A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Methodology Used
3.2. Data Description
3.3. Convolutional Neural Network Architecture
3.3.1. ResNet101
3.3.2. ResNext50, ResNext101, and Se-ResNext50
3.3.3. MobileNet V2
3.4. Valuation Metrics
3.5. Dataset Prepration
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdani, S.R.; Zulkifley, M.A.; Zulkifley, N.H. Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation. Diagnostics 2021, 11, 1104. [Google Scholar] [CrossRef] [PubMed]
- Zaki, W.M.D.W.; Daud, M.M.; Abdani, S.R.; Hussain, A.; Mutalib, H.A. Automated pterygium detection method of anterior segment photographed images. Comput. Methods Programs Biomed. 2018, 154, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Coan, L.J.; Williams, B.M.; Adithya, V.K.; Upadhyaya, S.; Alkafri, A.; Czanner, S.; Venkatesh, R.; Willoughby, C.E.; Kavitha, S.; Czanner, G. Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Surv. Ophthalmol. 2023, 68, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, C.; Wang, S.; Chen, Y.; Lin, X.; Guo, S.; Liu, Z.; Wang, Y.; Zhang, H.; Guo, Y.; et al. Accurate detection and grading of pterygium through smartphone by a fusion training model. Br. J. Ophthalmol. 2023, 108, 336–342. [Google Scholar] [CrossRef]
- Fang, X.; Deshmukh, M.; Chee, M.L.; Soh, Z.-D.; Teo, Z.L.; Thakur, S.; Goh, J.H.L.; Liu, Y.-C.; Husain, R.; Mehta, J.S.; et al. Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras. Br. J. Ophthalmol. 2021, 106, 1642–1647. [Google Scholar] [CrossRef]
- Ticlavilca-Inche, E.J.; Moreno-Lozano, M.I.; Castañeda, P.; Wong-Durand, S.; Oñate-Andino, A. Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers. Int. J. Online Biomed. Eng. (iJOE) 2024, 20, 115–138. [Google Scholar] [CrossRef]
- Centro Peruano del Pterigion—Somos el Primer Centro Especializa-do en el Tratamiento Integral del Pterigion en Perú. Available online: https://carnosidadperu.com/ (accessed on 8 January 2024).
- Zamani, N.S.M.; Zaki, W.M.D.W.; Huddin, A.B.; Hussain, A.; Mutalib, H.A.; Ali, A. Automated pterygium detection using deep neu-ral network. IEEE Access 2020, 8, 191659–191672. [Google Scholar] [CrossRef]
- Saad, A.H. Automated pterygium detection in anterior segment photo-graphed images using deep convolutional neural network. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 225–232. [Google Scholar] [CrossRef]
- Ahmad, S.N.A.; Zaki, W.M.D.W.; Zamani, N.S.M. Sistem saringan penyakit pterigium untuk imej mata terangkum hadapan. J. Kejuruteraan 2019, 31, 99–105. [Google Scholar] [CrossRef]
- Zamani, N.S.M.; Ramlan, L.A.; Zaki, W.M.D.W.; Hussain, A.; Mutalib, H.A. Mobile screening framework of anterior segment photo-graphed images. Int. J. Eng. Technol. 2018, 7, 85–89. [Google Scholar] [CrossRef]
- Hung, K.-H.; Lin, C.; Roan, J.; Kuo, C.-F.; Hsiao, C.-H.; Tan, H.-Y.; Chen, H.-C.; Ma, D.H.-K.; Yeh, L.-K.; Lee, O.K.-S. Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs. Diagnostics 2022, 12, 888. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Fang, X.; Qian, Y.; He, K.; Wu, M.; Zheng, B.; Song, J. Pterygium Screening and Lesion Area Segmentation Based on Deep Learning. J. Health Eng. 2022, 2022, 3942110. [Google Scholar] [CrossRef] [PubMed]
- Reguant, R.; Brunak, S.; Saha, S. Understanding inherent image features in CNN-based assessment of diabetic retinopathy. Sci. Rep. 2021, 11, 9704. [Google Scholar] [CrossRef]
- Dixit, A.; Yohannan, J.; Boland, M.V. Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data. Ophthalmology 2021, 128, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.-C.; Luo, A.-C.; Deng, Y.-S.; Lee, Y.-H.; Chen, S.-J.; Chang, P.-H.; Lin, C.-J.; Tai, M.-C.; Chou, Y.-B. Prediction of treatment outcome in neovascular age-related macular degeneration using a novel convolutional neural network. Sci. Rep. 2022, 12, 5871. [Google Scholar] [CrossRef]
- Gan, F.; Chen, W.-Y.; Liu, H.; Zhong, Y.-L. Application of artificial intelligence models for detecting the pterygium that requires surgical treatment based on anterior segment images. Front. Neurosci. 2022, 16, 1084118. [Google Scholar] [CrossRef]
- Zheng, B.; Liu, Y.; He, K.; Wu, M.; Jin, L.; Jiang, Q.; Zhu, S.; Hao, X.; Wang, C.; Yang, W. Research on an Intelligent Lightweight-Assisted Pterygium Diagnosis Model Based on Anterior Segment Images. Dis. Markers 2021, 2021, 7651462. [Google Scholar] [CrossRef]
- Xu, W.; Jin, L.; Zhu, P.-Z.; He, K.; Yang, W.-H.; Wu, M.-N. Implementation and Application of an Intelligent Pterygium Diagnosis System Based on Deep Learning. Front. Psychol. 2021, 12, 4922. [Google Scholar] [CrossRef]
- Xie, X.; Li, L.; Lian, S.; Chen, S.; Luo, Z. SERU: A cascaded SE-ResNeXT U-Net for kidney and tumor segmentation. Concurr. Comput. Pr. Exp. 2020, 32, e5738. [Google Scholar] [CrossRef]
- Hira, S.; Bai, A.; Hira, S. An automatic approach based on CNN architecture to detect COVID-19 disease from chest X-ray images. Appl. Intell. 2021, 51, 2864–2889. [Google Scholar] [CrossRef]
- Kim, M.; Gil, Y.; Kim, Y.; Kim, J. Deep-Learning-Based Scalp Image Analysis Using Limited Data. Electronics 2023, 12, 1380. [Google Scholar] [CrossRef]
- Tariq, H.; Rashid, M.; Javed, A.; Zafar, E.; Alotaibi, S.S.; Zia, M.Y.I. Performance analysis of deep-neural-network-based automatic diagnosis of diabetic retinopathy. Sensors 2022, 22, 205. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar] [CrossRef]
- Yang, W.-H.; Xu, Y.-W. Guidelines on clinical research evaluation of artificial intelligence in ophthalmology (2023). Int. J. Ophthalmol. 2023, 16, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Tebes, G.; Peppino, D.; Becker, P.; Olsina, L. Especificación del Modelo de Proceso para una Revisión Sistemática de Literatura. La Paz. Available online: https://www.researchgate.net/publication/333855959 (accessed on 1 February 2022).
Metric | Formula |
---|---|
F1 Score (F1) | (2 × Pr × Rc) ÷ (Pr + Rc) |
Precision (Pr) | TP ÷ (TP + FP) |
Recall or Sensitivity (Rc) | TP ÷ (TP + FN) |
Accuracy (Acc) | (TP + TN) ÷ (TP + TN + FP + FN) |
Architecture | Class | Total Score | ||
---|---|---|---|---|
Without Pterygium | Moderate Pterygium | Severe Pterygium | ||
ResNet101 | 0.85 | 0.79 | 0.88 | 0.84 |
ResNext101 | 0.73 | 0.64 | 0.84 | 0.74 |
ResNext50 | 0.90 | 0.81 | 0.91 | 0.87 |
Se-ResNext50 | 0.97 | 0.87 | 0.93 | 0.92 |
MobileNet V2 | 0.86 | 0.74 | 0.86 | 0.82 |
Architecture | Class | Total Score | ||
---|---|---|---|---|
Without Pterygium | Moderate Pterygium | Severe Pterygium | ||
ResNet101 | 0.82 | 0.73 | 0.94 | 0.83 |
ResNext101 | 0.71 | 0.67 | 0.83 | 0.74 |
ResNext50 | 0.93 | 0.90 | 0.85 | 0.89 |
Se-ResNext50 | 1 | 0.85 | 0.93 | 0.93 |
MobileNet V2 | 0.75 | 0.80 | 0.87 | 0.81 |
Architecture | Class | Total Score | ||
---|---|---|---|---|
Without Pterygium | Moderate Pterygium | Severe Pterygium | ||
ResNet101 | 0.88 | 0.85 | 0.83 | 0.85 |
ResNext101 | 0.75 | 0.62 | 0.85 | 0.74 |
ResNext50 | 0.88 | 0.73 | 0.98 | 0.86 |
Se-ResNext50 | 0.94 | 0.88 | 0.93 | 0.92 |
MobileNet V2 | 1 | 0.70 | 0.85 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Lozano, M.I.; Ticlavilca-Inche, E.J.; Castañeda, P.; Wong-Durand, S.; Mauricio, D.; Oñate-Andino, A. A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images. Diagnostics 2024, 14, 2026. https://doi.org/10.3390/diagnostics14182026
Moreno-Lozano MI, Ticlavilca-Inche EJ, Castañeda P, Wong-Durand S, Mauricio D, Oñate-Andino A. A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images. Diagnostics. 2024; 14(18):2026. https://doi.org/10.3390/diagnostics14182026
Chicago/Turabian StyleMoreno-Lozano, Maria Isabel, Edward Jordy Ticlavilca-Inche, Pedro Castañeda, Sandra Wong-Durand, David Mauricio, and Alejandra Oñate-Andino. 2024. "A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images" Diagnostics 14, no. 18: 2026. https://doi.org/10.3390/diagnostics14182026
APA StyleMoreno-Lozano, M. I., Ticlavilca-Inche, E. J., Castañeda, P., Wong-Durand, S., Mauricio, D., & Oñate-Andino, A. (2024). A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images. Diagnostics, 14(18), 2026. https://doi.org/10.3390/diagnostics14182026