Comparison of Ultrasound Attenuation Imaging Using a Linear versus a Conventional Convex Probe: A Volunteer Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement Protocol
2.2. Statistics
3. Results
3.1. Convex versus Linear Probe
3.2. Intraobserver Comparisons
Relative Intraobserver Variability
3.3. Interobserver Comparisons
3.4. Confounders: ROI-Size and Insertion Depth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, K.C.; Liao, Y.Y.; Tsui, P.H.; Yeh, C.K. Ultrasound imaging in nonalcoholic liver disease: Current applications and future developments. Quant. Imaging Med. Surg. 2019, 9, 546–551. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31143646 (accessed on 1 March 2024). [CrossRef] [PubMed]
- Bae, J.S.; Lee, D.H.; Lee, J.Y.; Kim, H.; Yu, S.J.; Lee, J.-H.; Cho, E.J.; Lee, Y.B.; Han, J.K.; Choi, B.I. Assessment of hepatic steatosis by using attenuation imaging: A quantitative, easy-to-perform ultrasound technique. Eur. Radiol. 2019, 29, 6499–6507. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31175413 (accessed on 1 March 2024). [CrossRef] [PubMed]
- Ozturk, A.; Grajo, J.R.; Gee, M.S.; Benjamin, A.; Zubajlo, R.E.; Thomenius, K.E.; Anthony, B.W.; Samir, A.E.; Dhyani, M. Quantitative Hepatic Fat Quantification in Non-alcoholic Fatty Liver Disease Using Ultrasound-Based Techniques: A Review of Literature and Their Diagnostic Performance. Ultrasound Med. Biol. 2018, 44, 2461–2475. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30232020 (accessed on 1 March 2024). [CrossRef] [PubMed]
- Liao, Y.Y.; Yang, K.C.; Lee, M.J.; Huang, K.C.; Chen, J.D.; Yeh, C.K. Multifeature analysis of an ultrasound quantitative diagnostic index for classifying nonalcoholic fatty liver disease. Sci. Rep. 2016, 6, 35083. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27734972 (accessed on 1 March 2024). [CrossRef]
- Hsu, P.K.; Wu, L.S.; Su, W.W.; Su, P.Y.; Chen, Y.Y.; Hsu, Y.C.; Yen, H.H.; Wu, C.L. Comparing the controlled attenuation parameter using FibroScan and attenuation imaging with ultrasound as a novel measurement for liver steatosis. PLoS ONE 2021, 16, e0254892. Available online: https://www.ncbi.nlm.nih.gov/pubmed/34653177 (accessed on 1 March 2024). [CrossRef] [PubMed]
- Nassir, F.; Rector, R.S.; Hammoud, G.M.; Ibdah, J.A. Pathogenesis and Prevention of Hepatic Steatosis. Gastroenterol. Hepatol. 2015, 11, 167. [Google Scholar]
- Mehta, S.R.; Thomas, E.L.; Bell, J.D.; Johnston, D.G.; Taylor-Robinson, S.D. Non-invasive means of measuring hepatic fat content. World J. Gastroenterol. 2008, 14, 3476–3483. Available online: https://pubmed.ncbi.nlm.nih.gov/18567074/ (accessed on 1 March 2024). [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. Available online: https://pubmed.ncbi.nlm.nih.gov/25920090/ (accessed on 1 March 2024). [CrossRef]
- Gatos, I.; Drazinos, P.; Yarmenitis, S.; Theotokas, I.; Koskinas, J.; Koullias, E.; Mitranou, A.; Manesis, E.; Zoumpoulis, P.S. Liver Ultrasound Attenuation: An Ultrasound Attenuation Index for Liver Steatosis Assessment. Ultrasound Q. 2022, 38, 124–132. Available online: https://pubmed.ncbi.nlm.nih.gov/35353797/ (accessed on 1 March 2024). [CrossRef]
- Alves, V.P.V.; Dillman, J.R.; Tkach, J.A.; Bennett, P.S.; Xanthakos, S.A.; Trout, A.T. Comparison of Quantitative Liver US and MRI in Patients with Liver Disease. Radiology 2022, 304, 660–669. Available online: https://pubmed.ncbi.nlm.nih.gov/35608446/ (accessed on 1 March 2024). [CrossRef]
- Ferraioli, G.; Maiocchi, L.; Savietto, G.; Tinelli, C.; Nichetti, M.; Rondanelli, M.; Calliada, F.; Preda, L.; Filice, C. Performance of the Attenuation Imaging Technology in the Detection of Liver Steatosis. J. Ultrasound Med. 2021, 40, 1325–1332. Available online: https://pubmed.ncbi.nlm.nih.gov/32960457/ (accessed on 1 March 2024). [CrossRef] [PubMed]
- Ferraioli, G.; Maiocchi, L.; Raciti, M.V.; Tinelli, C.; De Silvestri, A.; Nichetti, M.; De Cata, P.; Rondanelli, M.; Chiovato, L.; Calliada, F.; et al. Detection of Liver Steatosis with a Novel Ultrasound-Based Technique: A Pilot Study Using MRI-Derived Proton Density Fat Fraction as the Gold Standard. Clin. Transl. Gastroenterol. 2019, 10, e00081. [Google Scholar] [CrossRef] [PubMed Central]
- Jesper, D.; Klett, D.; Schellhaas, B.; Pfeifer, L.; Leppkes, M.; Waldner, M.; Neurath, M.F.; Strobel, D. Ultrasound-Based Attenuation Imaging for the Non-Invasive Quantification of Liver Fat—A Pilot Study on Feasibility and Inter-Observer Variability. IEEE J. Transl. Eng. Heal Med. 2020, 8, 1800409. Available online: https://www.ncbi.nlm.nih.gov/pubmed/32617199 (accessed on 1 March 2024). [CrossRef] [PubMed]
- Steyaert, L. Doppler sonography in breast pathology. JBR-BTR 2000, 83, 121–122. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11025923 (accessed on 1 March 2024). [PubMed]
- Balius, R.; Pedret, C.; Iriarte, I.; Sáiz, R.; Cerezal, L. Sonographic landmarks in hamstring muscles. Skelet. Radiol. 2019, 48, 1675–1683. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30997529 (accessed on 1 March 2024). [CrossRef]
- Hegedüs, L. Thyroid ultrasound. Endocrinol. Metab. Clin. N. Am. 2001, 30, 339–360, viii–ix. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11444166 (accessed on 1 March 2024). [CrossRef] [PubMed]
- Hänni, O.; Ruby, L.; Paverd, C.; Frauenfelder, T.; Rominger, M.B.; Martin, A. Confounders of Ultrasound Attenuation Imaging in a Linear Probe Using the Canon Aplio i800 System: A Phantom Study. Diagnostics 2024, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Beaugrand, M.; De Ledinghen, V.; Douvin, C.; Marcellin, P.; Poupon, R.; Sandrin, L.; Miette, V. Controlled attenuation parameter (CAP): A novel VCTETM guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: Preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med. Biol. 2010, 36, 1825–1835. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20870345 (accessed on 1 March 2024). [CrossRef]
- Tada, T.; Iijima, H.; Kobayashi, N.; Yoshida, M.; Nishimura, T.; Kumada, T.; Kondo, R.; Yano, H.; Kage, M.; Nakano, C.; et al. Usefulness of Attenuation Imaging with an Ultrasound Scanner for the Evaluation of Hepatic Steatosis. Ultrasound Med. Biol. 2019, 45, 2679–2687. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31277922 (accessed on 1 March 2024). [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Ferraioli, G.; Raimondi, A.; Maiocchi, L.; De Silvestri, A.; Poma, G.; Kumar, V.; Barr, R.G. Liver Fat Quantification With Ultrasound: Depth Dependence of Attenuation Coefficient. J. Ultrasound Med. 2023, 42, 2247–2255. [Google Scholar] [CrossRef] [PubMed]
- Bruce, M.; Kolokythas, O.; Ferraioli, G.; Filice, C.; O’Donnell, M. Limitations and artifacts in shear-wave elastography of the liver. Biomed. Eng. Lett. 2017, 7, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rominger, M.B.; Kälin, P.; Mastalerz, M.; Martini, K.; Klingmüller, V.; Sanabria, S.; Frauenfelder, T. Influencing Factors of 2D Shear Wave Elastography of the Muscle—An Ex Vivo Animal Study. Ultrasound Int. Open 2018, 4, E54–E60. Available online: https://pubmed.ncbi.nlm.nih.gov/30250941/ (accessed on 1 March 2024). [CrossRef] [PubMed]
- Hwang, J.A.; Jeong, W.K.; Song, K.D.; Kang, K.A.; Lim, H.K. 2-D Shear Wave Elastography for Focal Lesions in Liver Phantoms: Effects of Background Stiffness, Depth and Size of Focal Lesions on Stiffness Measurement. Ultrasound Med. Biol. 2019, 45, 3261–3268. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, M.J.; Kim, H.Y.; Roh, Y.H.; Lee, M.J. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: A phantom study. Eur. Radiol. 2016, 26, 3361–3367. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, N.; Kaminuma, C.; Taketomi-Takahashi, A.; Tsushima, Y. Reliable measurement by virtual touch tissue quantification with acoustic radiation force impulse imaging: Phantom study. J. Ultrasound Med. 2012, 31, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.J.; Riely, C.A.; Hammers, L.; Flax, S.; Weltin, G.; Garcia-Tsao, G.; Conn, H.O.; Kuc, R.; Barwick, K.W. Quantitative US attenuation in normal liver and in patients with diffuse liver disease: Importance of fat. Radiology 1986, 160, 65–71. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3520657 (accessed on 1 March 2024). [CrossRef]
n (Range) | |
---|---|
Age (years) | 34.52 (24.5–63.3) |
Sex | 19 (f)/14 (m) |
Weight (kg) | 67.3 (52–86) |
Height (m) | 1.72 (1.53–1.90) |
BMI (kg/m2) | 22.6 (18.0–28.0) |
Alcohol > 14 units/week | 3 yes/30 no |
Volunteer | Convex Week 0 dB/cm/MHz | Convex Week 4 dB/cm/MHz | Relative Intraobserver Variability |
---|---|---|---|
1 | 0.63 | 0.59 | 3.9% |
2 | 0.82 | 0.60 | 21.6% |
3 | 0.64 | 0.57 | 7.7% |
4 | 0.70 | 0.59 | 11.2% |
5 | 0.58 | 0.59 | 0.7% |
6 | 0.62 | 0.62 | 0.0% |
7 | 0.57 | 0.56 | 2.0% |
8 | 0.62 | 0.68 | 7.2% |
9 | 0.60 | 0.59 | 0.7% |
10 | 0.61 | 0.58 | 3.8% |
11 | 0.53 | 0.52 | 0.8% |
12 | 0.54 | 0.59 | 7.0% |
13 | 0.55 | 0.64 | 10.3% |
14 | 0.50 | 0.56 | 7.2% |
15 | 0.64 | 0.61 | 2.9% |
16 | 0.63 | 0.58 | 5.4% |
17 | 0.89 | 0.64 | 22.9% |
18 | 0.54 | 0.61 | 8.4% |
19 | 0.63 | 0.56 | 7.8% |
20 | 0.61 | 0.58 | 3.6% |
21 | 0.89 | 0.82 | 5.8% |
22 | 0.65 | 0.55 | 11.8% |
23 | 0.62 | 0.56 | 7.2% |
24 | 0.79 | 0.81 | 2.1% |
25 | 0.62 | 0.65 | 3.3% |
26 | 0.55 | 0.59 | 5.0% |
27 | 0.58 | 0.61 | 3.6% |
28 | 0.58 | 0.56 | 2.5% |
29 | 0.58 | 0.55 | 3.8% |
30 | 0.58 | 0.55 | 3.8% |
31 | 0.51 | 0.53 | 2.7% |
32 | 0.53 | 0.58 | 6.4% |
33 | 0.55 | 0.49 | 8.7% |
Volunteer | Linear Week 0 dB/cm/MHz | Linear Week 4 dB/cm/MHz | Relative Intraobserver Variability |
---|---|---|---|
1 | 0.49 | 0.57 | 11.6% |
2 | 0.62 | 0.71 | 9.7% |
3 | 0.59 | 0.55 | 5.6% |
4 | 0.66 | 0.64 | 2.2% |
5 | 0.53 | 0.58 | 6.9% |
6 | 0.58 | 0.59 | 1.8% |
7 | 0.56 | 0.51 | 6.3% |
8 | 0.61 | 0.60 | 1.3% |
9 | 0.68 | 0.66 | 1.5% |
10 | 0.59 | 0.55 | 4.5% |
11 | 0.52 | 0.56 | 5.1% |
12 | 0.57 | 0.49 | 10.3% |
13 | 0.56 | 0.58 | 2.7% |
14 | 0.80 | 0.71 | 8.3% |
15 | 0.70 | 0.69 | 1.5% |
16 | 0.51 | 0.57 | 8.3% |
17 | 0.76 | 0.82 | 5.0% |
18 | 0.56 | 0.51 | 6.6% |
19 | 0.63 | 0.61 | 1.9% |
20 | 0.60 | 0.57 | 3.3% |
21 | 0.85 | 0.91 | 4.9% |
22 | 0.60 | 0.56 | 4.9% |
23 | 0.58 | 0.61 | 3.7% |
24 | 0.74 | 0.72 | 1.5% |
25 | 0.67 | 0.71 | 4.4% |
26 | 0.55 | 0.58 | 4.2% |
27 | 0.59 | 0.59 | 0.4% |
28 | 0.59 | 0.58 | 1.3% |
29 | 0.67 | 0.54 | 15.8% |
30 | 0.52 | 0.50 | 2.5% |
31 | 0.51 | 0.49 | 2.7% |
32 | 0.51 | 0.55 | 5.6% |
33 | 0.59 | 0.53 | 7.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hänni, O.; Ruby, L.; Paverd, C.; Frauenfelder, T.; Rominger, M.B.; Martin, A. Comparison of Ultrasound Attenuation Imaging Using a Linear versus a Conventional Convex Probe: A Volunteer Study. Diagnostics 2024, 14, 886. https://doi.org/10.3390/diagnostics14090886
Hänni O, Ruby L, Paverd C, Frauenfelder T, Rominger MB, Martin A. Comparison of Ultrasound Attenuation Imaging Using a Linear versus a Conventional Convex Probe: A Volunteer Study. Diagnostics. 2024; 14(9):886. https://doi.org/10.3390/diagnostics14090886
Chicago/Turabian StyleHänni, Olivia, Lisa Ruby, Catherine Paverd, Thomas Frauenfelder, Marga B. Rominger, and Alexander Martin. 2024. "Comparison of Ultrasound Attenuation Imaging Using a Linear versus a Conventional Convex Probe: A Volunteer Study" Diagnostics 14, no. 9: 886. https://doi.org/10.3390/diagnostics14090886
APA StyleHänni, O., Ruby, L., Paverd, C., Frauenfelder, T., Rominger, M. B., & Martin, A. (2024). Comparison of Ultrasound Attenuation Imaging Using a Linear versus a Conventional Convex Probe: A Volunteer Study. Diagnostics, 14(9), 886. https://doi.org/10.3390/diagnostics14090886