Assessment of Microcirculatory Dysfunction by Measuring Subcutaneous Tissue Oxygen Saturation Using Near-Infrared Spectroscopy in Patients with Circulatory Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement Site and Method for rSO2
2.3. Measured Data
2.4. Statistical Analyses
3. Results
3.1. Composition of Each Group
3.2. rSO2 in Each Group
Relationship Between rSO2 and Each Parameter
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, J.L.; Ince, C.; Bakker, J. Clinical review: Circulatory shock—An update: A tribute to Professor Max Harry Weil. Crit. Care 2012, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; De Backer, D. Circulatory shock. N. Engl. J. Med. 2013, 369, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef]
- Edul, V.S.K.; Ince, C.; Dubin, A. What is microcirculatory shock? Curr. Opin. Crit. Care 2015, 21, 245–252. [Google Scholar] [CrossRef]
- Ince, C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit. Care 2015, 19 (Suppl. S3), S8. [Google Scholar] [CrossRef]
- Ince, C.; Boerma, E.C.; Cecconi, M.; De Backer, D.; Shapiro, N.I.; Duranteau, J.; Pinsky, M.R.; Artigas, A.; Teboul, J.L.; Reiss, I.K.M.; et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: Results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018, 44, 281–299. [Google Scholar] [CrossRef]
- Huber, W.; Zanner, R.; Schneider, G.; Schmid, R.; Lahmer, T. Assessment of regional perfusion and organ function: Less and non-invasive techniques. Front. Med. 2019, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.R.; Wollborn, J.; Fengler, K.; Flick, M.; Wunder, C.; Allgäuer, S.; Thiele, H.; Schemmelmann, M.; Hornemann, J.; Moecke, H.M.E.; et al. Direct assessment of microcirculation in shock: A randomized-controlled multicenter study. Intensive Care Med. 2023, 49, 645–655. [Google Scholar] [CrossRef]
- Mrowietz, C.; Franke, R.P.; Pindur, G.; Sternitzky, R.; Jung, F.; Wolf, U. Evaluation of Laser-Doppler-Fluxmetry for the diagnosis of microcirculatory disorders. Clin. Hemorheol. Microcirc. 2019, 71, 129–135. [Google Scholar] [CrossRef]
- Shapiro, N.I.; Arnold, R.; Sherwin, R.; O’Connor, J.; Najarro, G.; Singh, S.; Lundy, D.; Nelson, T.; Trzeciak, S.W.; Jones, A.E.; et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit. Care 2011, 15, R223. [Google Scholar] [CrossRef]
- Ferraris, A.; Bouisse, C.; Mottard, N.; Thiollière, F.; Anselin, S.; Piriou, V.; Allaouchiche, B. Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU. PLoS ONE 2018, 13, e0202329. [Google Scholar] [CrossRef]
- Kanayama, N.; Niwayama, M. Examiner’s finger-mounted fetal tissue oximetry. J. Biomed. Opt. 2014, 19, 067008. [Google Scholar] [CrossRef]
- Uchida, T.; Kanayama, N.; Kawai, K.; Niwayama, M. Craniofacial tissue oxygen saturation is associated with blood pH using an examiner’s finger-mounted tissue oximetry in mice. J. Biomed. Opt. 2016, 21, 40502. [Google Scholar] [CrossRef]
- Uchida, T.; Kanayama, N.; Mukai, M.; Furuta, N.; Itoh, H.; Suzuki, H.; Niwayama, M. Examiner’s finger-mounted fetal tissue oximetry: A preliminary report on 30 cases. J. Perinat. Med. 2016, 44, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Yata, T.; Sano, M.; Kayama, T.; Naruse, E.; Yamamoto, N.; Inuzuka, K.; Saito, T.; Katahashi, K.; Yamanaka, Y.; Uchida, T.; et al. Utility of a finger-mounted tissue oximeter with near-infrared spectroscopy to evaluate limb ischemia in patients with peripheral arterial disease. Ann. Vasc. Dis. 2019, 12, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mizukoshi, K.; Hamanaka, Y.; Niwayama, M. Investigation of oxygen saturation in regions of skin by near infrared spectroscopy. Skin Res. Technol. 2022, 28, 695–702. [Google Scholar] [CrossRef]
- Ait-Oufella, H.; Joffre, J.; Boelle, P.Y.; Galbois, A.; Bourcier, S.; Baudel, J.L.; Margetis, D.; Alves, M.; Offenstadt, G.; Guidet, B.; et al. Knee area tissue oxygen saturation is predictive of 14-day mortality in septic shock. Intensive Care Med. 2012, 38, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Niwayama, M. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues. J. Biomed. Opt. 2018, 23, 1–4. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, S.D.; Naumann, D.N.; Hopkins, P.; Mellis, C.; Riozzi, P.; Sartini, S.; Mamuza, J.; Harris, T.; Midwinter, M.J.; Wendon, J. Microcirculatory impairment is associated with multiple organ dysfunction following traumatic hemorrhagic shock: The MICROSHOCK study. Crit. Care Med. 2018, 46, e889–e896. [Google Scholar] [CrossRef]
- Ait-Oufella, H.; Bourcier, S.; Alves, M.; Galbois, A.; Baudel, J.L.; Margetis, D.; Bige, N.; Offenstadt, G.; Maury, E.; Guidet, B. Alteration of skin perfusion in mottling area during septic shock. Ann. Intensive Care 2013, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, D.L., Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J. Appl. Physiol. 2006, 100, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E.; Zhang, R.; Levine, B.D.; Crandall, C.G. Dynamic autoregulation of cutaneous circulation: Differential control in glabrous versus nonglabrous skin. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H385–H391. [Google Scholar] [CrossRef] [PubMed]
Volunteer (n = 10) | Non-Circulatory Failure (n = 35) | Circulatory Failure (n = 38) | p-Values | |
---|---|---|---|---|
Age | 34 (31–40) | 62.0 (49.0–78.5) | 73.0 (60.0–84.0) | 0.06 |
Male, n (%) | 5 (50) | 19 (54.3) | 23 (61.0) | 0.64 |
BMI, kg/m2 | 21.0 (20.0–22.0) | 21.6 (20.1–27.1) | 22.0 (18.0–25.0) | 0.33 |
Systolic blood pressure, mmHg | 111 (108–114) | 133.0 (120.5–151.5) | 103.0 (86.5–124.8) | <0.01 * |
Diastolic blood pressure, mmHg | 72 (67–76) | 84 (75–97) | 72 (60–79) | <0.01 * |
Mean blood pressure, mmHg | 85 (81–87) | 101 (90–116) | 82 (70–96) | <0.01 * |
Heart rate, /min | 68 (63–81) | 75.0 (70.5–80.0) | 97.0 (77.8–117.3) | <0.01 * |
GCS | 15 (15–15) | 15.0 (15.0–15.0) | 15.0 (10.3–15.0) | <0.01 * |
WBC, ×103/μL | N/A | 8.3 (6.4–10.2) | 10.6 (6.4–13.3) | 0.14 |
Hb, g/dL | N/A | 13.5 (11.9–14.6) | 11.1 (9.0–12.8) | 0.10 |
Hct, % | N/A | 39.9 (35.4–42.9) | 33.4 (26.2–38.8) | 0.28 |
Plt, ×109/L | N/A | 226 (199.5–260.0) | 132.5 (48.5–206.5) | 0.01 * |
PT, % | N/A | 111.0 (102.0–123.5) | 82.0 (59.0–130.0) | <0.01 * |
APTT, s | N/A | 28.0 (25.9–30.4) | 30.9 (26.6–36.1) | 0.66 |
D-dimer, μ/mL | N/A | 1.1 (0.5–9.2) | 5.5 (2.7–22.0) | <0.01 * |
T-Bil, mg/dL | N/A | 0.5 (0.4–0.7) | 0.8 (0.6–1.6) | <0.01 * |
BUN, mg/dL | N/A | 14.2 (10.0–18.8) | 27.9 (20.6–64.4) | <0.01 * |
Cre, mg/dL | N/A | 0.7 (0.6–0.9) | 1.3 (1.1–3.1) | <0.01 * |
Na, mmoL/L | N/A | 139.0 (138.5–140.0) | 140.0 (134.0–144.8) | 0.64 |
K, mmoL/L | N/A | 3.9 (3.8–4.3) | 4.2 (3.7–4.6) | 0.21 |
CRP, mg/dL | N/A | 0.11 (0.03–0.25) | 3.0 (0.2–21.1) | <0.01 * |
Blood glucose, mg/dL | N/A | 110.0 (100.5–129.0) | 151.0 (131.0–220.0) | <0.01 * |
pH | N/A | 7.41 (7.39–7.44) | 7.40 (7.30–7.45) | 0.31 |
PaCO2, mmHg | N/A | 39.2 (36.1–43.6) | 31.1 (27.2–37.1) | <0.01 * |
HCO3−, mEq/L | N/A | 24.7 (23.8–26.4) | 19.6 (16.4–22.2) | <0.01 * |
Lactate, mmoL/L | N/A | 1.5 (1.3–1.9) | 3.7 (2.8–6.7) | <0.01 * |
APACHE II score | N/A | 4 (1–6) | 12.0 (7.3–17.0) | <0.01 * |
SOFA score | N/A | 0 (0–0) | 6.0 (3.0–8.0) | <0.01 * |
Outcome Variables | Independent Variables | B | SE | β | t | p | 95% CI | VIF |
---|---|---|---|---|---|---|---|---|
rSO2 at the knee (0 h; Day 0) | Age | −0.08 | 0.07 | −0.18 | −1.13 | 0.27 | −0.21–0.06 | 1.07 |
Hb (0 h) | 0.58 | 0.36 | 0.25 | 1.60 | 0.12 | −0.16–1.32 | 1.03 | |
SOFA (day 0) | −0.56 | 0.28 | −0.31 | −1.98 | 0.06 | −1.14–0.02 | 1.05 | |
R = 0.49, R2 = 0.24, Adjusted R2 = 0.17, F = 3.38, p = 0.03 | ||||||||
rSO2 at the knee (24 h; Day 1) | Age | −0.03 | 0.06 | −0.08 | −0.57 | 0.57 | −0.15–0.09 | 1.01 |
Hb (24 h) | 0.61 | 0.45 | 0.20 | 1.36 | 0.19 | −0.31–1.54 | 1.10 | |
SOFA (day 1) | −0.71 | 0.20 | −0.53 | −3.58 | <0.01 * | −1.12–−0.3 | 1.11 | |
R = 0.64, R2 = 0.41, Adjusted R2 = 0.35, F = 6.72, p < 0.01 * | ||||||||
rSO2 at the knee (48 h; Day 2) | Age | −0.17 | 0.08 | −0.39 | −2.04 | 0.06 | −0.34–0.01 | 1.57 |
Hb (48 h) | −0.03 | 0.60 | −0.01 | −0.06 | 0.96 | −1.30–1.23 | 1.16 | |
SOFA (day 2) | −1.35 | 0.30 | −0.87 | −4.58 | <0.01 * | −1.97–−0.74 | 1.53 | |
R = 0.74, R2 = 0.55, Adjusted R2 = 0.48, F = 7.76, p < 0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, J.; Sakurai, A.; Ihara, S.; Nakagawa, K.; Chiba, N.; Saito, T.; Kinoshita, K. Assessment of Microcirculatory Dysfunction by Measuring Subcutaneous Tissue Oxygen Saturation Using Near-Infrared Spectroscopy in Patients with Circulatory Failure. Diagnostics 2024, 14, 2428. https://doi.org/10.3390/diagnostics14212428
Sato J, Sakurai A, Ihara S, Nakagawa K, Chiba N, Saito T, Kinoshita K. Assessment of Microcirculatory Dysfunction by Measuring Subcutaneous Tissue Oxygen Saturation Using Near-Infrared Spectroscopy in Patients with Circulatory Failure. Diagnostics. 2024; 14(21):2428. https://doi.org/10.3390/diagnostics14212428
Chicago/Turabian StyleSato, Jun, Atsushi Sakurai, Shingo Ihara, Katsuhiro Nakagawa, Nobutaka Chiba, Takeshi Saito, and Kosaku Kinoshita. 2024. "Assessment of Microcirculatory Dysfunction by Measuring Subcutaneous Tissue Oxygen Saturation Using Near-Infrared Spectroscopy in Patients with Circulatory Failure" Diagnostics 14, no. 21: 2428. https://doi.org/10.3390/diagnostics14212428
APA StyleSato, J., Sakurai, A., Ihara, S., Nakagawa, K., Chiba, N., Saito, T., & Kinoshita, K. (2024). Assessment of Microcirculatory Dysfunction by Measuring Subcutaneous Tissue Oxygen Saturation Using Near-Infrared Spectroscopy in Patients with Circulatory Failure. Diagnostics, 14(21), 2428. https://doi.org/10.3390/diagnostics14212428