From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images
Abstract
:1. Introduction
- The application of feature-level fusion to interpret complex features of X-ray images, especially overlapping characteristics.
- Supporting the parallelism through the application of a refined attention mechanism to both ResNet-50 and ViT-b16 streams after the feature extraction step. This attention mechanism enables the model to prioritize features consistently across diverse samples.
- Providing an effective solution to the significant challenge of data imbalance by combining oversampling and strategic augmentation techniques.
2. Literature Review
2.1. Convolutional Neural Networks
2.2. Vision Transformers
2.3. Hybrid Models
3. Methodology
3.1. The Proposed Approach
3.2. Material and Methods
3.2.1. Dataset
3.2.2. Preprocessing and Data Augmentation
4. Experimental Study
4.1. Evaluation Metrics
4.2. Model Training and Experimental Setup
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levine, S.M.; Marciniuk, D.D. Global Impact of Respiratory Disease. Chest 2022, 161, 1153–1154. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 28 May 2024).
- World Health Organization. Tuberculosis. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 28 May 2024).
- Schildknecht, K.R.; Pratt, R.H.; Feng, P.-J.I.; Price, S.F.; Self, J.L. Tuberculosis—United States, 2022. MMWR. Morb. Mortal. Wkly. Rep. 2023, 72, 297–303. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2024. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024 (accessed on 11 October 2024).
- UNICEF. Pneumonia in Children: What You Need to Know. Available online: https://www.unicef.org/stories/childhood-pneumonia-explained#:~:text=Every year%2C pneumonia claims the,of these deaths are preventable (accessed on 28 May 2024).
- Qin, C.; Yao, D.; Shi, Y.; Song, Z. Computer-aided detection in chest radiography based on artificial intelligence: A survey. Biomed. Eng. Online 2018, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the ICLR 2021—9th International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021. [Google Scholar]
- Chernyavskiy, A.; Ilvovsky, D.; Nakov, P. Transformers: “The End of History” for Natural Language Processing? In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Nahiduzzaman, M.; Islam, M.R.; Hassan, R. ChestX-Ray6: Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network [Formula presented]. Expert Syst. Appl. 2023, 211, 118576. [Google Scholar] [CrossRef] [PubMed]
- Sanida, T.; Dasygenis, M. A novel lightweight CNN for chest X-ray-based lung disease identification on heterogeneous embedded system. Appl. Intell. 2024, 54, 4756–4780. [Google Scholar] [CrossRef]
- Hedhoud, Y.; Mekhaznia, T.; Amroune, M. An improvement of the CNN-XGboost model for pneumonia disease classification. Pol. J. Radiol. 2023, 88, 483–493. [Google Scholar] [CrossRef]
- Alshmrani, G.M.M.; Ni, Q.; Jiang, R.; Pervaiz, H.; Elshennawy, N.M. A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. Alex. Eng. J. 2023, 64, 923–935. [Google Scholar] [CrossRef]
- Guefrechi, S.; Jabra, M.B.; Ammar, A.; Koubaa, A.; Hamam, H. Deep learning based detection of COVID-19 from chest X-ray images. Multimed. Tools Appl. 2021, 80, 31803–31820. [Google Scholar] [CrossRef]
- Ibrahim, A.U.; Ozsoz, M.; Serte, S.; Al-Turjman, F.; Yakoi, P.S. Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19. Cognit. Comput. 2024, 16, 1589–1601. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef]
- Malik, H.; Anees, T.; Chaudhry, M.U.; Gono, R.; Jasinski, M.; Leonowicz, Z.; Bernat, P. A Novel Fusion Model of Hand-Crafted Features With Deep Convolutional Neural Networks for Classification of Several Chest Diseases Using X-ray Images. IEEE Access 2023, 11, 39243–39268. [Google Scholar] [CrossRef]
- Hu, X.; Chen, J.; Chen, Y. RegMamba: An Improved Mamba for Medical Image Registration. Electronics 2024, 13, 3305. [Google Scholar] [CrossRef]
- Pham, V.T.N.; Nguyen, Q.C.; Nguyen, Q.V. Chest X-Rays Abnormalities Localization and Classification Using an Ensemble Framework of Deep Convolutional Neural Networks. Vietnam J. Comput. Sci. 2023, 10, 55–73. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Lam, K.; Le, L.T.; Pham, H.H.; Tran, D.Q.; Nguyen, D.B.; Le, D.D.; Pham, C.M.; Tong, H.T.T.; Dinh, D.H.; et al. VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations. Sci. Data 2022, 9, 429. [Google Scholar] [CrossRef]
- Huang, M.L.; Liao, Y.C. Stacking Ensemble and ECA-EfficientNetV2 Convolutional Neural Networks on Classification of Multiple Chest Diseases Including COVID-19. Acad. Radiol. 2023, 30, 1915–1935. [Google Scholar] [CrossRef]
- Tanzi, L.; Audisio, A.; Cirrincione, G.; Aprato, A.; Vezzetti, E. Vision Transformer for femur fracture classification. Injury 2022, 53, 2625–2634. [Google Scholar] [CrossRef]
- Shou, Y.; Meng, T.; Ai, W.; Xie, C.; Liu, H.; Wang, Y. Object Detection in Medical Images Based on Hierarchical Transformer and Mask Mechanism. Comput. Intell. Neurosci. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Wang, C.; Jin, Y.; Liang, J.; Yang, Y.H.; Nie, S.; Hai, Y. Modif-SegUnet: Innovatively Advancing Liver Cancer Diagnosis and Treatment through Efficient and Meaningful Segmentation of 3D Medical Images. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Türkiye, 5–8 December 2023. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar] [CrossRef]
- Liu, C.; Yin, Q. Automatic diagnosis of COVID-19 using a tailored transformer-like network. J. Phys. Conf. Ser. 2021, 2010, 012175. [Google Scholar] [CrossRef]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.; Ghassem, M. COVID-19 Image Data Collection: Prospective Predictions are the Future. Mach. Learn. Biomed. Imaging 2020, 1, 1–38. [Google Scholar] [CrossRef]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Emadi, N.A.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Chetoui, M.; Akhloufi, M.A. Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays. J. Clin. Med. 2022, 11, 3013. [Google Scholar] [CrossRef] [PubMed]
- SIIM-FISABIO-RSNA. SIIM-FISABIO-RSNA COVID-19 Detection Challenge. Available online: https://siim.org/research-journal/siim-machine-learning-challenges/covid-19-kaggle-challenge/ (accessed on 20 June 2024).
- Krishnan, K.S.; Krishnan, K.S. Vision Transformer based COVID-19 Detection using Chest X-rays. In Proceedings of the IEEE International Conference on Signal Processing, Computing and Control, Solan, India, 7–9 October 2021. [Google Scholar] [CrossRef]
- Than, J.C.M.; Thon, P.L.; Rijal, O.M.; Kassim, R.M.; Yunus, A.; Noor, N.M.; Then, P. Preliminary Study on Patch Sizes in Vision Transformers (ViT) for COVID-19 and Diseased Lungs Classification. In Proceedings of the 2021 IEEE National Biomedical Engineering Conference (NBEC), Kuala Lumpur, Malaysia, 9–10 November 2021; pp. 146–150. [Google Scholar] [CrossRef]
- Taslimi, S.; Taslimi, S.; Fathi, N.; Salehi, M.; Rohban, M.H. SwinCheX: Multi-label classification on chest X-ray images with transformers. arXiv 2022, arXiv:2206.04246. [Google Scholar]
- National Institutes of Health Chest X-Ray—Chris Crawford. NIH Chest X-Rays Dataset. Kaggle. Available online: https://www.kaggle.com/datasets/nih-chest-xrays/data (accessed on 10 June 2024).
- Usman, M.; Zia, T.; Tariq, A. Analyzing Transfer Learning of Vision Transformers for Interpreting Chest Radiography. J. Digit. Imaging 2022, 35, 1445–1462. [Google Scholar] [CrossRef] [PubMed]
- Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proc. AAAI Conf. Artif. Intell. 2019, 33, 590–597. [Google Scholar] [CrossRef]
- Nasser, A.A.; Akhloufi, M.A. Deep Learning Methods for Chest Disease Detection Using Radiography Images. SN Comput. Sci. 2023, 4, 388. [Google Scholar] [CrossRef]
- Park, S.; Kim, G.; Oh, Y.; Seo, J.B.; Lee, S.M.; Kim, J.H.; Moon, S.; Lim, J.-K.; Ye, J.C. Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med. Image Anal. 2022, 75, 102299. [Google Scholar] [CrossRef]
- Huang, L.; Ma, J.; Yang, H.; Wang, Y. Research and implementation of multi-disease diagnosis on chest X-ray based on vision transformer. Quant. Imaging Med. Surg. 2024, 14, 2539–2555. [Google Scholar] [CrossRef]
- Wang, T.; Nie, Z.; Wang, R.; Xu, Q.; Huang, H.; Xu, H.; Xie, F.; Liu, X.-J. PneuNet: Deep learning for COVID-19 pneumonia diagnosis on chest X-ray image analysis using Vision Transformer. Med. Biol. Eng. Comput. 2023, 61, 1395–1408. [Google Scholar] [CrossRef]
- Okolo, G.I.; Katsigiannis, S.; Ramzan, N. IEViT: An enhanced vision transformer architecture for chest X-ray image classification. Comput. Methods Programs Biomed. 2022, 226, 107141. [Google Scholar] [CrossRef]
- Ukwuoma, C.C.; Qin, Z.; Belal Bin Heyat, M.; Akhtar, F.; Bamisile, O.; Muaad, A.Y.; Addo, D.; Al-antari, M.A. A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images. J. Adv. Res. 2023, 48, 191–211. [Google Scholar] [CrossRef]
- Xu, T.; Yuan, Z. Convolution Neural Network With Coordinate Attention for the Automatic Detection of Pulmonary Tuberculosis Images on Chest X-Rays. IEEE Access 2022, 10, 86710–86717. [Google Scholar] [CrossRef]
- Rajaraman, S.; Zamzmi, G.; Folio, L.R.; Antani, S. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers. Front. Genet. 2022, 13, 864724. [Google Scholar] [CrossRef] [PubMed]
- Bustos, A.; Pertusa, A.; Salinas, J.-M.; de la Iglesia-Vayá, M. PadChest: A large chest X-ray image dataset with multi-label annotated reports. Med. Image Anal. 2020, 66, 101797. [Google Scholar] [CrossRef] [PubMed]
- Ejiyi, C.J.; Qin, Z.; Nnani, A.O.; Deng, F.; Ejiyi, T.U.; Ejiyi, M.B.; Agbesi, V.K.; Bamisile, O. ResfEANet: ResNet-fused External Attention Network for Tuberculosis Diagnosis using Chest X-ray Images. Comput. Methods Programs Biomed. Updat. 2024, 5, 100133. [Google Scholar] [CrossRef]
- Öztürk, Ş.; Turalı, M.Y.; Çukur, T. HydraViT: Adaptive Multi-Branch Transformer for Multi-Label Disease Classification from Chest X-ray Images. arXiv 2023, arXiv:2310.06143. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 22–25 July 2017. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Kadir, M.A.; Islam, K.R.; Islam, K.F.; Mazhar, R.; Hamid, T.; Islam, M.T.; Kashem, S.; Mahbub, Z.B.; et al. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 2020, 8, 191586–191601. [Google Scholar] [CrossRef]
- Chest X-Ray Images (Pneumonia). Kaggle. Available online: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia/data (accessed on 12 November 2024).
- Duong, L.T.; Le, N.H.; Tran, T.B.; Ngo, V.M.; Nguyen, P.T. Detection of tuberculosis from chest X-ray images: Boosting the performance with vision transformer and transfer learning. Expert Syst. Appl. 2021, 184, 115519. [Google Scholar] [CrossRef]
Authors | Approach | Pathology | Classification Method | Performance |
---|---|---|---|---|
[11] | LightWeight CNN | COVID-19, Pneumonia Pleural effusion, Lung opacity, Cardiomegaly | Multi-class classification | Accuracy = 80% |
Pneumonia, Normal | Binary classification | Accuracy = 97.94% | ||
[12] | LightWeight CNN | Lung opacity, Fibrosis, Pneumonia, COVID-19, Tuberculosis | Multi-class classification | Accuracy = 98.56% |
[18] | INFO-MGAN for segmentation + Novel handcrafted features with DCNNs | COVID-19, Lung cancer, Atlectasis, Consolidation lung, Tuberculosis, Pneumothorax, Edema, Pneumonia, Pleural thickening | Multi-class classification | Accuracy = 98.20% |
[20] | Yolo V5 for anomalies localization ResNet-50 for classification | Chest abnormalities | Multi-class classification | F1-score = 76% |
[22] | Six stacked pretrained CNNs | COVID-19 with X-ray images and Computer Tomography (CT scan) images | Binary classification | Accuracy ≈ 99% |
ECA-Net + EfficientNet V2 | ||||
[17] | Fine-tuned CNN | Viral Pneumonia, Bacterial Pneumonia, Normal | Binary classification | Accuracy = 92.8% |
[14] | Fine-tuned VGG-19 | Lung cancer, Lung opacity, COVID-19, Pneumonia, Tuberculosis | Multi-class classification | Accuracy = 93.75% |
Authors | Approach | Pathology | Classification Method | Performance |
---|---|---|---|---|
[27] | Volo | COVID-19 | Binary classification | Accuracy = 99.67% |
[30] | Fine-tuned ViT | COVID-19 | Binary classification | Accuracy = 96% |
[32] | ViT-b32 | COVID-19, Pneumonia, Normal | Multi-class classification | Accuracy = 97.61% |
[33] | ViT-b32 | Normal Lung, Diseased Lung, COVID-19 | 2-Step Binary classification | Accuracy = 95.36% |
[34] | Pretrained Swin Transformer | 14 chest diseases from the chest-14 dataset | Multi-class classification | AUC = 81% |
[36] | Pretrained ViT | Pneumonia, Normal | Binary classification | F1-score = 86% |
14 chest diseases from the Chexpert dataset (Irvin et al., 2019 [37]) | Multi-class classification | F1-score = 59% | ||
[38] | Modified ViT | Heart diseases and lung diseases | Multi-class classification | AUC = 95.13% |
Binary classification | AUC ≈ 99% | |||
[39] | U-Net for lung segmentation ViT for classification | COVID-19 | Binary classification | AUC > 95% |
[40] | Adapted ViT | 14 chest diseases from chest-14 dataset [49] (Wang, 2017) | Multi-class classification | Accuracy = 83.4% |
[25] | PneuNet | Pneumonia, COVID-19 | Multi-class classification | Accuracy = 94.96% |
Authors | Approach | Pathology | Classification Method | Performance |
---|---|---|---|---|
[42] | Enhanced Vit: Parallel CNN and ViT | COVID-19, Tuberculosis, and Pneumonia, using different datasets | Multi-class classification | 93.5% ≤ Recall ≤ 100% |
[43] | Ensemble CNNs + ViT | Pneumonia | Binary classification | Accuracy = 98.01% |
[28] | EfficientNet + ViT | Tuberculosis | Binary classification | Accuracy = 97.72% |
[44] | VGG-16 + CoorAttention | Tuberculosis, using merged datasets | Binary classification | Accuracy = 92.73% |
[45] | CNN-ViT | Tuberculosis, using lateral and frontal CXR images | Binary classification | Accuracy = 91% |
[47] | ResfEANet | Tuberculosis | Binary classification | Accuracy = 97.95% |
[48] | Hydra-ViT | 14 chest diseases from the chest-14 dataset | Multi-class classification | AUC = 83.8% |
Normal | Tuberculosis | |
---|---|---|
Normal | 2444 | 6 |
Tuberculosis | 2 | 487 |
Normal | Tuberculosis | Viral Pneumonia | Bacterial Pneumonia | |
---|---|---|---|---|
Normal | 4653 | 68 | 43 | 80 |
Tuberculosis | 8 | 672 | 7 | 13 |
Viral Pneumonia | 14 | 18 | 1295 | 18 |
Bacterial Pneumonia | 38 | 20 | 32 | 2440 |
Pretrained Models | Accuracy | Precision | Recall | F1-Score | Jaccard Score | Dice Coefficient |
---|---|---|---|---|---|---|
VGG-16 | 0.7756 | 0.7698 | 0.3309 | 0.4628 | 0.3713 | 0.4428 |
DenseNet-121 | 0.8299 | 0.8098 | 0.8355 | 0.8224 | 0.7198 | 0.7100 |
Xception | 0.8754 | 0.8960 | 0.8934 | 0.8947 | 0.8063 | 0.7988 |
ResNet-50 | 0.9115 | 0.9210 | 0.9077 | 0.9114 | 0.8464 | 0.8137 |
ViT-b16 | 0.9418 | 0.9367 | 0.9549 | 0.9457 | 0.8964 | 0.8511 |
ViT-b32 | 0.8909 | 0.9023 | 0.8809 | 0.8915 | 0.7890 | 0.8095 |
Ensemble model | 0.9897 | 0.9987 | 0.9991 | 0.9908 | 0.9838 | 0.8914 |
Pretrained Models | Accuracy | Precision | Recall | F1-Score | Jaccard Score | Dice Coefficient |
---|---|---|---|---|---|---|
VGG-16 | 0.5518 | 0.5657 | 0.5187 | 0.5412 | 0.9756 | 0.6821 |
DenseNet-121 | 0.9043 | 0.8945 | 0.8898 | 0.8921 | 0.8064 | 0.7508 |
Xception | 0.8514 | 0.8438 | 0.8499 | 0.8468 | 0.7543 | 0.8224 |
ResNet-50 | 0.9365 | 0.9411 | 0.9387 | 0.9384 | 0.8839 | 0.8854 |
ViT-b16 | 0.9725 | 0.9710 | 0.9766 | 0.9738 | 0.9245 | 0.8975 |
ViT-b32 | 0.9156 | 0.8965 | 0.9076 | 0.9020 | 0.8623 | 0.8813 |
Ensemble model | 0.9618 | 0.9680 | 0.9600 | 0.9640 | 0.9032 | 0.9124 |
Authors | Approach | Achieved Result | Authors | Approach | Achieved Results |
---|---|---|---|---|---|
[42] | Enhanced Vit: Parallel CNN and ViT | 93.5% ≤ recall ≤ 100% | [44] | VGG-16 + CoorAttention | Accuracy = 92.73% |
[43] | Ensemble CNNs + ViT | Accuracy = 98.01% | [47] | ResfEANet | Accuracy = 97.95% |
[28] | EfficientNet + ViT | Accuracy = 97.72% | [45] | CNN-ViT | Accuracy = 91% |
[48] | HydraViT | AUC = 83.8% | Our hybrid model | ResNet50-ViTb16 | Accuracy = 98.97% for binary classification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadhoud, Y.; Mekhaznia, T.; Bennour, A.; Amroune, M.; Kurdi, N.A.; Aborujilah, A.H.; Al-Sarem, M. From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images. Diagnostics 2024, 14, 2754. https://doi.org/10.3390/diagnostics14232754
Hadhoud Y, Mekhaznia T, Bennour A, Amroune M, Kurdi NA, Aborujilah AH, Al-Sarem M. From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images. Diagnostics. 2024; 14(23):2754. https://doi.org/10.3390/diagnostics14232754
Chicago/Turabian StyleHadhoud, Yousra, Tahar Mekhaznia, Akram Bennour, Mohamed Amroune, Neesrin Ali Kurdi, Abdulaziz Hadi Aborujilah, and Mohammed Al-Sarem. 2024. "From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images" Diagnostics 14, no. 23: 2754. https://doi.org/10.3390/diagnostics14232754
APA StyleHadhoud, Y., Mekhaznia, T., Bennour, A., Amroune, M., Kurdi, N. A., Aborujilah, A. H., & Al-Sarem, M. (2024). From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images. Diagnostics, 14(23), 2754. https://doi.org/10.3390/diagnostics14232754