.-E.; Nekolla, S.G.; Weber, M.M.; Lauenroth, A.; Rattka, M.; Hermann, K.; Dobrev, D.; et al. Visualization of Fibroblast Activation Using (68)Ga-FAPI PET/CT after Pulmonary Vein Isolation with Pulsed Field Compared with Cryoballoon Ablation. J. Nucl. Cardiol. 2023, 30, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, J.; Chen, B.-X.; Liu, X.; Shi, L.; Wang, Y.; Wang, L.; Wang, Y.; Su, P.; Yang, M.-F.; et al. Fibroblast Activation Protein Imaging in Atrial Fibrillation: A Proof-of-Concept Study. J. Nucl. Cardiol. 2023, 30, 2712–2720. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.; Wang, B.; Yu, W.; Zhai, L.S.; Qian, B.; Zhang, F.; Liu, B.; Wang, J.; Shao, X.; Shi, Y.; et al. Right Atrial Wall Inflammation Detected by (18)F-FDG PET/CT May Be Significantly Associated with Persistent Atrial Fibrillation: A Prospective Case-Control Study. BMC Cardiovasc. Disord. 2023, 23, 587. [Google Scholar] [CrossRef]
- Kassar, A.; Chamoun, N.; Haykal, R.; Chahine, Y.; Babb, M.; Al Yasiri, H.; Hensley, T.; Andrikopoulou, E.; Akoum, N. Atrial FDG Uptake and Atrial Fibrillation: A Systematic Review and Meta-Analysis. Heart Rhythm O2 2025, 6, 417–423. [Google Scholar] [CrossRef]
- Wang, H.; Po, S.; Zhang, Y. PET-MRI Imaging to Assess Severity and Distribution of Atrial Fibrosis in Atrial Fibrillation. Europace 2024, 26, euae102–euae682. [Google Scholar] [CrossRef]
- Wilk, B.; Lim, H.; Hicks, J.; Sullivan, R.; Thiessen, J.D.; Kovacs, M.; Sykes, J.; Biernaski, H.; Duffett, S.; Prato, F.S.; et al. Complexities of Atrial Fibrosis Imaging: Exploring Relationships Between Endocardial Voltage, Extracellular Volume, and Sympathetic Innervation. JACC Clin. Electrophysiol. 2025, 11, 735–748. [Google Scholar] [CrossRef]
- Bäck, S.; Lantz, J.; Skoda, I.; Henriksson, L.; Persson, A.; Karlsson, L.O.; Carlhäll, C.-J.; Ebbers, T. Comprehensive Left Atrial Flow Component Analysis Reveals Abnormal Flow Patterns in Paroxysmal Atrial Fibrillation. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H511–H521. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, E.; Selmeryd, J.; Leppert, J.; Hedberg, P. Echocardiographic Assessment of Maximum and Minimum Left Atrial Volumes: A Population-Based Study of Middle-Aged and Older Subjects without Apparent Cardiovascular Disease. Int. J. Cardiovasc. Imaging 2015, 31, 57–64. [Google Scholar] [CrossRef]
- Higuchi, S.; Voskoboinik, A.; Im, S.I.; Lee, A.; Olgin, J.; Arbil, A.; Afzal, J.; Marcus, G.M.; Stillson, C.; Bibby, D.; et al. Frequent Premature Atrial Contractions Lead to Adverse Atrial Remodeling and Atrial Fibrillation in a Swine Model. Circulation 2024, 149, 463–474. [Google Scholar] [CrossRef]
- Marino, P.N.; Degiovanni, A.; Zanaboni, J. Complex Interaction between the Atrium and the Ventricular Filling Process: The Role of Conduit. Open Heart 2019, 6, e001042. [Google Scholar] [CrossRef]
- Aronson, D.; Sliman, H.; Abadi, S.; Maiorov, I.; Perlow, D.; Mutlak, D.; Lessick, J. Conduit Flow Compensates for Impaired Left Atrial Passive and Booster Functions in Advanced Diastolic Dysfunction. Circ. Cardiovasc. Imaging 2024, 17, e016276. [Google Scholar] [CrossRef]
- Hoit, B.D. Left Atrial Reservoir Strain: Its Time Has Come. JACC Cardiovasc. Imaging 2022, 15, 392–394. [Google Scholar] [CrossRef]
- Leung, M.; van Rosendael, P.J.; Abou, R.; Ajmone Marsan, N.; Leung, D.Y.; Delgado, V.; Bax, J.J. Left Atrial Function to Identify Patients with Atrial Fibrillation at High Risk of Stroke: New Insights from a Large Registry. Eur. Heart J. 2018, 39, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Stojanovska, J.; Cronin, P.; Patel, S.; Gross, B.H.; Oral, H.; Chughtai, K.; Kazerooni, E.A. Reference Normal Absolute and Indexed Values from ECG-Gated MDCT: Left Atrial Volume, Function, and Diameter. AJR Am. J. Roentgenol. 2011, 197, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Doria de Vasconcellos, H.; Win, T.T.; Chamera, E.; Hong, S.Y.; Venkatesh, B.A.; Young, P.; Yang, X.; Ciuffo, L.; Sharma, R.K.; Imai, M.; et al. References Values for Left Atrial Volumes, Emptying Fractions, Strains, and Strain Rates and Their Determinants by Age, Gender, and Ethnicity: The Multiethnic Study of Atherosclerosis (MESA). Acad. Radiol. 2021, 28, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Kawel-Boehm, N.; Hetzel, S.J.; Ambale-Venkatesh, B.; Captur, G.; Francois, C.J.; Jerosch-Herold, M.; Salerno, M.; Teague, S.D.; Valsangiacomo-Buechel, E.; van der Geest, R.J.; et al. Reference Ranges (“normal Values”) for Cardiovascular Magnetic Resonance (CMR) in Adults and Children: 2020 Update. J. Cardiovasc. Magn. Reson. 2020, 22, 87. [Google Scholar] [CrossRef]
- Krittanawong, C.; Maitra, N.S.; Hassan Virk, H.U.; Farrell, A.; Hamzeh, I.; Arya, B.; Pressman, G.S.; Wang, Z.; Marwick, T.H. Normal Ranges of Right Atrial Strain: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Imaging 2023, 16, 282–294. [Google Scholar] [CrossRef]
- Soulat-Dufour, L.; Addetia, K.; Miyoshi, T.; Citro, R.; Daimon, M.; Fajardo, P.G.; Kasliwal, R.R.; Kirkpatrick, J.N.; Monaghan, M.J.; Muraru, D.; et al. Normal Values of Right Atrial Size and Function According to Age, Sex, and Ethnicity: Results of the World Alliance Societies of Echocardiography Study. J. Am. Soc. Echocardiogr. 2021, 34, 286–300. [Google Scholar] [CrossRef]
- Kou, S.; Caballero, L.; Dulgheru, R.; Voilliot, D.; De Sousa, C.; Kacharava, G.; Athanassopoulos, G.D.; Barone, D.; Baroni, M.; Cardim, N.; et al. Echocardiographic Reference Ranges for Normal Cardiac Chamber Size: Results from the NORRE Study. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 680–690. [Google Scholar] [CrossRef]
- Singh, A.; Carvalho Singulane, C.; Miyoshi, T.; Prado, A.D.; Addetia, K.; Bellino, M.; Daimon, M.; Gutierrez Fajardo, P.; Kasliwal, R.R.; Kirkpatrick, J.N.; et al. Normal Values of Left Atrial Size and Function and the Impact of Age: Results of the World Alliance Societies of Echocardiography Study. J. Am. Soc. Echocardiogr. 2022, 35, 154–164.e3. [Google Scholar] [CrossRef]
- Aquaro, G.D.; De Gori, C.; Faggioni, L.; Parisella, M.L.; Cioni, D.; Lencioni, R.; Neri, E. Diagnostic and Prognostic Role of Late Gadolinium Enhancement in Cardiomyopathies. Eur. Heart J. Suppl. 2023, 25, C130–C136. [Google Scholar] [CrossRef]
- Okasha, O.; Kazmirczak, F.; Chen, K.-H.A.; Farzaneh-Far, A.; Shenoy, C. Myocardial Involvement in Patients with Histologically Diagnosed Cardiac Sarcoidosis: A Systematic Review and Meta-Analysis of Gross Pathological Images From Autopsy or Cardiac Transplantation Cases. J. Am. Heart Assoc. 2019, 8, e011253. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Lip, G.Y.H.; Galderisi, M.; Goette, A.; Shah, D.; Marwan, M.; Lederlin, M.; Mondillo, S.; Edvardsen, T.; Sitges, M.; et al. EACVI/EHRA Expert Consensus Document on the Role of Multi-Modality Imaging for the Evaluation of Patients with Atrial Fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 355–383. [Google Scholar] [CrossRef] [PubMed]
- Goette, A.; Kalman, J.M.; Aguinaga, L.; Akar, J.; Cabrera, J.A.; Chen, S.A.; Chugh, S.S.; Corradi, D.; D’Avila, A.; Dobrev, D.; et al. EHRA/HRS/APHRS/SOLAECE Expert Consensus on Atrial Cardiomyopathies: Definition, Characterization, and Clinical Implication. Europace 2016, 18, 1455–1490. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.M.; Sarairah, S.; Kwan, K.T.; Scott, G.D.; Mohamedali, F.; Anderson, C.A.; Bifulco, S.F.; Ordovas, K.G.; Prutkin, J.; Robinson, M.; et al. Elevated Fibrosis Burden as Assessed by MRI Predicts Cryoballoon Ablation Failure. J. Cardiovasc. Electrophysiol. 2023, 34, 302–312. [Google Scholar] [CrossRef]
- Eichenlaub, M.; Mueller-Edenborn, B.; Minners, J.; Figueras i Ventura, R.M.; Forcada, B.R.; Colomer, A.V.; Hein, M.; Ruile, P.; Lehrmann, H.; Schoechlin, S.; et al. Comparison of Various Late Gadolinium Enhancement Magnetic Resonance Imaging Methods with High-Definition Voltage and Activation Mapping for Detection of Atrial Cardiomyopathy. EP Eur. 2022, 24, 1102–1111. [Google Scholar] [CrossRef]
- Flett, A.S.; Hayward, M.P.; Ashworth, M.T.; Hansen, M.S.; Taylor, A.M.; Elliott, P.M.; McGregor, C.; Moon, J.C. Equilibrium Contrast Cardiovascular Magnetic Resonance for the Measurement of Diffuse Myocardial Fibrosis: Preliminary Validation in Humans. Circulation 2010, 122, 138–144. [Google Scholar] [CrossRef]
- Platonov, P.G.; Mitrofanova, L.B.; Orshanskaya, V.; Ho, S.Y. Structural Abnormalities in Atrial Walls Are Associated with Presence and Persistency of Atrial Fibrillation but Not with Age. J. Am. Coll. Cardiol. 2011, 58, 2225–2232. [Google Scholar] [CrossRef]
- Karakasis, P.; Theofilis, P.; Vlachakis, P.K.; Korantzopoulos, P.; Patoulias, D.; Antoniadis, A.P.; Fragakis, N. Atrial Fibrosis in Atrial Fibrillation: Mechanistic Insights, Diagnostic Challenges, and Emerging Therapeutic Targets. Int. J. Mol. Sci. 2024, 26, 209. [Google Scholar] [CrossRef]
- Karakasis, P.; Theofilis, P.; Lefkou, E.; Antoniadis, A.P.; Patoulias, D.; Korantzopoulos, P.; Fragakis, N. Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation: Insights into Pathophysiology and Clinical Implications. Int. J. Mol. Sci. 2025, 26, 2739. [Google Scholar] [CrossRef] [PubMed]
- Zahid, S.; Cochet, H.; Boyle, P.M.; Schwarz, E.L.; Whyte, K.N.; Vigmond, E.J.; Dubois, R.; Hocini, M.; Haïssaguerre, M.; Jaïs, P.; et al. Patient-Derived Models Link Re-Entrant Driver Localization in Atrial Fibrillation to Fibrosis Spatial Pattern. Cardiovasc. Res. 2016, 110, 443–454. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation: The DECAAF Study. JAMA 2014, 311, 498–506. [Google Scholar] [CrossRef] [PubMed]
- King, J.B.; Azadani, P.N.; Suksaranjit, P.; Bress, A.P.; Witt, D.M.; Han, F.T.; Chelu, M.G.; Silver, M.A.; Biskupiak, J.; Wilson, B.D.; et al. Left Atrial Fibrosis and Risk of Cerebrovascular and Cardiovascular Events in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2017, 70, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Bisbal, F.; Benito, E.; Teis, A.; Alarcón, F.; Sarrias, A.; Caixal, G.; Villuendas, R.; Garre, P.; Soto, N.; Cozzari, J.; et al. Magnetic Resonance Imaging-Guided Fibrosis Ablation for the Treatment of Atrial Fibrillation: The ALICIA Trial. Circ. Arrhythm. Electrophysiol. 2020, 13, e008707. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wazni, O.; McGann, C.; Greene, T.; Dean, J.M.; Dagher, L.; Kholmovski, E.; Mansour, M.; Marchlinski, F.; Wilber, D.; et al. Effect of MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation on Atrial Arrhythmia Recurrence in Patients with Persistent Atrial Fibrillation: The DECAAF II Randomized Clinical Trial. JAMA 2022, 327, 2296–2305. [Google Scholar] [CrossRef]
- Chen, J.; Arentz, T.; Cochet, H.; Müller-Edenborn, B.; Kim, S.; Moreno-Weidmann, Z.; Minners, J.; Kohl, P.; Lehrmann, H.; Allgeier, J.; et al. Extent and Spatial Distribution of Left Atrial Arrhythmogenic Sites, Late Gadolinium Enhancement at Magnetic Resonance Imaging, and Low-Voltage Areas in Patients with Persistent Atrial Fibrillation: Comparison of Imaging vs. Electrical Parameters of Fibr. EP Eur. 2019, 21, 1484–1493. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Otsubo, T.; Takahashi, Y.; Nakashima, K.; Fukui, A.; Hirota, K.; Ishii, Y.; Shinzato, K.; Osako, R.; Tahara, M.; et al. Atrial Structural Remodeling in Patients with Atrial Fibrillation Is a Diffuse Fibrotic Process: Evidence from High-Density Voltage Mapping and Atrial Biopsy. J. Am. Heart Assoc. 2022, 11, e024521. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yamaguchi, T.; Otsubo, T.; Nakashima, K.; Shinzato, K.; Osako, R.; Shichida, S.; Kawano, Y.; Fukui, A.; Kawaguchi, A.; et al. Histological Validation of Atrial Structural Remodelling in Patients with Atrial Fibrillation. Eur. Heart J. 2023, 44, 3339–3353. [Google Scholar] [CrossRef]
- Xintarakou, A.; Tzeis, S.; Psarras, S.; Asvestas, D.; Vardas, P. Atrial Fibrosis as a Dominant Factor for the Development of Atrial Fibrillation: Facts and Gaps. EP Eur. 2020, 22, 342–351. [Google Scholar] [CrossRef]
- Kottkamp, H.; Bender, R.; Berg, J. Catheter Ablation of Atrial Fibrillation: How to Modify the Substrate? J. Am. Coll. Cardiol. 2015, 65, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Kapa, S.; Desjardins, B.; Callans, D.J.; Marchlinski, F.E.; Dixit, S. Contact Electroanatomic Mapping Derived Voltage Criteria for Characterizing Left Atrial Scar in Patients Undergoing Ablation for Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2014, 25, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Spragg, D.D.; Khurram, I.; Zimmerman, S.L.; Yarmohammadi, H.; Barcelon, B.; Needleman, M.; Edwards, D.; Marine, J.E.; Calkins, H.; Nazarian, S. Initial Experience with Magnetic Resonance Imaging of Atrial Scar and Co-Registration with Electroanatomic Voltage Mapping during Atrial Fibrillation: Success and Limitations. Heart Rhythm. 2012, 9, 2003–2009. [Google Scholar] [CrossRef]
- Jadidi, A.S.; Cochet, H.; Shah, A.J.; Kim, S.J.; Duncan, E.; Miyazaki, S.; Sermesant, M.; Lehrmann, H.; Lederlin, M.; Linton, N.; et al. Inverse Relationship between Fractionated Electrograms and Atrial Fibrosis in Persistent Atrial Fibrillation: Combined Magnetic Resonance Imaging and High-Density Mapping. J. Am. Coll. Cardiol. 2013, 62, 802–812. [Google Scholar] [CrossRef]
- Zghaib, T.; Keramati, A.; Chrispin, J.; Huang, D.; Balouch, M.A.; Ciuffo, L.; Berger, R.D.; Marine, J.E.; Ashikaga, H.; Calkins, H.; et al. Multimodal Examination of Atrial Fibrillation Substrate: Correlation of Left Atrial Bipolar Voltage Using Multi-Electrode Fast Automated Mapping, Point-by-Point Mapping, and Magnetic Resonance Image Intensity Ratio. JACC Clin. Electrophysiol. 2018, 4, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Eichenlaub, M.; Mueller-Edenborn, B.; Lehrmann, H.; Minners, J.; Nairn, D.; Loewe, A.; Allgeier, J.; Jander, N.; Allgeier, M.; Ruile, P.; et al. Non-Invasive Body Surface Electrocardiographic Imaging for Diagnosis of Atrial Cardiomyopathy. EP Eur. 2021, 23, 2010–2019. [Google Scholar] [CrossRef]
- Brisinda, D.; Fenici, P.; Fenici, R. Clinical Magnetocardiography: The Unshielded Bet-Past, Present, and Future. Front. Cardiovasc. Med. 2023, 10, 1232882. [Google Scholar] [CrossRef]
- Her, A.-Y.; Shin, E.-S.; Zhou, Q.; Wierzbinski, J.; Vidal-Lopez, S.; Saleh, A.; Kim, Y.H.; Garg, S.; Jung, F.; Brachmann, J. Magnetocardiography Detects Left Atrial Dysfunction in Paroxysmal Atrial Fibrillation. Clin. Hemorheol. Microcirc. 2019, 72, 353–363. [Google Scholar] [CrossRef]
- Lim, D.J.; Ambale-Ventakesh, B.; Ostovaneh, M.R.; Zghaib, T.; Ashikaga, H.; Wu, C.; Watson, K.E.; Hughes, T.; Shea, S.; Heckbert, S.R.; et al. Change in Left Atrial Function Predicts Incident Atrial Fibrillation: The Multi-Ethnic Study of Atherosclerosis. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 979–987. [Google Scholar] [CrossRef]
- Habibi, M.; Samiei, S.; Ambale Venkatesh, B.; Opdahl, A.; Helle-Valle, T.M.; Zareian, M.; Almeida, A.L.C.; Choi, E.-Y.; Wu, C.; Alonso, A.; et al. Cardiac Magnetic Resonance-Measured Left Atrial Volume and Function and Incident Atrial Fibrillation: Results From MESA (Multi-Ethnic Study of Atherosclerosis). Circ. Cardiovasc. Imaging 2016, 9, e004299. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Skaarup, K.G.; Hauser, R.; Johansen, N.D.; Lassen, M.C.H.; Jensen, G.B.; Schnohr, P.; Møgelvang, R.; Biering-Sørensen, T. Normal Values and Reference Ranges for Left Atrial Strain by Speckle-Tracking Echocardiography: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 42–51. [Google Scholar] [CrossRef]
- Hauser, R.; Nielsen, A.B.; Skaarup, K.G.; Lassen, M.C.H.; Duus, L.S.; Johansen, N.D.; Sengeløv, M.; Marott, J.L.; Jensen, G.; Schnohr, P.; et al. Left Atrial Strain Predicts Incident Atrial Fibrillation in the General Population: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 52–60. [Google Scholar] [CrossRef]
- Hirose, T.; Kawasaki, M.; Tanaka, R.; Ono, K.; Watanabe, T.; Iwama, M.; Noda, T.; Watanabe, S.; Takemura, G.; Minatoguchi, S. Left Atrial Function Assessed by Speckle Tracking Echocardiography as a Predictor of New-Onset Non-Valvular Atrial Fibrillation: Results from a Prospective Study in 580 Adults. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Xie, E.; Yu, R.; Ambale-Venkatesh, B.; Bakhshi, H.; Heckbert, S.R.; Soliman, E.Z.; Bluemke, D.A.; Kawut, S.M.; Wu, C.O.; Nazarian, S.; et al. Association of Right Atrial Structure with Incident Atrial Fibrillation: A Longitudinal Cohort Cardiovascular Magnetic Resonance Study from the Multi-Ethnic Study of Atherosclerosis (MESA). J. Cardiovasc. Magn. Reson. 2020, 22, 36. [Google Scholar] [CrossRef]
- West, H.W.; Siddique, M.; Williams, M.C.; Volpe, L.; Desai, R.; Lyasheva, M.; Thomas, S.; Dangas, K.; Kotanidis, C.P.; Tomlins, P.; et al. Deep-Learning for Epicardial Adipose Tissue Assessment with Computed Tomography: Implications for Cardiovascular Risk Prediction. JACC Cardiovasc. Imaging 2023, 16, 800–816. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.; Jayabaskaran, J.; Ruban, J.; Goh, R.; Chin, Y.H.; Kong, G.; Ng, C.H.; Lin, C.; Loong, S.; Muthiah, M.D.; et al. Epicardial Adipose Tissue Assessed by Computed Tomography and Echocardiography Are Associated with Adverse Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Imaging 2023, 16, e015159. [Google Scholar] [CrossRef] [PubMed]
- Al Chekakie, M.O.; Welles, C.C.; Metoyer, R.; Ibrahim, A.; Shapira, A.R.; Cytron, J.; Santucci, P.; Wilber, D.J.; Akar, J.G. Pericardial Fat Is Independently Associated with Human Atrial Fibrillation. J. Am. Coll. Cardiol. 2010, 56, 784–788. [Google Scholar] [CrossRef]
- Huber, M.P.; Pandit, J.A.; Jensen, P.N.; Wiggins, K.L.; Patel, R.B.; Freed, B.H.; Bertoni, A.G.; Shah, S.J.; Heckbert, S.R.; Floyd, J.S. Left Atrial Strain and the Risk of Atrial Arrhythmias from Extended Ambulatory Cardiac Monitoring: MESA. J. Am. Heart Assoc. 2022, 11, e026875. [Google Scholar] [CrossRef]
- Heckbert, S.R.; Jensen, P.N.; Austin, T.R.; Chen, L.Y.; Post, W.S.; Ambale Venkatesh, B.; Soliman, E.Z.; Floyd, J.S.; Sotoodehnia, N.; Kronmal, R.A.; et al. Associations of Left Atrial Function and Structure with Supraventricular Ectopy: The Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2021, 10, e018093. [Google Scholar] [CrossRef]
- Tops, L.F.; Delgado, V.; Bertini, M.; Marsan, N.A.; Den Uijl, D.W.; Trines, S.A.I.P.; Zeppenfeld, K.; Holman, E.; Schalij, M.J.; Bax, J.J. Left Atrial Strain Predicts Reverse Remodeling after Catheter Ablation for Atrial Fibrillation. J. Am. Coll. Cardiol. 2011, 57, 324–331. [Google Scholar] [CrossRef]
- Soulat-Dufour, L.; Lang, S.; Addetia, K.; Ederhy, S.; Adavane-Scheuble, S.; Chauvet-Droit, M.; Jean, M.-L.; Nhan, P.; Ben Said, R.; Kamami, I.; et al. Restoring Sinus Rhythm Reverses Cardiac Remodeling and Reduces Valvular Regurgitation in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 79, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Tsao, H.-M.; Liao, C.-F.; Chen, Z.-Y.; Chao, T.-F.; Chen, S.-A. Multimodality Imaging Assessment of the Biatrial Remodeling of the Burden of Atrial High-Rate Episodes in Patients with Cardiac Implanted Electronic Devices. Int. J. Cardiol. 2023, 371, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Tsao, H.-M.; Hu, W.-C.; Tsai, P.-H.; Lee, C.-L.; Wang, H.-H.; Chang, S.-L.; Chao, T.-F.; Chen, S.-A. Functional Remodeling of Both Atria Is Associated with Occurrence of Stroke in Patients with Paroxysmal and Persistent Atrial Fibrillation. Acta Cardiol. Sin. 2017, 33, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Shim, C.Y.; Hong, G.-R.; Kim, M.-H.; Seo, J.; Cho, I.J.; Kim, Y.D.; Chang, H.-J.; Ha, J.-W.; Heo, J.H.; et al. Clinical Implications and Determinants of Left Atrial Mechanical Dysfunction in Patients with Stroke. Stroke 2016, 47, 1444–1451. [Google Scholar] [CrossRef]
- Huang, T.; Patrick, S.; Mayer, L.K.; Müller-Edenborn, B.; Eichenlaub, M.; Allgeier, M.; Allgeier, J.; Lehrmann, H.; Ahlgrim, C.; Bohnen, M.; et al. Echocardiographic and Electrocardiographic Determinants of Atrial Cardiomyopathy Identify Patients with Atrial Fibrillation at Risk for Left Atrial Thrombogenesis. J. Clin. Med. 2022, 11, 1332. [Google Scholar] [CrossRef]
- Burrell, L.D.; Horne, B.D.; Anderson, J.L.; Muhlestein, J.B.; Whisenant, B.K. Usefulness of Left Atrial Appendage Volume as a Predictor of Embolic Stroke in Patients with Atrial Fibrillation. Am. J. Cardiol. 2013, 112, 1148–1152. [Google Scholar] [CrossRef]
- Di Biase, L.; Santangeli, P.; Anselmino, M.; Mohanty, P.; Salvetti, I.; Gili, S.; Horton, R.; Sanchez, J.E.; Bai, R.; Mohanty, S.; et al. Does the Left Atrial Appendage Morphology Correlate with the Risk of Stroke in Patients with Atrial Fibrillation? Results from a Multicenter Study. J. Am. Coll. Cardiol. 2012, 60, 531–538. [Google Scholar] [CrossRef]
- Markl, M.; Lee, D.C.; Furiasse, N.; Carr, M.; Foucar, C.; Ng, J.; Carr, J.; Goldberger, J.J. Left Atrial and Left Atrial Appendage 4D Blood Flow Dynamics in Atrial Fibrillation. Circ. Cardiovasc. Imaging 2016, 9, e004984. [Google Scholar] [CrossRef]
- Spartera, M.; Stracquadanio, A.; Pessoa-Amorim, G.; Von Ende, A.; Fletcher, A.; Manley, P.; Ferreira, V.M.; Hess, A.T.; Hopewell, J.C.; Neubauer, S.; et al. The Impact of Atrial Fibrillation and Stroke Risk Factors on Left Atrial Blood Flow Characteristics. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 115–123. [Google Scholar] [CrossRef]
- Ayubcha, C.; Amanullah, A.; Patel, K.H.; Teichner, E.; Gokhale, S.; Marquez-Valenzuela, U.; Werner, T.J.; Alavi, A. Stroke and Molecular Imaging: A Focus on FDG-PET. Am. J. Nucl. Med. Mol. Imaging 2023, 13, 51–63. [Google Scholar]
- Müller, P.; Makimoto, H.; Dietrich, J.W.; Fochler, F.; Nentwich, K.; Krug, J.; Duncker, D.; Blockhaus, C.; Kelm, M.; Fürnkranz, A.; et al. Association of Left Atrial Low-Voltage Area and Thromboembolic Risk in Patients with Atrial Fibrillation. EP Eur. 2018, 20, f359–f365. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Voskoboinik, A.; McLellan, A.J.A.; Peck, K.Y.; Pathik, B.; Nalliah, C.J.; Wong, G.R.; Azzopardi, S.M.; Lee, G.; Mariani, J.; et al. Biatrial Electrical and Structural Atrial Changes in Heart Failure: Electroanatomic Mapping in Persistent Atrial Fibrillation in Humans. JACC Clin. Electrophysiol. 2018, 4, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Matsuda, Y.; Uematsu, H.; Sugino, A.; Ooka, H.; Kudo, S.; Fujii, S.; Asai, M.; Okamoto, S.; Ishihara, T.; et al. Prognostic Impact of Atrial Cardiomyopathy: Long-Term Follow-up of Patients with and without Low-Voltage Areas Following Atrial Fibrillation Ablation. Heart Rhythm 2024, 21, 378–386. [Google Scholar] [CrossRef]
- Kamel, H.; Longstreth, W.T.J.; Tirschwell, D.L.; Kronmal, R.A.; Broderick, J.P.; Palesch, Y.Y.; Meinzer, C.; Dillon, C.; Ewing, I.; Spilker, J.A.; et al. The AtRial Cardiopathy and Antithrombotic Drugs In Prevention After Cryptogenic Stroke Randomized Trial: Rationale and Methods. Int. J. Stroke 2019, 14, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Longstreth, W.T.J.; Tirschwell, D.L.; Kronmal, R.A.; Marshall, R.S.; Broderick, J.P.; Aragón García, R.; Plummer, P.; Sabagha, N.; Pauls, Q.; et al. Apixaban to Prevent Recurrence After Cryptogenic Stroke in Patients With Atrial Cardiopathy: The ARCADIA Randomized Clinical Trial. JAMA 2024, 331, 573–581. [Google Scholar] [CrossRef]
- Maheshwari, A.; Norby, F.L.; Inciardi, R.M.; Wang, W.; Zhang, M.J.; Soliman, E.Z.; Alonso, A.; Johansen, M.C.; Gottesman, R.F.; Solomon, S.D.; et al. Left Atrial Mechanical Dysfunction and the Risk for Ischemic Stroke in People Without Prevalent Atrial Fibrillation or Stroke: A Prospective Cohort Study. Ann. Intern. Med. 2023, 176, 39–48. [Google Scholar] [CrossRef]
- Johansen, M.C.; Wang, W.; Zhang, M.; Knopman, D.S.; Ndumele, C.; Mosley, T.H.; Selvin, E.; Shah, A.M.; Solomon, S.D.; Gottesman, R.F.; et al. Risk of Dementia Associated With Atrial Cardiopathy: The ARIC Study. J. Am. Heart Assoc. 2022, 11, e025646. [Google Scholar] [CrossRef]
- Khan, A.A.; Lip, G.Y.H. The Prothrombotic State in Atrial Fibrillation: Pathophysiological and Management Implications. Cardiovasc. Res. 2019, 115, 31–45. [Google Scholar] [CrossRef]
- Ding, W.Y.; Gupta, D.; Lip, G.Y.H. Atrial Fibrillation and the Prothrombotic State: Revisiting Virchow’s Triad in 2020. Heart 2020, 106, 1463–1468. [Google Scholar] [CrossRef]
- Mukherjee, R.; Akar, J.G.; Wharton, J.M.; Adams, D.K.; McClure, C.D.; Stroud, R.E.; Rice, A.D.; DeSantis, S.M.; Spinale, F.G.; Gold, M.R. Plasma Profiles of Matrix Metalloproteinases and Tissue Inhibitors of the Metalloproteinases Predict Recurrence of Atrial Fibrillation Following Cardioversion. J. Cardiovasc. Transl. Res. 2013, 6, 528–535. [Google Scholar] [CrossRef]
- Lee, K.K.; Doudesis, D.; Anwar, M.; Astengo, F.; Chenevier-Gobeaux, C.; Claessens, Y.-E.; Wussler, D.; Kozhuharov, N.; Strebel, I.; Sabti, Z.; et al. Development and Validation of a Decision Support Tool for the Diagnosis of Acute Heart Failure: Systematic Review, Meta-Analysis, and Modelling Study. BMJ 2022, 377, e068424. [Google Scholar] [CrossRef]
- Mu, X.; Qiu, M.; Li, Y.; Li, Z.; Qi, B.; Jing, Z.; Jing, Q. N-Terminal pro-B-Type Natriuretic Peptide Improves the Predictive Value of CHA(2) DS(2) -VASc Risk Score for Long-Term Cardiovascular Events in Acute Coronary Syndrome Patients with Atrial Fibrillation. Clin. Cardiol. 2023, 46, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Nasab Mehrabi, E.; Toupchi-Khosroshahi, V.; Athari, S.S. Relationship of Atrial Fibrillation and N Terminal pro Brain Natriuretic Peptide in Heart Failure Patients. ESC Heart Fail. 2023, 10, 3250–3257. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Nambi, V.; Bell, E.J.; Oluleye, O.W.; Gottesman, R.F.; Lutsey, P.L.; Huxley, R.R.; Ballantyne, C.M. Troponin T, N-Terminal pro-B-Type Natriuretic Peptide, and Incidence of Stroke: The Atherosclerosis Risk in Communities Study. Stroke 2013, 44, 961–967. [Google Scholar] [CrossRef]
- Sun, W.-P.; Du, X.; Chen, J.-J. Biomarkers for Predicting the Occurrence and Progression of Atrial Fibrillation: Soluble Suppression of Tumorigenicity 2 Protein and Tissue Inhibitor of Matrix Metalloproteinase-1. Int. J. Clin. Pract. 2022, 2022, 6926510. [Google Scholar] [CrossRef] [PubMed]
- Reyat, J.S.; Chua, W.; Cardoso, V.R.; Witten, A.; Kastner, P.M.; Kabir, S.N.; Sinner, M.F.; Wesselink, R.; Holmes, A.P.; Pavlovic, D.; et al. Reduced Left Atrial Cardiomyocyte PITX2 and Elevated Circulating BMP10 Predict Atrial Fibrillation after Ablation. JCI Insight 2020, 5, e139179. [Google Scholar] [CrossRef]
- Hijazi, Z.; Benz, A.P.; Lindbäck, J.; Alexander, J.H.; Connolly, S.J.; Eikelboom, J.W.; Granger, C.B.; Kastner, P.; Lopes, R.D.; Ziegler, A.; et al. Bone Morphogenetic Protein 10: A Novel Risk Marker of Ischaemic Stroke in Patients with Atrial Fibrillation. Eur. Heart J. 2023, 44, 208–218. [Google Scholar] [CrossRef]
- Hennings, E.; Blum, S.; Aeschbacher, S.; Coslovsky, M.; Knecht, S.; Eken, C.; Lischer, M.; Paladini, R.E.; Krisai, P.; Reichlin, T.; et al. Bone Morphogenetic Protein 10-A Novel Biomarker to Predict Adverse Outcomes in Patients with Atrial Fibrillation. J. Am. Heart Assoc. 2023, 12, e028255. [Google Scholar] [CrossRef]
- Chung, M.K.; Martin, D.O.; Sprecher, D.; Wazni, O.; Kanderian, A.; Carnes, C.A.; Bauer, J.A.; Tchou, P.J.; Niebauer, M.J.; Natale, A.; et al. C-Reactive Protein Elevation in Patients with Atrial Arrhythmias: Inflammatory Mechanisms and Persistence of Atrial Fibrillation. Circulation 2001, 104, 2886–2891. [Google Scholar] [CrossRef]
- Conway, D.S.G.; Pearce, L.A.; Chin, B.S.P.; Hart, R.G.; Lip, G.Y.H. Prognostic Value of Plasma von Willebrand Factor and Soluble P-Selectin as Indices of Endothelial Damage and Platelet Activation in 994 Patients with Nonvalvular Atrial Fibrillation. Circulation 2003, 107, 3141–3145. [Google Scholar] [CrossRef]
- Esteve-Pastor, M.A.; Roldán, V.; Rivera-Caravaca, J.M.; Ramírez-Macías, I.; Lip, G.Y.H.; Marín, F. The Use of Biomarkers in Clinical Management Guidelines: A Critical Appraisal. Thromb. Haemost. 2019, 119, 1901–1919. [Google Scholar] [CrossRef] [PubMed]
- Camelo-Castillo, A.; Rivera-Caravaca, J.M.; Marín, F.; Vicente, V.; Lip, G.Y.H.; Roldán, V. Predicting Adverse Events beyond Stroke and Bleeding with the ABC-Stroke and ABC-Bleeding Scores in Patients with Atrial Fibrillation: The Murcia AF Project. Thromb. Haemost. 2020, 120, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Gorog, D.A.; Gue, Y.X.; Chao, T.-F.; Fauchier, L.; Ferreiro, J.L.; Huber, K.; Konstantinidis, S.V.; Lane, D.A.; Marin, F.; Oldgren, J.; et al. Assessment and Mitigation of Bleeding Risk in Atrial Fibrillation and Venous Thromboembolism: Executive Summary of a European and Asia-Pacific Expert Consensus Paper. Thromb. Haemost. 2022, 122, 1625–1652. [Google Scholar] [CrossRef]
- Xie, S.; Li, Q.; Luk, A.O.Y.; Lan, H.-Y.; Chan, P.K.S.; Bayés-Genís, A.; Chan, F.K.L.; Fung, E. Major Adverse Cardiovascular Events and Mortality Prediction by Circulating GDF-15 in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Biomolecules 2022, 12, 934. [Google Scholar] [CrossRef]
- Ding, W.Y.; McDowell, G.; Lip, G.Y.H. Utilizing Biomarkers in Atrial Fibrillation: The Pros and Cons. Cardiovasc. Res. 2022, 118, 2035–2036. [Google Scholar] [CrossRef] [PubMed]
- Fatkin, D.; Huttner, I.G.; Johnson, R. Genetics of Atrial Cardiomyopathy. Curr. Opin. Cardiol. 2019, 34, 275–281. [Google Scholar] [CrossRef]
- Marcoux, E.; Sosnowski, D.; Ninni, S.; Mackasey, M.; Cadrin-Tourigny, J.; Roberts, J.D.; Olesen, M.S.; Fatkin, D.; Nattel, S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2023, 16, 675–698. [Google Scholar] [CrossRef]
- Orr, N.; Arnaout, R.; Gula, L.J.; Spears, D.A.; Leong-Sit, P.; Li, Q.; Tarhuni, W.; Reischauer, S.; Chauhan, V.S.; Borkovich, M.; et al. A Mutation in the Atrial-Specific Myosin Light Chain Gene (MYL4) Causes Familial Atrial Fibrillation. Nat. Commun. 2016, 7, 11303. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Arnar, D.O.; Helgadottir, A.; Gretarsdottir, S.; Holm, H.; Sigurdsson, A.; Jonasdottir, A.; Baker, A.; Thorleifsson, G.; Kristjansson, K.; et al. Variants Conferring Risk of Atrial Fibrillation on Chromosome 4q25. Nature 2007, 448, 353–357. [Google Scholar] [CrossRef]
- Disertori, M.; Quintarelli, S.; Grasso, M.; Pilotto, A.; Narula, N.; Favalli, V.; Canclini, C.; Diegoli, M.; Mazzola, S.; Marini, M.; et al. Autosomal Recessive Atrial Dilated Cardiomyopathy with Standstill Evolution Associated with Mutation of Natriuretic Peptide Precursor A. Circ. Cardiovasc. Genet. 2013, 6, 27–36. [Google Scholar] [CrossRef]
- Schulze-Bahr, E.; Neu, A.; Friederich, P.; Kaupp, U.B.; Breithardt, G.; Pongs, O.; Isbrandt, D. Pacemaker Channel Dysfunction in a Patient with Sinus Node Disease. J. Clin. Investig. 2003, 111, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.B.; Gando, I.; Bu, L.; Cecchin, F.; Coetzee, W. A Homozygous SCN5A Mutation Associated with Atrial Standstill and Sudden Death. Pacing Clin. Electrophysiol. 2018, 41, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Mondragon, R.; Edokobi, N.; Hodges, S.L.; Wang, S.; Bouza, A.A.; Canugovi, C.; Scheuing, C.; Juratli, L.; Abel, W.R.; Noujaim, S.F.; et al. Neonatal Scn1b-Null Mice Have Sinoatrial Node Dysfunction, Altered Atrial Structure, and Atrial Fibrillation. JCI Insight 2022, 7, e152050. [Google Scholar] [CrossRef]
- Duparc, A.; Cintas, P.; Somody, E.; Bieth, E.; Richard, P.; Maury, P.; Delay, M. A Cardio-Neurological Form of Laminopathy: Dilated Cardiomyopathy with Permanent Partial Atrial Standstill and Axonal Neuropathy. Pacing Clin. Electrophysiol. 2009, 32, 410–415. [Google Scholar] [CrossRef] [PubMed]
- van Setten, J.; Brody, J.A.; Jamshidi, Y.; Swenson, B.R.; Butler, A.M.; Campbell, H.; Del Greco, F.M.; Evans, D.S.; Gibson, Q.; Gudbjartsson, D.F.; et al. PR Interval Genome-Wide Association Meta-Analysis Identifies 50 Loci Associated with Atrial and Atrioventricular Electrical Activity. Nat. Commun. 2018, 9, 2904. [Google Scholar] [CrossRef]
- Wild, P.S.; Felix, J.F.; Schillert, A.; Teumer, A.; Chen, M.-H.; Leening, M.J.G.; Völker, U.; Großmann, V.; Brody, J.A.; Irvin, M.R.; et al. Large-Scale Genome-Wide Analysis Identifies Genetic Variants Associated with Cardiac Structure and Function. J. Clin. Investig. 2017, 127, 1798–1812. [Google Scholar] [CrossRef]
- Roselli, C.; Chaffin, M.D.; Weng, L.-C.; Aeschbacher, S.; Ahlberg, G.; Albert, C.M.; Almgren, P.; Alonso, A.; Anderson, C.D.; Aragam, K.G.; et al. Multi-Ethnic Genome-Wide Association Study for Atrial Fibrillation. Nat. Genet. 2018, 50, 1225–1233. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Thorolfsdottir, R.B.; Fritsche, L.G.; Zhou, W.; Skov, M.W.; Graham, S.E.; Herron, T.J.; McCarthy, S.; Schmidt, E.M.; Sveinbjornsson, G.; et al. Biobank-Driven Genomic Discovery Yields New Insight into Atrial Fibrillation Biology. Nat. Genet. 2018, 50, 1234–1239. [Google Scholar] [CrossRef]
- Steenman, M. Insight into Atrial Fibrillation through Analysis of the Coding Transcriptome in Humans. Biophys. Rev. 2020, 12, 817–826. [Google Scholar] [CrossRef]
- Man, J.C.K.; van Duijvenboden, K.; Krijger, P.H.L.; Hooijkaas, I.B.; van der Made, I.; de Gier-de Vries, C.; Wakker, V.; Creemers, E.E.; de Laat, W.; Boukens, B.J.; et al. Genetic Dissection of a Super Enhancer Controlling the Nppa-Nppb Cluster in the Heart. Circ. Res. 2021, 128, 115–129. [Google Scholar] [CrossRef]
- Cao, T.H.; Quinn, P.A.; Sandhu, J.K.; Voors, A.A.; Lang, C.C.; Parry, H.M.; Mohan, M.; Jones, D.J.L.; Ng, L.L. Identification of Novel Biomarkers in Plasma for Prediction of Treatment Response in Patients with Heart Failure. Lancet 2015, 385, S26. [Google Scholar] [CrossRef] [PubMed]
- Çubukçuoğlu Deniz, G.; Durdu, S.; Doğan, Y.; Erdemli, E.; Özdağ, H.; Akar, A.R. Molecular Signatures of Human Chronic Atrial Fibrillation in Primary Mitral Regurgitation. Cardiovasc. Ther. 2021, 2021, 5516185. [Google Scholar] [CrossRef]
- Zeemering, S.; Isaacs, A.; Winters, J.; Maesen, B.; Bidar, E.; Dimopoulou, C.; Guasch, E.; Batlle, M.; Haase, D.; Hatem, S.N.; et al. Atrial Fibrillation in the Presence and Absence of Heart Failure Enhances Expression of Genes Involved in Cardiomyocyte Structure, Conduction Properties, Fibrosis, Inflammation, and Endothelial Dysfunction. Heart Rhythm 2022, 19, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Franco, A.; Rouco, R.; Ramirez, R.J.; Guerrero-Serna, G.; Tiana, M.; Cogliati, S.; Kaur, K.; Saeed, M.; Magni, R.; Enriquez, J.A.; et al. Transcriptome and Proteome Mapping in the Sheep Atria Reveal Molecular Featurets of Atrial Fibrillation Progression. Cardiovasc. Res. 2021, 117, 1760–1775. [Google Scholar] [CrossRef] [PubMed]
- Roselli, C.; Rienstra, M.; Ellinor, P.T. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ. Res. 2020, 127, 21–33. [Google Scholar] [CrossRef]
- van Ouwerkerk, A.F.; Bosada, F.M.; van Duijvenboden, K.; Hill, M.C.; Montefiori, L.E.; Scholman, K.T.; Liu, J.; de Vries, A.A.F.; Boukens, B.J.; Ellinor, P.T.; et al. Identification of Atrial Fibrillation Associated Genes and Functional Non-Coding Variants. Nat. Commun. 2019, 10, 4755. [Google Scholar] [CrossRef]
- Shen, K.; Tu, T.; Yuan, Z.; Yi, J.; Zhou, Y.; Liao, X.; Liu, Q.; Zhou, X. DNA Methylation Dysregulations in Valvular Atrial Fibrillation. Clin. Cardiol. 2017, 40, 686–691. [Google Scholar] [CrossRef]
- Doñate Puertas, R.; Meugnier, E.; Romestaing, C.; Rey, C.; Morel, E.; Lachuer, J.; Gadot, N.; Scridon, A.; Julien, C.; Tronc, F.; et al. Atrial Fibrillation Is Associated with Hypermethylation in Human Left Atrium, and Treatment with Decitabine Reduces Atrial Tachyarrhythmias in Spontaneously Hypertensive Rats. Transl. Res. 2017, 184, 57–67.e5. [Google Scholar] [CrossRef]
- Ward-Caviness, C.K. Accelerated Epigenetic Aging and Incident Atrial Fibrillation: New Outlook on an Immutable Risk Factor? Circulation 2021, 144, 1912–1914. [Google Scholar] [CrossRef]
- Roberts, J.D.; Vittinghoff, E.; Lu, A.T.; Alonso, A.; Wang, B.; Sitlani, C.M.; Mohammadi-Shemirani, P.; Fornage, M.; Kornej, J.; Brody, J.A.; et al. Epigenetic Age and the Risk of Incident Atrial Fibrillation. Circulation 2021, 144, 1899–1911. [Google Scholar] [CrossRef]
- Brundel, B.J.J.M.; Li, J.; Zhang, D. Role of HDACs in Cardiac Electropathology: Therapeutic Implications for Atrial Fibrillation. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118459. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhang, R.; Mo, B.; Chen, L.; Liu, L.; Yu, Y.; Cao, W.; Fang, G.; Wan, Y.; Gu, Y.; et al. EZH2 as a Novel Therapeutic Target for Atrial Fibrosis and Atrial Fibrillation. J. Mol. Cell. Cardiol. 2019, 135, 119–133. [Google Scholar] [CrossRef]
- Chen, L.Y.; Ribeiro, A.L.P.; Platonov, P.G.; Cygankiewicz, I.; Soliman, E.Z.; Gorenek, B.; Ikeda, T.; Vassilikos, V.P.; Steinberg, J.S.; Varma, N.; et al. P Wave Parameters and Indices: A Critical Appraisal of Clinical Utility, Challenges, and Future Research-A Consensus Document Endorsed by the International Society of Electrocardiology and the International Society for Holter and Noninvasive Electrocardi. Circ. Arrhythm. Electrophysiol. 2022, 15, e010435. [Google Scholar] [CrossRef]
- Kreimer, F.; Gotzmann, M. Left Atrial Cardiomyopathy—A Challenging Diagnosis. Front. Cardiovasc. Med. 2022, 9, 942385. [Google Scholar] [CrossRef]
- Bayés de Luna, A.; Platonov, P.; Cosio, F.G.; Cygankiewicz, I.; Pastore, C.; Baranowski, R.; Bayés-Genis, A.; Guindo, J.; Viñolas, X.; Garcia-Niebla, J.; et al. Interatrial Blocks. A Separate Entity from Left Atrial Enlargement: A Consensus Report. J. Electrocardiol. 2012, 45, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Josephson, M.E.; Hauser, T.H.; O’Halloran, T.D.; Agarwal, A.; Manning, W.J.; Yeon, S.B. Accuracy of Electrocardiographic Criteria for Atrial Enlargement: Validation with Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2008, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Bayés de Luna, A.; Cladellas, M.; Oter, R.; Torner, P.; Guindo, J.; Martí, V.; Rivera, I.; Iturralde, P. Interatrial Conduction Block and Retrograde Activation of the Left Atrium and Paroxysmal Supraventricular Tachyarrhythmia. Eur. Heart J. 1988, 9, 1112–1118. [Google Scholar] [CrossRef]
- Power, D.A.; Lampert, J.; Camaj, A.; Bienstock, S.W.; Kocovic, N.; Bayes-Genis, A.; Miller, M.A.; Bayés-de-Luna, A.; Fuster, V. Cardiovascular Complications of Interatrial Conduction Block: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 1199–1211. [Google Scholar] [CrossRef]
- Intzes, S.; Zagoridis, K.; Symeonidou, M.; Spanoudakis, E.; Arya, A.; Dinov, B.; Dagres, N.; Hindricks, G.; Bollmann, A.; Kanoupakis, E.; et al. P-Wave Duration and Atrial Fibrillation Recurrence after Catheter Ablation: A Systematic Review and Meta-Analysis. Europace 2023, 25, 450–459. [Google Scholar] [CrossRef]
- Wu, J.-T.; Long, D.-Y.; Dong, J.-Z.; Wang, S.-L.; Fan, X.-W.; Yang, H.-T.; Duan, H.-Y.; Yan, L.-J.; Qian, P.; Yang, C.-K. Advanced Interatrial Block Predicts Clinical Recurrence of Atrial Fibrillation after Catheter Ablation. J. Cardiol. 2016, 68, 352–356. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Kühl, J.T.; Pietersen, A.; Graff, C.; Lind, B.; Struijk, J.J.; Olesen, M.S.; Sinner, M.F.; Bachmann, T.N.; Haunsø, S.; et al. P-Wave Duration and the Risk of Atrial Fibrillation: Results from the Copenhagen ECG Study. Heart Rhythm. 2015, 12, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, A.; Özkartal, T.; Salghetti, F.; Neumann, L.; Pezzuto, S.; Gharaviri, A.; Demarchi, A.; Caputo, M.L.; Regoli, F.; De Asmundis, C.; et al. Short P-Wave Duration Is a Marker of Higher Rate of Atrial Fibrillation Recurrences after Pulmonary Vein Isolation: New Insights into the Pathophysiological Mechanisms Through Computer Simulations. J. Am. Heart Assoc. 2021, 10, e018572. [Google Scholar] [CrossRef]
- Jadidi, A.; Müller-Edenborn, B.; Chen, J.; Keyl, C.; Weber, R.; Allgeier, J.; Moreno-Weidmann, Z.; Trenk, D.; Neumann, F.-J.; Lehrmann, H.; et al. The Duration of the Amplified Sinus-P-Wave Identifies Presence of Left Atrial Low Voltage Substrate and Predicts Outcome After Pulmonary Vein Isolation in Patients With Persistent Atrial Fibrillation. JACC Clin. Electrophysiol. 2018, 4, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Müller-Edenborn, B.; Chen, J.; Allgeier, J.; Didenko, M.; Moreno-Weidmann, Z.; Neumann, F.-J.; Lehrmann, H.; Weber, R.; Arentz, T.; Jadidi, A. Amplified Sinus-P-Wave Reveals Localization and Extent of Left Atrial Low-Voltage Substrate: Implications for Arrhythmia Freedom Following Pulmonary Vein Isolation. EP Eur. 2020, 22, 240–249. [Google Scholar] [CrossRef]
- Müller-Edenborn, B.; Minners, J.; Keyl, C.; Eichenlaub, M.; Jander, N.; Abdelrazek, S.; Ahlgrim, C.; Allgeier, J.; Lehrmann, H.; Neumann, F.-J.; et al. Electrocardiographic Diagnosis of Atrial Cardiomyopathy to Predict Atrial Contractile Dysfunction, Thrombogenesis and Adverse Cardiovascular Outcomes. Sci. Rep. 2022, 12, 576. [Google Scholar] [CrossRef]
- German, D.M.; Kabir, M.M.; Dewland, T.A.; Henrikson, C.A.; Tereshchenko, L.G. Atrial Fibrillation Predictors: Importance of the Electrocardiogram. Ann. Noninvasive Electrocardiol. 2016, 21, 20–29. [Google Scholar] [CrossRef]
- McConkey, N.; Malamas, P.; Norby, F.L.; Plamenac, J.; Park, R.; Weigel, F.; Gonzalez, M.D.; Naccarelli, G.V.; Maheshwari, A. Abnormal P-Wave Terminal Force in Lead V1 Is Associated with Low Left Atrial Appendage Ejection Velocity. J. Electrocardiol. 2021, 67, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Truong, Q.A.; Charipar, E.M.; Ptaszek, L.M.; Taylor, C.; Fontes, J.D.; Kriegel, M.; Irlbeck, T.; Mahabadi, A.A.; Blankstein, R.; Hoffmann, U. Usefulness of Electrocardiographic Parameters as Compared with Computed Tomography Measures of Left Atrial Volume Enlargement: From the ROMICAT Trial. J. Electrocardiol. 2011, 44, 257–264. [Google Scholar] [CrossRef]
- Lebek, S.; Wester, M.; Pec, J.; Poschenrieder, F.; Tafelmeier, M.; Fisser, C.; Provaznik, Z.; Schopka, S.; Debl, K.; Schmid, C.; et al. Abnormal P-Wave Terminal Force in Lead V(1) Is a Marker for Atrial Electrical Dysfunction but Not Structural Remodelling. ESC Heart Fail. 2021, 8, 4055–4066. [Google Scholar] [CrossRef]
- Li, R.; Yang, X.; Jia, M.; Wang, D.; Cui, X.; Bai, L.; Zhao, L.; Zhang, J. Effectiveness of P-Wave ECG Index and Left Atrial Appendage Volume in Predicting Atrial Fibrillation Recurrence after First Radiofrequency Catheter Ablation. BMC Cardiovasc. Disord. 2021, 21, 164. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, Z.; Wu, B.; Tang, L.; Xie, X.; Dong, R.; Luo, Y.; Li, S.; Zhu, J.; Liu, J. Predictive Value of P Wave Terminal Force in Lead V1 for Atrial Fibrillation: A Meta-Analysis. Ann. Noninvasive Electrocardiol. 2020, 25, e12739. [Google Scholar] [CrossRef] [PubMed]
- Leshem, E.; Zilberman, I.; Tschabrunn, C.M.; Barkagan, M.; Contreras-Valdes, F.M.; Govari, A.; Anter, E. High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization. JACC Clin. Electrophysiol. 2018, 4, 467–479. [Google Scholar] [CrossRef]
- Müller-Edenborn, B.; Minners, J.; Kocher, S.; Chen, J.; Zeh, W.; Lehrmann, H.; Allgeier, J.; Neumann, F.-J.; Arentz, T.; Jadidi, A. Amplified P-Wave Duration Predicts New-Onset Atrial Fibrillation in Patients with Heart Failure with Preserved Ejection Fraction. Clin. Res. Cardiol. 2020, 109, 978–987. [Google Scholar] [CrossRef]
- Alexander, B.; Milden, J.; Hazim, B.; Haseeb, S.; Bayes-Genis, A.; Elosua, R.; Martínez-Sellés, M.; Yeung, C.; Hopman, W.; Bayes de Luna, A.; et al. New Electrocardiographic Score for the Prediction of Atrial Fibrillation: The MVP ECG Risk Score (Morphology-Voltage-P-Wave Duration). Ann. Noninvasive Electrocardiol. 2019, 24, e12669. [Google Scholar] [CrossRef]
- Park, J.-K.; Park, J.; Uhm, J.-S.; Joung, B.; Lee, M.-H.; Pak, H.-N. Low P-Wave Amplitude (<0.1 MV) in Lead I Is Associated with Displaced Inter-Atrial Conduction and Clinical Recurrence of Paroxysmal Atrial Fibrillation after Radiofrequency Catheter Ablation. Europace 2016, 18, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Wei, T.; Zhao, R.; Wang, C.; Chen, L.; Wang, L. Electrocardiographic Diagnosis of Left Atrial Enlargement in Patients with Mitral Stenosis: The Value of the P-Wave Area. Acta Cardiol. 2003, 58, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Tse, G.; Lakhani, I.; Zhou, J.; Li, K.H.C.; Lee, S.; Liu, Y.; Leung, K.S.K.; Liu, T.; Baranchuk, A.; Zhang, Q. P-Wave Area Predicts New Onset Atrial Fibrillation in Mitral Stenosis: A Machine Learning Approach. Front. Bioeng. Biotechnol. 2020, 8, 479. [Google Scholar] [CrossRef]
- Dilaveris, P.E.; Gialafos, E.J.; Sideris, S.K.; Theopistou, A.M.; Andrikopoulos, G.K.; Kyriakidis, M.; Gialafos, J.E.; Toutouzas, P.K. Simple Electrocardiographic Markers for the Prediction of Paroxysmal Idiopathic Atrial Fibrillation. Am. Heart J. 1998, 135, 733–738. [Google Scholar] [CrossRef]
- Marks, D.; Ho, R.; Then, R.; Weinstock, J.L.; Teklemariam, E.; Kakadia, B.; Collins, J.; Andriulli, J.; Hunter, K.; Ortman, M.; et al. Real-World Experience with Implantable Loop Recorder Monitoring to Detect Subclinical Atrial Fibrillation in Patients with Cryptogenic Stroke: The Value of p Wave Dispersion in Predicting Arrhythmia Occurrence. Int. J. Cardiol. 2021, 327, 86–92. [Google Scholar] [CrossRef]
- İçen, Y.K.; Koca, H.; Sümbül, H.E.; Yıldırım, A.; Koca, F.; Yıldırım, A.; Ardıc, M.L.; Coşkun, M.; Uğurlu, M.; Koç, M. Relationship between Coarse F Waves and Thromboembolic Events in Patients with Permanent Atrial Fibrillation. J. Arrhythmia 2020, 36, 1025–1031. [Google Scholar] [CrossRef]
- Aysha, M.H.; Hassan, A.S. Diagnostic Importance of Fibrillatory Wave Amplitude: A Clue to Echocardiographic Left Atrial Size and Etiology of Atrial Fibrillation. J. Electrocardiol. 1988, 21, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, C.; Leshem, E.; Blau, I.; Kim, S.; Lee, J.M.; Hwang, J.-A.; Choi, B.-I.; Lee, M.-H.; Hwang, H.J. Early Differentiation of Long-Standing Persistent Atrial Fibrillation Using the Characteristics of Fibrillatory Waves in Surface ECG Multi-Leads. Sci. Rep. 2019, 9, 2746. [Google Scholar] [CrossRef]
- Kawaji, T.; Ogawa, H.; Hamatani, Y.; Kato, M.; Yokomatsu, T.; Miki, S.; Abe, M.; Akao, M. Fine Fibrillatory Wave as a Risk Factor for Heart Failure Events in Patients With Atrial Fibrillation: The Fushimi Atrial Fibrillation (AF) Registry. J. Am. Heart Assoc. 2022, 11, e024341. [Google Scholar] [CrossRef] [PubMed]
- Zarzoso, V.; Latcu, D.G.; Hidalgo-Muñoz, A.R.; Meo, M.; Meste, O.; Popescu, I.; Saoudi, N. Non-Invasive Prediction of Catheter Ablation Outcome in Persistent Atrial Fibrillation by Fibrillatory Wave Amplitude Computation in Multiple Electrocardiogram Leads. Arch. Cardiovasc. Dis. 2016, 109, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Lankveld, T.; Zeemering, S.; Scherr, D.; Kuklik, P.; Hoffmann, B.A.; Willems, S.; Pieske, B.; Haïssaguerre, M.; Jaïs, P.; Crijns, H.J.; et al. Atrial Fibrillation Complexity Parameters Derived From Surface ECGs Predict Procedural Outcome and Long-Term Follow-Up of Stepwise Catheter Ablation for Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2016, 9, e003354. [Google Scholar] [CrossRef]
- Dhala, A.; Underwood, D.; Leman, R.; Madu, E.; Baugh, D.; Ozawa, Y.; Kasamaki, Y.; Xue, Q.; Reddy, S. Signal-Averaged P-Wave Analysis of Normal Controls and Patients with Paroxysmal Atrial Fibrillation: A Study in Gender Differences, Age Dependence, and Reproducibility. Clin. Cardiol. 2002, 25, 525–531. [Google Scholar] [CrossRef]
- Okumura, Y.; Watanabe, I.; Ohkubo, K.; Ashino, S.; Kofune, M.; Hashimoto, K.; Shindo, A.; Sugimura, H.; Nakai, T.; Kasamaki, Y.; et al. Prediction of the Efficacy of Pulmonary Vein Isolation for the Treatment of Atrial Fibrillation by the Signal-Averaged P-Wave Duration. Pacing Clin. Electrophysiol. 2007, 30, 304–313. [Google Scholar] [CrossRef]
- Zink, M.D.; Laureanti, R.; Hermans, B.J.M.; Pison, L.; Verheule, S.; Philippens, S.; Pluymaekers, N.; Vroomen, M.; Hermans, A.; van Hunnik, A.; et al. Extended ECG Improves Classification of Paroxysmal and Persistent Atrial Fibrillation Based on P- and f-Waves. Front. Physiol. 2022, 13, 779826. [Google Scholar] [CrossRef]
- Py, A.; Schaaf, M.; Duhamel, S.; Si-Mohamed, S.; Daher, J.; Altman, M.; de Breyne, B.; Mechtouff, L.; Placide, J.; Chauveau, S.; et al. Atrial Premature Activity Detected after an Ischaemic Stroke Unveils Atrial Myopathy. Arch. Cardiovasc. Dis. 2020, 113, 227–236. [Google Scholar] [CrossRef]
- Farinha, J.M.; Gupta, D.; Lip, G.Y.H. Frequent Premature Atrial Contractions as a Signalling Marker of Atrial Cardiomyopathy, Incident Atrial Fibrillation, and Stroke. Cardiovasc. Res. 2023, 119, 429–439. [Google Scholar] [CrossRef]
- Karakasis, P.; Theofilis, P.; Sagris, M.; Pamporis, K.; Stachteas, P.; Sidiropoulos, G.; Vlachakis, P.K.; Patoulias, D.; Antoniadis, A.P.; Fragakis, N. Artificial Intelligence in Atrial Fibrillation: From Early Detection to Precision Therapy. J. Clin. Med. 2025, 14, 2627. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An Artificial Intelligence-Enabled ECG Algorithm for the Identification of Patients with Atrial Fibrillation during Sinus Rhythm: A Retrospective Analysis of Outcome Prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Noseworthy, P.A.; Attia, Z.I.; Behnken, E.M.; Giblon, R.E.; Bews, K.A.; Liu, S.; Gosse, T.A.; Linn, Z.D.; Deng, Y.; Yin, J.; et al. Artificial Intelligence-Guided Screening for Atrial Fibrillation Using Electrocardiogram during Sinus Rhythm: A Prospective Non-Randomised Interventional Trial. Lancet 2022, 400, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Ragot, D.; Nayyar, S.; Suszko, A.; Zhang, Z.; Wang, B.; Chauhan, V.S. Deep Learning Classification of Unipolar Electrograms in Human Atrial Fibrillation: Application in Focal Source Mapping. Front. Physiol. 2021, 12, 704122. [Google Scholar] [CrossRef]
- Lebert, J.; Ravi, N.; Fenton, F.H.; Christoph, J. Rotor Localization and Phase Mapping of Cardiac Excitation Waves Using Deep Neural Networks. Front. Physiol. 2021, 12, 782176. [Google Scholar] [CrossRef]
Atrial Parameters | TTE | TEE | Cardiac MRI | Cardiac CT | Electroanatomic Mapping a |
---|---|---|---|---|---|
Atrial size | (more accurate in 3D TTE) | ||||
Atrial function | (more accurate in 3D TTE) | ||||
Atrial appendage size | |||||
Thrombus | (delayed acquisition) b | ||||
Epicardial adipose tissue | |||||
Atrial fibrosis | (LGE) b | ||||
Atrial velocity | (exclusively in atrial appendage) | (4D flow imaging) | |||
Atrial activation/conduction time | (P-wave duration) |
Author, Year | Population | Methods of Evaluating Parameters | Results |
---|---|---|---|
Leung et al., 2017 [44] | 1361 patients with first-diagnosed AF (mean age 65 ± 12 years; 74% male) followed over 7.9 years for stroke/TIA occurrence | TTE with 2D speckle tracking for LA reservoir, conduit, and booster pump strain; PA-TDI for total atrial conduction time; LV GLS and standard parameters | Reduced LA reservoir and conduit strain and prolonged PA-TDI were independently associated with stroke risk beyond CHA2DS2-VASc score, age, and anticoagulant use. LA volume and LVEF were not predictive. |
Obokata et al., 2014 [28] | 286 patients with nonvalvular AF: 82 with acute embolism (stroke or systemic embolism); 204 controls; prospectively followed | Speckle-tracking TTE to assess global peak LA longitudinal strain (LAS) during AF rhythm; LAVI, LA emptying fraction, and Doppler echocardiography; CHA2DS2-VASc score; outcome follow-up for mortality | Global LAS was significantly lower in patients with acute embolism. LAS < 15.4% identified embolism with AUC 0.83 and predicted mortality post-embolism. LAS was independently associated with embolism risk and added incremental value over CHA2DS2-VASc. LA volumes were not predictive. |
Azemi et al., 2012 [29] | 57 patients with AF, stroke/TIA, and CHADS2 ≤ 1; compared with matched controls without stroke or TIA | TTE with velocity vector imaging to assess peak positive and negative LA strain and strain rate; LAVI, LA dimension, and LVEF; binary logistic regression for outcome prediction | Both peak positive and negative LA strain were significantly reduced in patients with stroke/TIA. These strain indices were independently associated with stroke/TIA risk, outperforming conventional metrics such as LAVI and LVEF. |
Shih et al., 2011 [24] | 66 patients with permanent AF, 20 with previous ischemic stroke, and 46 without stroke | TTE with 2D speckle tracking to assess peak positive LA strain (LASp), reservoir strain rate (LASRr), and conduit strain rate (LASRc); standard echocardiographic measures (LAVI, LATEF, and E/E’); multivariate logistic regression | LASp and LASRr were significantly lower in stroke group and independently associated with stroke after adjusting for age, LAVI, and LVEF. LASp < 13.5% had 80% sensitivity and 63% specificity for stroke. LAVI and LATEF were not predictive. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakasis, P.; Vlachakis, P.K.; Theofilis, P.; Ktenopoulos, N.; Patoulias, D.; Fyntanidou, B.; Antoniadis, A.P.; Fragakis, N. Atrial Cardiomyopathy in Atrial Fibrillation: A Multimodal Diagnostic Framework. Diagnostics 2025, 15, 1207. https://doi.org/10.3390/diagnostics15101207
Karakasis P, Vlachakis PK, Theofilis P, Ktenopoulos N, Patoulias D, Fyntanidou B, Antoniadis AP, Fragakis N. Atrial Cardiomyopathy in Atrial Fibrillation: A Multimodal Diagnostic Framework. Diagnostics. 2025; 15(10):1207. https://doi.org/10.3390/diagnostics15101207
Chicago/Turabian StyleKarakasis, Paschalis, Panayotis K. Vlachakis, Panagiotis Theofilis, Nikolaos Ktenopoulos, Dimitrios Patoulias, Barbara Fyntanidou, Antonios P. Antoniadis, and Nikolaos Fragakis. 2025. "Atrial Cardiomyopathy in Atrial Fibrillation: A Multimodal Diagnostic Framework" Diagnostics 15, no. 10: 1207. https://doi.org/10.3390/diagnostics15101207
APA StyleKarakasis, P., Vlachakis, P. K., Theofilis, P., Ktenopoulos, N., Patoulias, D., Fyntanidou, B., Antoniadis, A. P., & Fragakis, N. (2025). Atrial Cardiomyopathy in Atrial Fibrillation: A Multimodal Diagnostic Framework. Diagnostics, 15(10), 1207. https://doi.org/10.3390/diagnostics15101207