Hemostatic Profile of Intrauterine Growth-Restricted Neonates: Assessment with the Use of NATEM Assay in Cord Blood Samples
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obs. Gynecol. 2019, 133, e97–e109. [Google Scholar] [CrossRef]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr Pediatr Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef]
- Kesavan, K.; Devaskar, S.U. Intrauterine Growth Restriction: Postnatal Monitoring and Outcomes. Pediatr. Clin. North Am. 2019, 66, 403–423. [Google Scholar] [CrossRef]
- Darendeliler, F. IUGR: Genetic influences, metabolic problems, environmental associations/triggers, current and future management. Best Pr. Res. Clin. Endocrinol. Metab. 2019, 33, 101260. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.R.; White, T.A.; Piscopo, B.R.; Sutherland, A.E.; Miller, S.L.; Camm, E.J.; Allison, B.J. Cardiovascular and Cerebrovascular Implications of Growth Restriction: Mechanisms and Potential Treatments. Int. J. Mol. Sci. 2021, 22, 7555. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.F.; Wang, Y.; Wang, H.W.; Liu, Y. The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: A report from Mainland China. Medicine 2014, 93, e210. [Google Scholar] [CrossRef]
- Bhat, R.; Kwon, S.; Zaniletti, I.; Murthy, K.; Liem, R.I. Risk factors associated with venous and arterial neonatal thrombosis in the intensive care unit: A multicentre case-control study. Lancet Haematol. 2022, 9, e200–e207. [Google Scholar] [CrossRef]
- Butler-O’Hara, M.; Buzzard, C.J.; Reubens, L.; McDermott, M.P.; DiGrazio, W.; D’Angio, C.T. A randomized trial comparing long-term and short-term use of umbilical venous catheters in premature infants with birth weights of less than 1251 grams. Pediatrics 2006, 118, e25–e35. [Google Scholar] [CrossRef]
- Çaksen, H.; Köseoǧlu, F.T.; Güven, A.S.; Altunhan, H.; Iyisoy, M.S.; Açikgözoǧlu, S. Risk and prognostic factors in perinatal hemorrhagic stroke. Ann. Ind. Acad. Neurol. 2021, 24, 227–233. [Google Scholar] [CrossRef]
- Cole, L.; Dewey, D.; Letourneau, N.; Kaplan, B.J.; Chaput, K.; Gallagher, C.; Hodge, J.; Floer, A.; Kirton, A. Clinical characteristics, risk factors, and outcomes associated with neonatal hemorrhagic stroke a population-based case-control study. JAMA Pediatr. 2017, 171, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Narang, S.; Roy, J.; Stevens, T.P.; Butler-O’Hara, M.; Mullen, C.A.; D’Angio, C.T. Risk factors for umbilical venous catheter-associated thrombosis in very low birth weight infants. Pediatr. Blood Cancer 2009, 52, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Reibel, N.J.; Dame, C.; Bührer, C.; Muehlbacher, T. Aberrant Hematopoiesis and Morbidity in Extremely Preterm Infants With Intrauterine Growth Restriction. Front Pediatr. 2021, 9, 728607. [Google Scholar] [CrossRef] [PubMed]
- Go, H.; Ohto, H.; Nollet, K.E.; Kashiwabara, N.; Ogasawara, K.; Chishiki, M.; Hiruta, S.; Sakuma, I.; Kawasaki, Y.; Hosoya, M. Risk factors and treatments for disseminated intravascular coagulation in neonates. Ital. J. Pediatr. 2020, 46, 54. [Google Scholar] [CrossRef] [PubMed]
- Perlman, M.; Dvilansky, A. Blood coagulation status of small-for-dates and postmature infants. Arch. Dis. Child. 1975, 50, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Wasiluk, A.; Kemona, H.; Mantur, M.; Polewko, A.; Ozimirski, A.; Milewski, R. Expression of P-selectin (CD62P) on platelets after thrombin and ADP in hypotrophic and healthy, full-term newborns. J. Matern. Fetal Neonatal Med. 2013, 26, 1321–1324. [Google Scholar] [CrossRef] [PubMed]
- Wasiluk, A.; Mantur, M.; Kemona, H.; Szczepański, M.; Jasińska, E.; Milewski, R. Thrombopoiesis in small for gestational age newborns. Platelets 2009, 20, 520–524. [Google Scholar] [CrossRef]
- Christensen, R.D.; Baer, V.L.; Henry, E.; Snow, G.L.; Butler, A.; Sola-Visner, M.C. Thrombocytopenia in small-for-gestational-age infants. Pediatrics 2015, 136, e361–e370. [Google Scholar] [CrossRef]
- MacQueen, B.C.; Christensen, R.D.; Henry, E.; Romrell, A.M.; Pysher, T.J.; Bennett, S.T.; Sola-Visner, M.C. The immature platelet fraction: Creating neonatal reference intervals and using these to categorize neonatal thrombocytopenias. J. Perinatol. 2017, 37, 834–838. [Google Scholar] [CrossRef]
- Sola, M.C.; Calhoun, D.A.; Hutson, A.D.; Christensen, R.D. Plasma thrombopoietin concentrations in thrombocytopenic and non- thrombocytopenic patients in a neonatal intensive care unit. Br. J. Haematol. 1999, 104, 90–92. [Google Scholar] [CrossRef]
- Watts, T.; Roberts, I. Haematological abnormalities in the growth-restricted infant. Semin. Neonatol. 1999, 4, 41–54. [Google Scholar] [CrossRef]
- Lees, C.C.; Romero, R.; Stampalija, T.; Dall’Asta, A.; DeVore, G.A.; Prefumo, F.; Frusca, T.; Visser, G.H.A.; Hobbins, J.C.; Baschat, A.A.; et al. Clinical Opinion: The diagnosis and management of suspected fetal growth restriction: An evidence-based approach. Am. J. Obs. Gynecol. 2022, 226, 366–378. [Google Scholar] [CrossRef]
- Aucott, S.W.; Donohue, K.; Northington, F.J. Increased morbidity in severe early intrauterine growth restriction. J. Perinatol. 2004, 24, 435–440. [Google Scholar] [CrossRef]
- Go, H.; Ohto, H.; Nollet, K.E.; Kashiwabara, N.; Chishiki, M.; Hoshino, M.; Ogasawara, K.; Kawasaki, Y.; Momoi, N.; Hosoya, M. Perinatal factors affecting platelet parameters in late preterm and term neonates. PLoS ONE 2020, 15, e0242539. [Google Scholar] [CrossRef]
- Timens, W.; Kamps, W.A. Hemopoiesis in human fetal and embryonic liver. Microsc Res Tech 1997, 5, 387–397. [Google Scholar] [CrossRef]
- Abdollahi, A.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Mahdaviani, B. Hemostatic profile in healthy premature neonates; does birth weight affect the coagulation profile? J. Clin. Neonatol. 2014, 3, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Dube, B.; Dube, R.K.; Bhargava, V.; Kolindewala, J.K.; Kota, V.L.; Das, B.K. Hemostatic parameters in newborn. I. Effects of gestation and rate of intrauterine growth. Thromb. Haemost. 1986, 55, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Hannam, S.; Lees, C.; Edwards, R.J.; Greenough, A. Neonatal coagulopathy in preterm, small-for-gestational-age infants. Biol Neonate. 2003, 83, 177–181. [Google Scholar] [CrossRef]
- Mitsiakos, G.; Papaioannou, G.; Papadakis, E.; Chatziioannidis, E.; Giougi, E.; Karagianni, P.; Evdoridou, J.; Malindretos, P.; Athanasiou, M.; Athanassiadou, F.; et al. Haemostatic profile of full-term, healthy, small for gestational age neonates. Thromb Res. 2009, 124, 288–291. [Google Scholar] [CrossRef]
- Fustolo-Gunnink, S.F.; Vlug, R.D.; Heckman, E.J.; Pas, A.B.; Fijnvandraat, K.; Lopriore, E. Early-onset thrombocytopenia in small-for-gestational-age neonates: A retrospective cohort study. PLoS ONE 2016, 11, e0154853. [Google Scholar] [CrossRef]
- Özyürek, E.; Çetintaş, S.; Ceylan, T.; Öǧüş, E.; Haberal, A.; Gürakan, B.; Özbek, N. Complete blood count parameters for healthy, small-for-gestational-age, full-term newborns. Clin. Lab. Haematol. 2006, 28, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Parastatidou, S.; Konstantinidi, A.; Tsantes, A.G.; Iacovidou, N.; Doxani, C.; Piovani, D.; Bonovas, S.; Stefanidis, I.; Zintzaras, E.; et al. Fresh frozen plasma transfusion in the neonatal population: A systematic review. Blood Rev. 2022, 55, 100951. [Google Scholar] [CrossRef]
- Mauch, J.; Spielmann, N.; Hartnack, S.; Madjdpour, C.; Kutter, A.P.; Bettschart-Wolfensberger, R.; Weiss, M.; Haas, T. Intrarater and interrater variability of point of care coagulation testing using the ROTEM delta. Blood Coagul. Fibrinolysis. 2011, 22, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidi, A.; Sokou, R.; Parastatidou, S.; Lampropoulou, K.; Katsaras, G.; Boutsikou, T.; Gounaris, A.K.; Tsantes, A.E.; Iacovidou, N. Clinical Application of Thromboelastography/Thromboelastometry (TEG/TEM) in the Neonatal Population: A Narrative Review. Semin. Thromb. Hemost. 2019, 45, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Strauss, T.; Levy-Shraga, Y.; Ravid, B.; Schushan-Eisen, I.; Maayan-Metzger, A.; Kuint, J.; Kenet, G. Clot formation of neonates tested by thromboelastography correlates with gestational age. Thromb. Haemost. 2010, 103, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Sulaj, A.; Tsaousi, M.; Karapati, E.; Pouliakis, A.; Iliodromiti, Z.; Boutsikou, T.; Valsami, S.; Iacovidou, N.; Politou, M.; Sokou, R. Reference Values of Thromboelastometry Parameters in Healthy Term Neonates Using NATEM in Cord Blood Samples. Children 2022, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Theodoraki, M.; Sokou, R.; Valsami, S.; Iliodromiti, Z.; Pouliakis, A.; Parastatidou, S.; Karavana, G.; Ioakeimidis, G.; Georgiadou, P.; Iacovidou, N.; et al. Reference Values of Thrombolastometry Parameters in Healthy Term Neonates. Children 2020, 7, 47. [Google Scholar] [CrossRef]
- Sokou, R.; Foudoulaki-Paparizos, L.; Lytras, T.; Konstantinidi, A.; Theodoraki, M.; Lambadaridis, I.; Gounaris, A.; Valsami, S.; Politou, M.; Gialeraki, A.; et al. Reference ranges of thromboelastometry in healthy full-term and pre-term neonates. Clin. Chem. Lab. Med. 2017, 55, 1592–1597. [Google Scholar] [CrossRef]
- Sokou, R.; Piovani, D.; Konstantinidi, A.; Tsantes, A.G.; Parastatidou, S.; Lampridou, M.; Ioakeimidis, G.; Gounaris, A.; Iacovidou, N.; Kriebardis, A.G.; et al. A Risk Score for Predicting the Incidence of Hemorrhage in Critically Ill Neonates: Development and Validation Study. Thromb. Haemost. 2021, 121, 131–139. [Google Scholar] [CrossRef]
- Parastatidou, S.; Sokou, R.; Tsantes, A.G.; Konstantinidi, A.; Lampridou, M.; Ioakeimidis, G.; Panagiotounakou, P.; Kyriakou, E.; Kokoris, S.; Gialeraki, A.; et al. The role of ROTEM variables based on clot elasticity and platelet component in predicting bleeding risk in thrombocytopenic critically ill neonates. Eur. J. Haematol. 2021, 106, 175–183. [Google Scholar] [CrossRef]
- Peterson, J.A.; Maroney, S.A.; Zwifelhofer, W.; Wood, J.P.; Yan, K.; Bercovitz, R.S.; Woods, R.K.; Mast, A.E. Heparin-protamine balance after neonatal cardiopulmonary bypass surgery. J. Thromb. Haemost. 2018, 16, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Grant, H.W.; Hadley, G.P. Prediction of neonatal sepsis by thromboelastography. Pediatr. Surg. Int. 1997, 12, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Katsaras, G.; Sokou, R.; Tsantes, A.G.; Piovani, D.; Bonovas, S.; Konstantinidi, A.; Ioakeimidis, G.; Parastatidou, S.; Gialamprinou, D.; Makrogianni, A.; et al. The use of thromboelastography (TEG) and rotational thromboelastometry (ROTEM) in neonates: A systematic review. Eur. J. Pediatr. 2021, 180, 3455–3470. [Google Scholar] [CrossRef]
- Haizinger, B.; Gombotz, H.; Rehak, P.; Geiselseder, G.; Mair, R. Activated thrombelastogram in neonates and infants with complex congenital heart disease in comparison with healthy children. Br. J. Anaesth. 2006, 97, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Forman, K.R.; Wong, E.; Gallagher, M.; McCarter, R.; Luban, N.L.; Massaro, A.N. Effect of temperature on thromboelastography and implications for clinical use in newborns undergoing therapeutic hypothermia. Pediatr. Res. 2014, 75, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Shin, Y.R.; Kil, H.K.; Park, M.R.; Lee, J.W. Reference Intervals of Thromboelastometric Evaluation of Coagulation in Pediatric Patients with Congenital Heart Diseases: A Retrospective Investigation. Med. Sci. Monit. 2016, 22, 3576–3587. [Google Scholar] [CrossRef]
- Sokou, R.; Giallouros, G.; Konstantinidi, A.; Pantavou, K.; Nikolopoulos, G.; Bonovas, S.; Lytras, T.; Kyriakou, E.; Lambadaridis, I.; Gounaris, A.; et al. Thromboelastometry for diagnosis of neonatal sepsis-associated coagulopathy: An observational study. Eur. J. Pediatr. 2018, 177, 355–362. [Google Scholar] [CrossRef]
- Görlinger, K.D.; Hanke, A.A.D. Rotational Thromboelastometry (ROTEM®). In Trauma Induced Coagulopathy; Gonzalez, M.E.H.B., Moore, E.E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 267–298. [Google Scholar]
- Durila, M.; Sevcikova, S.; Vymazal, T. Stability of Non-Activated Rotational Thromboelastometry Assay in Time of Citrated Blood (Appropriate Time Interval for Analysis). Clin. Lab. 2016, 62, 2145–2148. [Google Scholar] [CrossRef]
- Durila, M. Nonactivated thromboelastometry able to detect fibrinolysis in contrast to activated methods (EXTEM, INTEM) in a bleeding patient. Blood Coagul. Fibrinol. 2016, 27, 828–830. [Google Scholar] [CrossRef]
- Sidlik, R.; Strauss, T.; Morag, I.; Shenkman, B.; Tamarin, I.; Lubetsky, A.; Livnat, T.; Kenet, G. Assessment of Functional Fibrinolysis in Cord Blood Using Modified Thromboelastography. Pediatr. Blood Cancer 2016, 63, 839–843. [Google Scholar] [CrossRef]
- Shalaby, S.; Simioni, P.; Campello, E.; Spiezia, L.; Gavasso, S.; Bizzaro, D.; Cardin, R.; D’Amico, F.; Gringeri, E.; Cillo, U.; et al. Endothelial Damage of the Portal Vein is Associated with Heparin-Like Effect in Advanced Stages of Cirrhosis. Thromb. Haemost. 2020, 120, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Georgiadou, P.; Sokou, R.; Tsantes, A.G.; Parastatidou, S.; Konstantinidi, A.; Houhoula, D.; Kokoris, S.; Iacovidou, N.; Tsantes, A.E. The Non-Activated Thromboelastometry (NATEM) Assay’s Application among Adults and Neonatal/Pediatric Population: A Systematic Review. Diagnostics 2022, 12, 658. [Google Scholar] [CrossRef] [PubMed]
- Treliński, J.; Misiewicz, M.; Robak, M.; Smolewski, P.; Chojnowski, K. Assessment of rotation thromboelastometry (ROTEM) parameters in patients with multiple myeloma at diagnosis. Thromb. Res. 2014, 133, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Spiezia, L.; Bogana, G.; Campello, E.; Maggiolo, S.; Pelizzaro, E.; Carbonare, C.D.; Gervasi, M.T.; Simioni, P. Whole blood thromboelastometry profiles in women with preeclampsia. Clin. Chem. Lab. Med. 2015, 53, 1793–1798. [Google Scholar] [CrossRef]
- Yada, K.; Nogami, K.; Ogiwara, K.; Shida, Y.; Furukawa, S.; Yaoi, H.; Takeyama, M.; Kasai, R.; Shima, M. Global coagulation function assessed by rotational thromboelastometry predicts coagulation-steady state in individual hemophilia A patients receiving emicizumab prophylaxis. Int. J. Hematol. 2019, 110, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Nogami, K.; Ogiwara, K.; Yada, K.; Minami, H.; Shima, M. Systematic monitoring of hemostatic management in hemophilia A patients with inhibitor in the perioperative period using rotational thromboelastometry. J. Thromb. Haemost. 2015, 13, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Aires, R.B.; Soares, A.A.; Gomides, A.P.M.; Nicola, A.M.; Teixeira-Carvalho, A.; da Silva, D.L.M.; de Gois, E.T.; Xavier, F.D.; Martins, F.P.; Santos, G.P.J.; et al. Thromboelastometry demonstrates endogenous coagulation activation in nonsevere and severe COVID-19 patients and has applicability as a decision algorithm for intervention. PLoS ONE 2022, 17, e0262600. [Google Scholar] [CrossRef]
- Sokou, R.; Georgiadou, P.; Tsantes, A.G.; Parastatidou, S.; Konstantinidi, A.; Ioakeimidis, G.; Makrogianni, A.; Theodoraki, M.; Kokoris, S.; Iacovidou, N.; et al. The Utility of NATEM Assay in Predicting Bleeding Risk in Critically Ill Neonates. Semin. Thromb. Hemost. 2023, 49, 182–191. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Konstantinidi, A.; Parastatidou, S.; Ioakeimidis, G.; Tsante, K.A.; Mantzios, P.G.; Kriebardis, A.G.; Gialeraki, A.; Houhoula, D.; Iacovidou, N.; et al. Assessment of agreement between EXTEM and NATEM thromboelastometry measurement assays in critically ill neonates. Eur. J. Haematol. 2022, 109, 327–335. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obs. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- Gardosi, J.; Chang, A.; Kalyan, B.; Sahota, D.; Symonds, E.M. Customised antenatal growth charts. Lancet 1992, 339, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Gardosi, J.; Mongelli, M.; Wilcox, M.; Chang, A. An adjustable fetal weight standard. Ultrasound Obstet. Gynecol. 1995, 6, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Gardosi, J.; Francis, A.; Turner, S.; Williams, M. Customized growth charts: Rationale, validation and clinical benefits. Am. J. Obs. Gynecol. 2018, 218, S609–S618. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A.; Galan, H.L.; Bhide, A.; Berg, C.; Kush, M.L.; Oepkes, D.; Thilaganathan, B.; Gembruch, U.; Harman, C.R. Doppler and biophysical assessment in growth restricted fetuses: Distribution of test results. Ultrasound Obs. Gynecol. 2006, 27, 41–47. [Google Scholar] [CrossRef]
- Harel, S.; Tomer, A.; Barak, Y.; Binderman, I.; Yavin, E. The cephalization index: A screening device for brain maturity and vulnerability in normal and intrauterine growth retarded newborns. Brain Dev. 1985, 7, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Dashe, J.S.; McIntire, D.D.; Lucas, M.J.; Leveno, K.J. Effects of symmetric and asymmetric fetal growth on pregnancy outcomes. Obs. Gynecol. 2000, 96, 321–327. [Google Scholar]
- Melamed, N.; Baschat, A.; Yinon, Y.; Athanasiadis, A.; Mecacci, F.; Figueras, F.; Berghella, V.; Nazareth, A.; Tahlak, M.; McIntyre, H.D.; et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: Best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021, 152 (Suppl. 1), 3–57. [Google Scholar] [CrossRef]
- Andrew, M.; Paes, B.; Milner, R.; Johnston, M.; Mitchell, L.; Tollefsen, D.M.; Powers, P. Development of the human coagulation system in the full-term infant. Blood 1987, 70, 165–172. [Google Scholar] [CrossRef]
- Ignjatovic, V.; Mertyn, E.; Monagle, P. The coagulation system in children: Developmental and pathophysiological considerations. Semin. Thromb. Hemost. 2011, 37, 723–729. [Google Scholar] [CrossRef]
- Saxonhouse, M.A.; Manco-Johnson, M.J. The evaluation and management of neonatal coagulation disorders. Semin. Perinatol. 2009, 33, 52–65. [Google Scholar] [CrossRef]
- Monagle, P.; Ignjatovic, V.; Savoia, H. Hemostasis in neonates and children: Pitfalls and dilemmas. Blood Rev. 2010, 24, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, I.D.; Ben Hamida, E.; Youssef, A.; Sdiri, Y.; Marrakchi, Z. Prevalence and outcomes of thrombocytopenia in a neonatal intensive care unit. Tunis. Medicale. 2016, 94, 305–308. [Google Scholar]
- Beiner, M.E.; Simchen, M.J.; Sivan, E.; Chetrit, A.; Kuint, J.; Schiff, E. Risk factors for neonatal thrombocytopenia in preterm infants. Am. J. Perinatol. 2003, 20, 49–54. [Google Scholar] [CrossRef]
- Gupta, A.; Mathai, S.S.; Kanitkar, M. Incidence of thrombocytopenia in the neonatal intensive care unit. Med. J. Armed Forces Ind. 2011, 67, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, E.; Tüfekçi, O.; Duman, N.; Kumral, A.; İrken, G.; Ören, H. Thrombocytopenia in neonates: Causes and outcomes. Ann. Hematol. 2013, 92, 961–967. [Google Scholar] [CrossRef]
- Vlug, R.D.; Lopriore, E.; Janssen, M.; Middeldorp, J.M.; Rath, M.E.A.; Smits-Wintjens, V.E.H.J. Thrombocytopenia in neonates with polycythemia: Incidence, risk factors and clinical outcome. Expert Rev. Hematol. 2015, 8, 123–129. [Google Scholar] [CrossRef]
- Wasiluk, A.; Dabrowska, M.; Osada, J.; Jasinska, E.; Laudanski, T.; Redzko, S. Platelet indices in SGA newborns. Adv. Med. Sci. 2011, 56, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A.; Kush, M.; Berg, C.; Gembruch, U.; Nicolaides, K.H.; Harman, C.R.; Turan, O.M. Hematologic profile of neonates with growth restriction is associated with rate and degree of prenatal Doppler deterioration. Ultrasound Obs. Gynecol. 2013, 41, 66–72. [Google Scholar] [CrossRef]
- Maruyama, H.; Shinozuka, M.; Kondoh, Y.I.; Akahori, Y.I.; Matsuda, M.; Inoue, S.; Sumida, Y.; Morishima, T. Thrombocytopenia in preterm infants with intrauterine growth restriction. Acta Med. Okayama 2008, 62, 313–317. [Google Scholar]
- Martinelli, S.; Francisco, R.P.; Bittar, R.E.; Zugaib, M. Hematological indices at birth in relation to arterial and venous Doppler in small-for-gestational-age fetuses. Acta Obs. Gynecol Scand. 2009, 88, 888–893. [Google Scholar] [CrossRef]
- Jang, D.G.; Jo, Y.S.; Lee, S.J.; Kim, N.; Lee, G.S.L. Perinatal outcomes and maternal clinical characteristics in IUGR with absent or reversed end-diastolic flow velocity in the umbilical artery. Arch. Gynecol. Obstet. 2011, 284, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Kush, M.L.; Gortner, L.; Harman, C.R.; Baschat, A.A. Sustained hematological consequences in the first week of neonatal life secondary to placental dysfunction. Early Hum. Dev. 2006, 82, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kollia, M.; Iacovidou, N.; Iliodromiti, Z.; Pouliakis, A.; Sokou, R.; Mougiou, V.; Boutsikou, M.; Politou, M.; Boutsikou, T.; Valsami, S. Primary hemostasis in fetal growth restricted neonates studied via PFA-100 in cord blood samples. Front. Pediatr. 2022, 10, 946932. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Baryshnikova, E. Sensitivity of Viscoelastic Tests to Platelet Function. J. Clin. Med. 2020, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Hochart, A.; Nuytten, A.; Pierache, A.; Bauters, A.; Rauch, A.; Wibaut, B.; Susen, S.; Goudemand, J. Hemostatic profile of infants with spontaneous prematurity: Can we predict intraventricular hemorrhage development? Ital. J. Pediatr. 2019, 45, 113. [Google Scholar] [CrossRef]
- Mitsiakos, G.; Giougi, E.; Chatziioannidis, I.; Karagianni, P.; Papadakis, E.; Tsakalidis, C.; Papaioannou, G.; Malindretos, P.; Nikolaidis, N. Haemostatic profile of healthy premature small for gestational age neonates. Thromb. Res. 2010, 126, 103–106. [Google Scholar] [CrossRef]
- Neary, E.; McCallion, N.; Kevane, B.; Cotter, M.; Egan, K.; Regan, I.; Kirkham, C.; Mooney, C.; Coulter-Smith, S.; Ní Áinle, F. Coagulation indices in very preterm infants from cord blood and postnatal samples. J. Thromb. Haemostas. 2015, 13, 2021–2030. [Google Scholar] [CrossRef]
- Ekelund, H.O.; Finnstr, Ö.M. Fibrinolysis in pre-term infants and in infants small for gestational age. Acta Pædiatr. 1972, 61, 185–196. [Google Scholar] [CrossRef]
- Karapati, E.; Sokou, R.; Iliodromiti, Z.; Tsaousi, M.; Sulaj, A.; Tsantes, A.G.; Petropoulou, C.; Pouliakis, A.; Tsantes, A.E.; Boutsikou, T.; et al. Assessment of Hemostatic Profile in Neonates with Intrauterine Growth Restriction: A Systematic Review of Literature. Semin. Thromb. Hemost. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Fuse, Y. Small-for-Gestational-Age (SGA) Neonates: A Study of Blood Coagulation and Fibrinolysis. Asia-Ocean. J. Obstet. Gynaecol. 1986, 12, 291–299. [Google Scholar] [CrossRef]
- Pinacho, A.; Páramo, J.A.; Ezcurdia, M.; Rocha, E. Evaluation of the fibrinolytic system in full-term neonates. Int. J. Clin. Lab. Res. 1995, 25, 149–152. [Google Scholar] [CrossRef]
- Darby, J.R.T.; Varcoe, T.J.; Orgeig, S.; Morrison, J.L. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020, 150, 84–95. [Google Scholar] [CrossRef]
- Lau, S.L.; Lok, Z.L.Z.; Hui, S.Y.A.; Fung, G.P.G.; Lam, H.S.; Leung, T.Y. Neonatal outcome of infants with umbilical cord arterial pH less than 7. Acta Obstet. Gynecol. Scand. 2023, 102, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, A. Umbilical cord pH, blood gases, and lactate at birth: Normal values, interpretation, and clinical utility. Am. J. Obstet. Gynecol. 2023, 228, S1222–S1240. [Google Scholar] [CrossRef]
- Tsaousi, M.; Iliodromiti, Z.; Iacovidou, N.; Karapati, E.; Sulaj, A.; Tsantes, A.G.; Petropoulou, C.; Boutsikou, T.; Tsantes, A.E.; Sokou, R. Hemostasis in Neonates with Perinatal Hypoxia-Laboratory Approach: A Systematic Review. Semin. Thromb. Hemost. 2022, 49, 391–401. [Google Scholar] [CrossRef]
- Konstantinidi, A.; Sokou, R.; Tsantes, A.G.; Parastatidou, S.; Bonovas, S.; Kouskouni, E.; Gounaris, A.K.; Tsantes, A.E.; Iacovidou, N. Thromboelastometry Variables in Neonates with Perinatal Hypoxia. Semin. Thromb. Hemost. 2020, 46, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.F.; Mackman, N.; Kisiel, W.; Stern, D.M.; Pinsky, D.J. Hypoxia/Hypoxemia-Induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W.; Litvinov, R.I. Red blood cells: The forgotten player in hemostasis and thrombosis. J. Thromb. Haemost. 2019, 17, 271–282. [Google Scholar] [CrossRef]
- Westbury, S.K.; Lee, K.; Reilly-Stitt, C.; Tulloh, R.; Mumford, A.D. High haematocrit in cyanotic congenital heart disease affects how fibrinogen activity is determined by rotational thromboelastometry. Thromb. Res. 2013, 132, e145–e151. [Google Scholar] [CrossRef]
- Sokou, R.; Konstantinidi, A.; Stefanaki, C.; Tsantes, A.G.; Parastatidou, S.; Lampropoulou, K.; Katsaras, G.; Tavoulari, E.; Iacovidou, N.; Kyriakou, E.; et al. Thromboelastometry: Studying hemostatic profile in small for gestational age neonates-a pilot observational study. Eur. J. Pediatr. 2019, 178, 551–557. [Google Scholar] [CrossRef]
- Ortigosa Rocha, C.; Bittar, R.E.; Zugaib, M. Neonatal outcomes of late-preterm birth associated or not with intrauterine growth restriction. Obstet. Gynecol. Int. 2010, 2010, 231842. [Google Scholar] [CrossRef]
- Duppré, A.; Sauer, H.; Giannopoulou, E.Z.; Gortner, L.; Nunold, H.; Wagenpfeil, S.; Geisel, J.; Stephan, B.; Meyer, S. Cellular and humoral coagulation profiles and occurrence of IVH in VLBW and ELWB infants. Early Hum. Dev. 2015, 91, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Prakash, N.; Decristofaro, J.; Maduekwe, E.T. One Less Painful Procedure: Using Umbilical Cord Blood as Alternative Source to Admission Complete Blood Count. Am. J. Perinatol. 2017, 34, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Christensen, R.D. New and underutilized uses of umbilical cord blood in neonatal care. Matern. Health Neonatol. Perinatol. 2015, 1, 16. [Google Scholar] [CrossRef] [PubMed]
Characteristic | AGA (N = 189) Median (Q1–Q3) or N (%) | IUGR (N = 101) Median (Q1–Q3) or N (%) | p |
---|---|---|---|
Delivery method | CS (116/61.38%) VD (73/38.62%) | CS (81/80.2%) VD (20/19.8%) | 0.0010 |
Gender | Female (86/45.5%) Male (103/54.5%) | Female (51/50.5%) Male (50/49.5%) | 0.4596 |
Gestational age (weeks) | 39 (39–40) | 38 (37–39) | <0.0001 |
Birth weight (gram) | 3330 (3140–3530) | 2540 (2280–2750) | <0.0001 |
Smoking | No (161/85.18%) Yes (28/14.82%) | No (80/79.21%) Yes (21/20.79%) | 0.2492 |
Maternal BMI | 22 (20.5–25) | 24 (22–27) | 0.0057 |
Thrombophilia | No (178/94.18%) Yes (11/5.82%) | No (95/94.06%) Yes (6/5.94%) | 1.0000 |
Diabetes | No (189/100%) Gestational (0/0%) Type II (0/0%) | No (77/82.8%) Gestational (13/13.98%) Type II (3/3.23%) | <0.0001 |
Hypertension | No (189/100%) Yes (0/0%) | No (84/83.17%) Yes (17/16.83%) | <0.0001 |
Preeclampsia | No (189/100%) Yes (0/0%) | No (92/91.09%) Yes (9/8.91%) | <0.0001 |
pH (Umbilical Cord) | 7.4 (7.3–7.4) | 7.3 (7.3–7.4) | <0.0001 |
NICU admission | No (189/100%) Yes (0/0%) | No (95/94.06%) Yes (6/5.94%) | 0.0016 |
Sepsis | No (189/100%) Yes (0/0%) | No (100/99.01%) Yes (1/0.99%) | 0.3483 |
Respiratory distress syndrome (RDS) | No (189/100%) Yes (0/0%) | No (97/96.04%) Yes (4/3.96%) | 0.0141 |
Hypoglycemia | No (182/96.3%) Yes (7/3.7%) | No (63/62.38%) Yes (38/37.62%) | <0.0001 |
CNS bleeding | No (189/100%) IVH (0/0%) | No (93/92.08%) IVH (8/ 7.92%) | 0.0002 |
Thrombosis | None | None | NA |
Platelet count (umbilical cord) | No data | 276,400 (231,900–316,100) | NA |
Hemoglobin (umbilical cord) | No data | 15.6 (13.8–17.2) | NA |
AGA (N = 189) | IUGR (N = 101) | ||
---|---|---|---|
NATEM Parameter | Median (Q1–Q3) | Median (Q1–Q3) | p |
CT | 322 (250–391) | 309.5 (259–414.5) | 0.8423 |
A5 | 41 (36–45.5) | 38.5 (33.5–44) | 0.0132 |
A10 | 51 (47–55) | 48 (44–53) | 0.0043 |
A20 | 57 (53–61) | 54 (51–59) | 0.0044 |
CFT | 97 (80–127) | 106.5 (81–136) | 0.1871 |
MCF | 58 (54–61) | 55.5 (53–61) | 0.0087 |
alpha angle | 71 (65–74) | 69 (64–74) | 0.1807 |
LI30 | 100 (99–100) | 100 (99–100) | 0.8171 |
LI60 | 93 (91–95) | 93 (91–96) | 0.0613 |
MCE | 136.5 (118–158.5) | 125 (111–154) | 0.0107 |
Parameter | CT | A5 | A10 | A20 | CFT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | SE | p | Beta | SE | p | Beta | SE | p | Beta | SE | p | Beta | SE | p | |
IUGR (ref = AGA) | −4.71 | 12.56 | 0.7077 | −2.79 | 0.99 | 0.005 | −3.15 | 0.99 | 0.0016 | −2.80 | 0.93 | 0.0029 | 15.83 | 7.14 | 0.0274 |
Gestational age | −0.34 | 4.19 | 0.9361 | 0.11 | 0.33 | 0.7491 | 0.15 | 0.33 | 0.6599 | 0.33 | 0.31 | 0.2873 | −0.31 | 2.36 | 0.8967 |
Gender Female (ref = male) | −16.22 | 11.06 | 0.1435 | 0.92 | 0.87 | 0.2903 | 1.00 | 0.87 | 0.2516 | 1.08 | 0.82 | 0.1896 | −9.52 | 6.23 | 0.1279 |
Delivery mode CS (ref = VD) | 10.30 | 12.31 | 0.4037 | −0.23 | 0.97 | 0.8096 | 0.05 | 0.97 | 0.956 | 0.44 | 0.91 | 0.6326 | 2.20 | 6.97 | 0.7521 |
MCF | alpha angle | LI30 | LI60 | MCE | |||||||||||
Parameter | Beta | SE | p | Beta | SE | p | Beta | SE | p | Beta | SE | p | Beta | SE | p |
IUGR (ref = AGA) | −2.39 | 0.89 | 0.0075 | −2.28 | 0.94 | 0.0155 | 0.07 | 0.12 | 0.538 | 1.50 | 0.42 | 0.0004 | −8.38 | 4.15 | 0.0444 |
Gestational age | 0.40 | 0.30 | 0.1807 | −0.19 | 0.31 | 0.547 | 0.14 | 0.04 | 0.0004 | 0.53 | 0.14 | 0.0002 | 2.81 | 1.38 | 0.0432 |
Gender Female (ref = male) | 0.91 | 0.78 | 0.246 | 1.35 | 0.82 | 0.1019 | 0.03 | 0.10 | 0.7904 | −0.14 | 0.37 | 0.7008 | 4.85 | 3.66 | 0.1855 |
Delivery mode CS (ref = VD) | 0.38 | 0.87 | 0.6648 | −0.34 | 0.92 | 0.7079 | 0.11 | 0.12 | 0.3256 | −0.06 | 0.41 | 0.8757 | −0.33 | 4.07 | 0.9361 |
CT | A5 | A10 | A20 | CFT | MCF | Alpha Angle | LI30 | LI60 | MCE | |
---|---|---|---|---|---|---|---|---|---|---|
Gestational age (weeks) | −0.02 0.8575 100 | 0.05 0.6222 100 | 0.07 0.4807 100 | 0.11 0.2653 100 | −0.01 0.9015 98 | 0.13 0.2104 100 | −0.02 0.8617 99 | 0.28 0.0048 100 | 0.30 0.0024 100 | 0.14 0.1706 100 |
Birth weight (gram) | −0.03 0.768 100 | 0.13 0.2088 100 | 0.14 0.1751 100 | 0.16 0.122 100 | −0.07 0.467 98 | 0.15 0.1475 100 | 0.05 0.6569 99 | 0.17 0.0904 100 | 0.21 0.0373 100 | 0.15 0.1249 100 |
pH (Umbilical Cord) | −0.17 0.0951 95 | 0.10 0.3328 95 | 0.09 0.3815 95 | 0.05 0.6632 95 | −0.14 0.189 93 | −0.02 0.8385 95 | 0.10 0.36 94 | −0.31 0.0026 95 | −0.34 0.0007 95 | −0.02 0.8487 95 |
Platelet count (Umbilical Cord) | −0.22 0.2855 25 | 0.50 0.011 25 | 0.50 0.0116 25 | 0.58 0.0024 25 | −0.45 0.0237 25 | 0.60 0.0014 25 | 0.51 0.01 25 | −0.21 0.3245 25 | −0.17 0.4126 25 | 0.62 0.001 25 |
Hemoglobin (Umbilical Cord) | 0.19 0.3589 25 | −0.75 <0.0001 25 | −0.77 <0.0001 25 | −0.63 0.0008 25 | 0.63 0.0007 25 | −0.57 0.0029 25 | −0.58 0.0022 25 | 0.38 0.0645 25 | 0.18 0.3775 25 | −0.58 0.0025 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapati, E.; Valsami, S.; Sokou, R.; Pouliakis, A.; Tsaousi, M.; Sulaj, A.; Iliodromiti, Z.; Iacovidou, N.; Boutsikou, T. Hemostatic Profile of Intrauterine Growth-Restricted Neonates: Assessment with the Use of NATEM Assay in Cord Blood Samples. Diagnostics 2024, 14, 178. https://doi.org/10.3390/diagnostics14020178
Karapati E, Valsami S, Sokou R, Pouliakis A, Tsaousi M, Sulaj A, Iliodromiti Z, Iacovidou N, Boutsikou T. Hemostatic Profile of Intrauterine Growth-Restricted Neonates: Assessment with the Use of NATEM Assay in Cord Blood Samples. Diagnostics. 2024; 14(2):178. https://doi.org/10.3390/diagnostics14020178
Chicago/Turabian StyleKarapati, Eleni, Serena Valsami, Rozeta Sokou, Abraham Pouliakis, Marina Tsaousi, Alma Sulaj, Zoi Iliodromiti, Nicoletta Iacovidou, and Theodora Boutsikou. 2024. "Hemostatic Profile of Intrauterine Growth-Restricted Neonates: Assessment with the Use of NATEM Assay in Cord Blood Samples" Diagnostics 14, no. 2: 178. https://doi.org/10.3390/diagnostics14020178
APA StyleKarapati, E., Valsami, S., Sokou, R., Pouliakis, A., Tsaousi, M., Sulaj, A., Iliodromiti, Z., Iacovidou, N., & Boutsikou, T. (2024). Hemostatic Profile of Intrauterine Growth-Restricted Neonates: Assessment with the Use of NATEM Assay in Cord Blood Samples. Diagnostics, 14(2), 178. https://doi.org/10.3390/diagnostics14020178