Real-World Research on Retinal Diseases Using Health Claims Database: A Narrative Review
Abstract
:1. Introduction
2. Overview of Health Claims Databases
2.1. Methodologies of Health Claims Database-Based Research
2.1.1. Definition and Types of Health Claims Databases
2.1.2. Data Elements and Variables in Claims Data
2.2. Strengths and Trends of Health Claims Database-Based Studies
2.2.1. Strengths
2.2.2. Recent Trends and Growth
2.3. Study Designs in Health Claims Database-Based Studies
2.3.1. Observational Studies
2.3.2. Cohort Studies and Case-Control Studies
3. Applications of Real-World Research Using Health Claims Databases in Retinal Diseases
3.1. Epidemiological Studies
3.1.1. Prevalence and Incidence of Retinal Diseases and Their Complications
3.1.2. Risk Factors and Predictors
3.2. Effectiveness/Safety Research
3.2.1. Evaluation of Efficacy for Treatments and Interventions
3.2.2. Safety Research
3.3. Health Economics and Burden of Disease
3.4. Practice Patterns and Quality of Care
4. Challenges and Considerations
4.1. Data Limitations and Biases
4.1.1. Inaccuracy of Data and Lack of Specific Codes
4.1.2. Selection Bias and Confounding Factors
4.1.3. Generalizability and External Validity
4.2. Privacy and Ethical Concerns
4.3. Methodological Issues and Validation
5. Future Directions
5.1. Advancements in Data Collection and Analysis
5.2. Collaborative Research Networks and Consortia
5.3. Regulatory Landscape and Policy Implications
6. Conclusions
Funding
Conflicts of Interest
References
- Daien, V.; Eldem, B.M.; Talks, J.S.; Korobelnik, J.F.; Mitchell, P.; Finger, R.P.; Sakamoto, T.; Wong, T.Y.; Evuarherhe, O.; Carter, G.; et al. Real-world data in retinal diseases treated with anti-vascular endothelial growth factor (anti-VEGF) therapy—A systematic approach to identify and characterize data sources. BMC Ophthalmol. 2019, 19, 206. [Google Scholar] [CrossRef] [PubMed]
- Heywood, B.R.; Morgan, C.L.; Berni, T.R.; Summers, D.R.; Jones, B.I.; Jenkins-Jones, S.; Holden, S.E.; Riddick, L.D.; Fisher, H.; Bateman, J.D.; et al. Real-world evidence from the first online healthcare analytics platform-Livingstone. Validation of its descriptive epidemiology module. PLoS Digit. Health 2023, 2, e0000310. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Panagiotakos, D. Real-world data: A brief review of the methods, applications, challenges and opportunities. BMC Med. Res. Methodol. 2022, 22, 287. [Google Scholar] [CrossRef] [PubMed]
- Dang, A. Real-World Evidence: A Primer. Pharmaceut. Med. 2023, 37, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.D.; Lum, F.; Lee, P.P.; Rich, W.L., 3rd; Coleman, A.L. Use of health care claims data to study patients with ophthalmologic conditions. Ophthalmology 2014, 121, 1134–1141. [Google Scholar] [CrossRef]
- Stone, W.L.; Patel, B.C.; Basit, H.; Salini, B. Retinopathy. In StatPearls; StatPearls: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK541131/ (accessed on 1 June 2024).
- Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight 2017, 2, e93751. [Google Scholar] [CrossRef] [PubMed]
- Cadarette, S.M.; Wong, L. An Introduction to Health Care Administrative Data. Can. J. Hosp. Pharm. 2015, 68, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Mues, K.E.; Liede, A.; Liu, J.; Wetmore, J.B.; Zaha, R.; Bradbury, B.D.; Collins, A.J.; Gilbertson, D.T. Use of the Medicare database in epidemiologic and health services research: A valuable source of real-world evidence on the older and disabled populations in the US. Clin. Epidemiol. 2017, 9, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Razzak, M.I.; Imran, M.; Xu, G. Big data analytics for preventive medicine. Neural Comput. Appl. 2020, 32, 4417–4451. [Google Scholar] [CrossRef]
- Baser, O.; Samayoa, G.; Yapar, N.; Baser, E.; Mete, F. Use of Open Claims vs Closed Claims in Health Outcomes Research. J. Health Econ. Outcomes Res. 2023, 10, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Love, D.; Custer, W.; Miller, P. All-Payer Claims Databases: State Initiatives to Improve Health Care Transparency; Commonwealth Fund: New York, NY, USA, 2010; Volume 99, pp. 1–14. [Google Scholar]
- Shau, W.Y.; Setia, S.; Chen, Y.J.; Ho, T.Y.; Prakash Shinde, S.; Santoso, H.; Furtner, D. Integrated Real-World Study Databases in 3 Diverse Asian Health Care Systems in Taiwan, India, and Thailand: Scoping Review. J. Med. Internet Res. 2023, 25, e49593. [Google Scholar] [CrossRef]
- Hayashida, K.; Murakami, G.; Matsuda, S.; Fushimi, K. History and Profile of Diagnosis Procedure Combination (DPC): Development of a Real Data Collection System for Acute Inpatient Care in Japan. J. Epidemiol. 2021, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pacurariu, A.; Plueschke, K.; McGettigan, P.; Morales, D.R.; Slattery, J.; Vogl, D.; Goedecke, T.; Kurz, X.; Cave, A. Electronic healthcare databases in Europe: Descriptive analysis of characteristics and potential for use in medicines regulation. BMJ Open 2018, 8, e023090. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Aderman, C.M.; Song, Z.; Polsky, D.; Zhu, J.M. Increases in Medicare Spending and Use after Private Equity Acquisition of Retina Practices. Ophthalmology 2024, 131, 150–158. [Google Scholar] [CrossRef]
- Wibbelsman, T.D.; Pandit, R.R.; Xu, D.; Jenkins, T.L.; Mellen, P.L.; Soares, R.R.; Obeid, A.; Levin, H.; Hsu, J.; Ho, A.C. Trends in Retina Specialist Imaging Utilization from 2012 to 2016 in the United States Medicare Fee-for-Service Population. Am. J. Ophthalmol. 2019, 208, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Jun, L.; Tsai, J.C. The Relationship between Medicare Payment and Service Volume for Retina Procedures from 2005 through 2009. Ophthalmology 2015, 122, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Sussberg, J.A.; Nelson, L.B.; Thuma, T.B.T. The Medicaid Dilemma and Its Profound Effect on the Economic and Workforce Issues in Pediatric Ophthalmology and Ultimately on Access to Pediatric Eye Care. J. Pediatr. Ophthalmol. Strabismus 2023, 60, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Rector, T.S.; Wickstrom, S.L.; Shah, M.; Thomas Greeenlee, N.; Rheault, P.; Rogowski, J.; Freedman, V.; Adams, J.; Escarce, J.J. Specificity and sensitivity of claims-based algorithms for identifying members of Medicare+Choice health plans that have chronic medical conditions. Health Serv. Res. 2004, 39, 1839–1857. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.P.; Xu, Y.; Lidor, A.O. Healthcare Resource Utilization in Inguinal Hernia Repair: A Three-Year Cost Evaluation of Truven Health Marketscan Research Databases. J. Surg. Res. 2021, 264, 408–417. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, M.L.; DeCost, G.; Katcoff, H.; Savla, J.J.; Chang, J.; Goldmuntz, E.; Groeneveld, P.W.; Rossano, J.W.; Faerber, J.A.; Mercer-Rosa, L. Resource Utilization in the First 2 Years Following Operative Correction for Tetralogy of Fallot: Study Using Data From the Optum’s De-Identified Clinformatics Data Mart Insurance Claims Database. J. Am. Heart Assoc. 2020, 9, e016581. [Google Scholar] [CrossRef]
- Boikos, C.; Imran, M.; De Lusignan, S.; Ortiz, J.R.; Patriarca, P.A.; Mansi, J.A. Integrating Electronic Medical Records and Claims Data for Influenza Vaccine Research. Vaccines 2022, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, S.; Maeda, E.; Kobayashi, Y. Estimation of the number of children with cerebral palsy using nationwide health insurance claims data in Japan. Dev. Med. Child Neurol. 2017, 59, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Shida, H.; Kajiyama, K.; Sawada, S.; Ishiguro, C.; Kubo, M.; Kimura, R.; Hirano, M.; Komiyama, N.; Iguchi, T.; Oniyama, Y.; et al. Use of National Database of Health Insurance Claims and Specific Health Checkups for examining practical utilization and safety signal of a drug to support regulatory assessment on postmarketing drug safety in Japan. Front. Med. 2023, 10, 1096992. [Google Scholar] [CrossRef] [PubMed]
- Umemura, T.; Wattanakamolkul, K.; Nakayama, Y.; Takahashi, Y.; Sbarigia, U.; KyungHwa, L.; Villasis-Keever, A.; Furegato, M.; Gautier, L.; Nowacki, G.; et al. Real-World Epidemiology, Clinical and Economic Burden of Chronic Hepatitis B in Japan: A Retrospective Study Using JMDC Claims Database. Infect. Dis. Ther. 2023, 12, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Arakawa, K.; Inagaki, M.; Ushirogawa, Y. Effect of sodium-glucose cotransporter 2 inhibitor medication on new prescriptions of antihypertensives, antigout/antihyperuricemics and antidyslipidemics in Japan: Analysis using the JMDC Claims Database. J. Diabetes Investig. 2022, 13, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Oku, K.; Tokutsu, K.; Matsuda, S.; Kondo, H. Epidemiologic study of rhegmatogenous retinal detachment in Japan from the Diagnosis Procedure Combination database over a 2-year period (2014–2015). Jpn. J. Ophthalmol. 2021, 65, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, K.; Imamura, H.; Tokutsu, K.; Fujimoto, K.; Fushimi, K.; Matsuda, S. Epidemiological Study of Hospital Admissions for Food-Induced Anaphylaxis Using the Japanese Diagnosis Procedure Combination Database. J. Epidemiol. 2022, 32, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Tanaka, S. Survey on Actual Management of Osteoporosis with the Japanese Medical Data Vision Database in Elderly Patients Undergoing Spinal Fusion. J. Clin. Med. 2024, 13, 2806. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Taniguchi, Y.; Komiyama, J.; Kuno, T.; Adomi, M.; Abe, T.; Inokuchi, R.; Miyawaki, A.; Imai, S.; Saito, M.; et al. Characteristics and in-hospital mortality of patients with COVID-19 from the first to fifth waves of the pandemic in 2020 and 2021 in the Japanese Medical Data Vision database. Heliyon 2023, 9, e19490. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Warren-Gash, C.; Smeeth, L.; Chen, P.C. Data resource profile: The National Health Insurance Research Database (NHIRD). Epidemiol. Health 2018, 40, e2018062. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Kao Yang, Y.H.; Lai, E.C. Taiwan’s National Health Insurance Research Database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.J.; Handford, C.; Donaldson, M.J.; Sivakumar, B.S.; Jiang, E.; Symes, M. Surgical management of clavicle fractures in Australia: An analysis of Australian Medicare Benefits Schedule database from 2001 to 2020. ANZ J. Surg. 2023, 93, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Hajati, F.; Atlantis, E.; Bell, K.J.L.; Girosi, F. Patterns and trends of potentially inappropriate high-density lipoprotein cholesterol testing in Australian adults at high risk of cardiovascular disease from 2008 to 2014: Analysis of linked individual patient data from the Australian Medicare Benefits Schedule and Pharmaceutical Benefits Scheme. BMJ Open 2018, 8, e019041. [Google Scholar] [CrossRef] [PubMed]
- Dharan, N.J.; Radovich, T.; Che, S.; Petoumenos, K.; Juneja, P.; Law, M.; Huang, R.; McManus, H.; Polizzotto, M.N.; Guy, R.; et al. HIV treatment regimens and adherence to national guidelines in Australia: An analysis of dispensing data from the Australian pharmaceutical benefits scheme. BMC Public Health 2019, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.; Hall, R.; Taylor, L. A profile of the Centre for Health Record Linkage. Int. J. Popul. Data Sci. 2022, 4, 1142. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.A.; Moore, E.A. Linkage of routinely collected data in practice: The Centre for Health Record Linkage. Public Health Res. Pract. 2015, 25, e2541548. [Google Scholar] [CrossRef]
- Schneider, M.; Radbone, C.G.; Vasquez, S.A.; Palfy, M.; Stanley, A.K. Population Data Centre Profile: SA NT DataLink (South Australia and Northern Territory). Int. J. Popul. Data Sci. 2019, 4, 1136. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Kim, J.; Kwon, H.Y. Nationwide Screening Practices for Tamoxifen Retinal Toxicity in South Korea: A Population-Based Cohort Study. J. Clin. Med. 2024, 13, 2167. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, K.E.; Kim, J.H.; Ahn, S.J. Practice Patterns of Screening for Hydroxychloroquine Retinopathy in South Korea. JAMA Netw. Open 2023, 6, e2314816. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, H.Y.; Ahn, S.J. COVID-19 Vaccine-Associated Uveitis in Patients With a History of Uveitis. JAMA Ophthalmol. 2024, 142, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Bouee, S.; Aris, E.; Emery, C.; Beck, E.C. Long-Term Mortality and State Financial Support in Invasive Meningococcal Disease-Real-World Data Analysis Using the French National Claims Database (SNIIRAM). Infect. Dis. Ther. 2022, 11, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.; Hurault-Delarue, C.; Sommet, A.; Damase-Michel, C.; Benevent, J.; Lacroix, I. Drug prescriptions in French pregnant women between 2015 and 2016: A study in the EGB database. Therapie 2021, 76, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Massoullie, G.; Chouki, C.; Mulliez, A.; Rossignol, P.; Ploux, S.; Pereira, B.; Reuillard, A.; Jean, F.; Andronache, M.; Eschalier, A.; et al. Effect of Optimization of Medical Treatment on Long-Term Survival of Patients With Heart Failure After Implantable Cardioverter Defibrillator and Cardiac Resynchronization Device Implantation (from the French National EGB Database). Am. J. Cardiol. 2018, 121, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Haug, U.; Kollhorst, B.; Schink, T.; Thone, K.; Dathe, K.; Schaefer, C.; Onken, M. Investigating drug safety in pregnancy based on the German Pharmacoepidemiological Research Database (GePaRD): A proof-of-concept analysis on the association between valproate and spina bifida. Pharmacoepidemiol. Drug Saf. 2023, 32, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Langner, I.; Ohlmeier, C.; Zeeb, H.; Haug, U.; Riedel, O. Individual mortality information in the German Pharmacoepidemiological Research Database (GePaRD): A validation study using a record linkage with a large cancer registry. BMJ Open 2019, 9, e028223. [Google Scholar] [CrossRef] [PubMed]
- Coi, A.; Barsotti, S.; Santoro, M.; Almerigogna, F.; Bargagli, E.; Caproni, M.; Emmi, G.; Frediani, B.; Guiducci, S.; Matucci Cerinic, M.; et al. Epidemiology of systemic sclerosis: A multi-database population-based study in Tuscany (Italy). Orphanet J. Rare Dis. 2021, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Bellini, B.; Cresci, B.; Cosentino, C.; Profili, F.; Bartolacci, S.; Scoccimarro, D.; Voller, F.; Balzi, D.; Francesconi, P.; Mannucci, E. Obesity as a risk factor for hospitalization in COronaVirus Disease-19 (COVID-19) patients: Analysis of the Tuscany regional database. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Fusco, D.; Barone, A.P.; Sorge, C.; D’Ovidio, M.; Stafoggia, M.; Lallo, A.; Davoli, M.; Perucci, C.A. P.Re.Val.E.: Outcome research program for the evaluation of health care quality in Lazio, Italy. BMC Health Serv. Res. 2012, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- D’Annibali, O.; Bonaldo, G.; Donati, M.; Smabrekke, L.; Motola, D.; Vaccheri, A. Antibacterial prescription in Italian preschool children: Analysis of 7 years of data from the Emilia-Romagna region reimbursement database. J. Antimicrob. Chemother. 2019, 74, 2434–2439. [Google Scholar] [CrossRef] [PubMed]
- Catena, F.; Melotti, R.M.; Louis, D.; Fortuna, D.; Ansaloni, L.; Coccolini, F.; Di Saverio, S.; Sartelli, M.; Tarasconi, A.; Baiocchi, G.; et al. Cholecystectomy in Emilia-Romagna region (Italy): A retrospective cohort study based on a large administrative database. Ann. Ital. Chir. 2017, 88, 215–221. [Google Scholar] [PubMed]
- Italiano, D.; Capuano, A.; Alibrandi, A.; Ferrara, R.; Cannata, A.; Trifiro, G.; Sultana, J.; Ferrajolo, C.; Tari, M.; Tari, D.U.; et al. Indications of newer and older anti-epileptic drug use: Findings from a southern Italian general practice setting from 2005–2011. Br. J. Clin. Pharmacol. 2015, 79, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Geurten, R.J.; Elissen, A.M.J.; Bilo, H.J.G.; Struijs, J.N.; van Tilburg, C.; Ruwaard, D. Identifying and delineating the type 2 diabetes population in the Netherlands using an all-payer claims database: Characteristics, healthcare utilisation and expenditures. BMJ Open 2021, 11, e049487. [Google Scholar] [CrossRef] [PubMed]
- Szypowska, A.; Franek, E.; Grzeszczak, W.J.; Zieba, M.; Filipow, W.; Kabicz, P.; Wieckowska, B.; Sykut-Cegielska, J.; Taybert, J. Treatment of classic phenylketonuria in Poland in the years 2009–2015 based on the database of the Polish National Health Fund. Pediatr. Endocrinol. Diabetes Metab. 2020, 26, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Gresz, M. The National Health Insurance database of Hungary from the viewpoint of a health insurance physician. Orv. Hetil. 2012, 153, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Penberthy, L.T.; Rivera, D.R.; Lund, J.L.; Bruno, M.A.; Meyer, A.M. An overview of real-world data sources for oncology and considerations for research. CA Cancer J. Clin. 2022, 72, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.E.; Bindman, A.B.; Dreyer, N.A.; Platt, R.; Watanabe, J.H.; Horberg, M.; Hernandez, A.; Califf, R.M. When Can We Trust Real-World Data To Evaluate New Medical Treatments? Clin. Pharmacol. Ther. 2022, 111, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Suto, M.; Iba, A.; Sugiyama, T.; Kodama, T.; Takegami, M.; Taguchi, R.; Niino, M.; Koizumi, R.; Kashiwagi, K.; Imai, K.; et al. Literature Review of Studies Using the National Database of the Health Insurance Claims of Japan (NDB): Limitations and Strategies in Using the NDB for Research. JMA J. 2024, 7, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, H.Y.; Kim, J.H.; Ahn, S.J. Nationwide Usage of Pentosan Polysulfate and Practice Patterns of Pentosan Polysulfate Maculopathy Screening in South Korea. Ophthalmol. Retina 2024, 8, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Blonde, L.; Khunti, K.; Harris, S.B.; Meizinger, C.; Skolnik, N.S. Interpretation and Impact of Real-World Clinical Data for the Practicing Clinician. Adv. Ther. 2018, 35, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.T.; Liu, L. Use of Claims Data for Cost and Cost-Effectiveness Research. Semin. Radiat. Oncol. 2019, 29, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Batko, K.; Slezak, A. The use of Big Data Analytics in healthcare. J. Big Data 2022, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Toh, S. Analytic and Data Sharing Options in Real-World Multidatabase Studies of Comparative Effectiveness and Safety of Medical Products. Clin. Pharmacol. Ther. 2020, 107, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Taur, S.R. Observational designs for real-world evidence studies. Perspect. Clin. Res. 2022, 13, 12–16. [Google Scholar] [CrossRef]
- Liu, J.; Barrett, J.S.; Leonardi, E.T.; Lee, L.; Roychoudhury, S.; Chen, Y.; Trifillis, P. Natural History and Real-World Data in Rare Diseases: Applications, Limitations, and Future Perspectives. J. Clin. Pharmacol. 2022, 62 (Suppl. S2), S38–S55. [Google Scholar] [CrossRef] [PubMed]
- Gilmartin-Thomas, J.F.; Liew, D.; Hopper, I. Observational studies and their utility for practice. Aust. Prescr. 2018, 41, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Chung, K.C. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.J. Observational research methods. Research design II: Cohort, cross sectional, and case-control studies. Emerg. Med. J. 2003, 20, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.D.; Greenwood, R.H.; Misra, A.; Bachmann, M.O. Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England. Diabetes Care 2012, 35, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Tenny, S.; Kerndt, C.C.; Hoffman, M.R. Case Control Studies. In StatPearls; StatPearls: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK448143/ (accessed on 2 June 2024).
- Lewallen, S.; Courtright, P. Epidemiology in practice: Case-control studies. Community Eye Health 1998, 11, 57–58. [Google Scholar] [PubMed]
- Lima, V.C.; Cavalieri, G.C.; Lima, M.C.; Nazario, N.O.; Lima, G.C. Risk factors for diabetic retinopathy: A case-control study. Int. J. Retina Vitreous 2016, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Martin-Merino, E.; Fortuny, J.; Rivero-Ferrer, E.; Lind, M.; Garcia-Rodriguez, L.A. Risk factors for diabetic retinopathy in people with Type 2 diabetes: A case-control study in a UK primary care setting. Prim. Care Diabetes 2016, 10, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L. Case-control studies: Increasing scientific rigor in control selection. Res. Pract. Thromb. Haemost. 2023, 7, 100090. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.R.; Gardner, T.W. Diabetic retinopathy: Research to clinical practice. Clin. Diabetes Endocrinol. 2017, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Bearelly, S.; Mruthyunjaya, P.; Tzeng, J.P.; Suner, I.J.; Shea, A.M.; Lee, J.T.; Kowalski, J.W.; Curtis, L.H.; Schulman, K.A.; Lee, P.P. Identification of patients with diabetic macular edema from claims data: A validation study. Arch. Ophthalmol. 2008, 126, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.H.; Shin, Y.U.; Bae, G.H.; Choi, Y.J.; Ahn, S.J.; Sobrin, L.; Hong, R.; Kim, I.; Cho, H. Nationwide incidence and treatment pattern of retinopathy of prematurity in South Korea using the 2007–2018 national health insurance claims data. Sci. Rep. 2021, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
- Kido, A.; Tamura, H.; Ikeda, H.O.; Miyake, M.; Hiragi, S.; Tsujikawa, A. Nationwide incidence of central retinal artery occlusion in Japan: An exploratory descriptive study using the National Database of Health Insurance Claims (2011–2015). BMJ Open 2020, 10, e041104. [Google Scholar] [CrossRef] [PubMed]
- Park, H.L.; Jung, Y.; Han, K.; Lee, M.Y.; Park, C.K. Health care claims for primary open-angle glaucoma and retinal vein occlusion from an 11-year nationwide dataset. Sci. Rep. 2017, 7, 8038. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.H.; Shin, Y.U.; Bae, G.H.; Choi, Y.J.; Ahn, S.J.; Kim, I.; Cho, H. Ophthalmic complications in retinopathy of prematurity in the first decade of life in Korea using the national health insurance database. Sci. Rep. 2022, 12, 911. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.K.; Leisle, L.; Picker, N.; Bubendorfer-Vorwerk, H.; Lewis, P.; Hahn, P.; Wasem, J.; Finger, R.P. Epidemiology of Diagnosed Age-related Macular Degeneration in Germany: An Evaluation of the Prevalence Using AOK PLUS Claims Data. Ophthalmol. Ther. 2024, 13, 1025–1039. [Google Scholar] [CrossRef]
- Kido, A.; Miyake, M.; Tamura, H.; Hiragi, S.; Kimura, T.; Yoshida, S.; Takeuchi, M.; Ohtera, S.; Takahashi, A.; Ooto, S.; et al. Incidence and Clinical Practice of Exudative Age-related Macular Degeneration: A Nationwide Population-Based Cohort Study. Ophthalmol. Sci. 2022, 2, 100125. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kwon, K.E.; Choi, N.K.; Park, K.H.; Woo, S.J. Prevalence and Incidence of Exudative Age-Related Macular Degeneration in South Korea: A Nationwide Population-Based Study. Ophthalmology 2015, 122, 2063–2070.e2061. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Ramasamy, K.; Vignesh, T.P.; Kannan, N.B.; Sivaprasad, S.; Rajalakshmi, R.; Raman, R.; Mohan, V.; Das, T.; Mani, I. Identification of risk factors for targeted diabetic retinopathy screening to urgently decrease the rate of blindness in people with diabetes in India. Indian J. Ophthalmol. 2021, 69, 3156–3164. [Google Scholar] [CrossRef] [PubMed]
- Bora, A.; Balasubramanian, S.; Babenko, B.; Virmani, S.; Venugopalan, S.; Mitani, A.; de Oliveira Marinho, G.; Cuadros, J.; Ruamviboonsuk, P.; Corrado, G.S.; et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit. Health 2021, 3, e10–e19. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Lee, C.H. Clinical Study Using Healthcare Claims Database. J. Rheum. Dis. 2021, 28, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Orr, N.J.; Boyages, S.C. Patterns of care as a risk factor for the development of vision-threatening diabetic retinopathy: A population-based matched case-control study using insurance claims (Medicare) data. Diabet. Med. 2005, 22, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.J.; Heo, J.W.; Kim, T.W.; Ahn, J.; Chung, H. Prevalence and risk factors of age-related macular degeneration in Korea: The Korea National Health and Nutrition Examination Survey 2010–2011. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.; Ross, J.S.; Sangaralingham, L.R.; Adelman, R.A.; Shah, N.D.; Barkmeier, A.J. Trends of Anti-Vascular Endothelial Growth Factor Use in Ophthalmology Among Privately Insured and Medicare Advantage Patients. Ophthalmology 2017, 124, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, S.T.; Sternberg, P., Jr.; Feng, X.; Chen, Q.; Patel, S. Analysis of Anti-Vascular Endothelial Growth Factor Injection Claims Data in US Medicare Part B Beneficiaries From 2012 to 2015. JAMA Ophthalmol. 2019, 137, 921–928. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, N.L.; Gee, J.; Lin, N.D.; Thyagarajan, V.; Pan, Y.; Su, S.; Turnbull, B.; Chan, K.A.; Weintraub, E. Evaluating the safety of influenza vaccine using a claims-based health system. Vaccine 2013, 31, 5975–5982. [Google Scholar] [CrossRef]
- Dore, D.D.; Seeger, J.D.; Chan, K.A. Incidence of health insurance claims for thyroid neoplasm and pancreatic malignancy in association with exenatide: Signal refinement using active safety surveillance. Ther. Adv. Drug Saf. 2012, 3, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Sultana, J.; Giorgianni, F.; Scondotto, G.; Ientile, V.; Cananzi, P.; Leoni, O.; Addario, S.W.P.; De Sarro, G.; De Francesco, A.; Puzo, M.R.; et al. Association Between Intravitreal Aflibercept and Serious Non-ocular Haemorrhage Compared with Intravitreal Ranibizumab: A Multicentre Observational Cohort Study. Drug Saf. 2020, 43, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.Y.; Kim, J.; Ahn, S.J. Screening practices and risk assessment for maculopathy in pentosan polysulfate users across different exposure levels. Sci. Rep. 2024, 14, 11270. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeong, H.C.; Kwon, H.Y.; Kim, Y.H.; Ahn, S.J. Demographic and clinical characteristics associated with screening practices for hydroxychloroquine retinopathy. Sci. Rep. 2024, 14, 974. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.P.; Wing, K.; Evans, S.J.; Leyrat, C.; Mansfield, K.E.; Smeeth, L.; Wong, A.Y.S.; Yorston, D.; Galwey, N.W.; Douglas, I.J. Systemic Fluoroquinolone Use and Risk of Uveitis or Retinal Detachment. JAMA Ophthalmol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.M.; Roberts, T.L.; Ryu, W.Y.; Lambert, S.R. Endophthalmitis after pediatric cataract surgery in the United States: Report using an insurance claims database. J. Cataract. Refract. Surg. 2021, 47, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Kiss, S.; Dugel, P.U.; Khanani, A.M.; Broder, M.S.; Chang, E.; Sun, G.H.; Turpcu, A. Endophthalmitis rates among patients receiving intravitreal anti-VEGF injections: A USA claims analysis. Clin. Ophthalmol. 2018, 12, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Stober, A.; Lutter, J.I.; Schwarzkopf, L.; Kirsch, F.; Schramm, A.; Vogelmeier, C.F.; Leidl, R. Impact of Lung Function and Exacerbations on Health-Related Quality of Life in COPD Patients Within One Year: Real-World Analysis Based on Claims Data. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2637–2651. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.B.; Kurz, C.; Kirsch, F.; Schwarzkopf, L.; Schramm, A.; Leidl, R. The relationship between body mass index and health-related quality of life in COPD: Real-world evidence based on claims and survey data. Respir. Res. 2020, 21, 291. [Google Scholar] [CrossRef] [PubMed]
- Polson, M.; Lord, T.C.; Evangelatos, T.M.; Lopes, M.; Santaniello, B.L. Real-world health plan claims analysis of differences in healthcare utilization and total cost in patients suffering from cluster headaches and those without headache-related conditions. Am. J. Manag. Care 2017, 23, S295–S299. [Google Scholar] [PubMed]
- Zhang, X.; Low, S.; Kumari, N.; Wang, J.; Ang, K.; Yeo, D.; Yip, C.C.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Direct medical cost associated with diabetic retinopathy severity in type 2 diabetes in Singapore. PLoS ONE 2017, 12, e0180949. [Google Scholar] [CrossRef] [PubMed]
- Png, M.E.; Yoong, J.; Phan, T.P.; Wee, H.L. Current and future economic burden of diabetes among working-age adults in Asia: Conservative estimates for Singapore from 2010–2050. BMC Public Health 2016, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Morsanutto, A.; Berto, P.; Lopatriello, S.; Gelisio, R.; Voinovich, D.; Cippo, P.P.; Mantovani, L.G. Major complications have an impact on total annual medical cost of diabetes: Results of a database analysis. J. Diabetes Complicat. 2006, 20, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Cho, S.; Park, J.; Jin, Y.; Kim, H.M.; Jee, D. Cost-effectiveness of the anti-vascular endothelial growth factor intravitreal injection and panretinal photocoagulation for patients with proliferative diabetic retinopathy in South Korea. BMC Health Serv. Res. 2023, 23, 1388. [Google Scholar] [CrossRef] [PubMed]
- Rein, D.B.; Wittenborn, J.S.; Zhang, P.; Sublett, F.; Lamuda, P.A.; Lundeen, E.A.; Saaddine, J. The Economic Burden of Vision Loss and Blindness in the United States. Ophthalmology 2022, 129, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.; Ramke, J.; Cairns, J.; Butt, T.; Zhang, J.H.; Jones, I.; Jovic, M.; Nandakumar, A.; Faal, H.; Taylor, H.; et al. The economics of vision impairment and its leading causes: A systematic review. EClinicalMedicine 2022, 46, 101354. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Ong, C.; Yaow, C.Y.L.; Chan, H.W.; Thumboo, J.; Wang, Y.; Koh, G.C.H. Cost-of-illness studies of inherited retinal diseases: A systematic review. Orphanet J. Rare Dis. 2024, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.C.; Stapleton, F.; Wiles, L.; Hibbert, P.; Alkhawajah, S.; White, A.; Jalbert, I. Systematic review of the appropriateness of eye care delivery in eye care practice. BMC Health Serv. Res. 2019, 19, 646. [Google Scholar] [CrossRef]
- Yanagisawa-Sugita, A.; Sugiyama, T.; Ihana-Sugiyama, N.; Tanaka, H.; Imai, K.; Ueki, K.; Ohsugi, M.; Tamiya, N.; Kobayashi, Y. Incidence of interventions for diabetic retinopathy and serious lower-limb complications and its related factors in patients with type 2 diabetes using a real-world large claims database. Diabetol. Int. 2022, 13, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Kreft, D.; McGuinness, M.B.; Doblhammer, G.; Finger, R.P. Diabetic retinopathy screening in incident diabetes mellitus type 2 in Germany between 2004 and 2013—A prospective cohort study based on health claims data. PLoS ONE 2018, 13, e0195426. [Google Scholar] [CrossRef] [PubMed]
- Scondotto, G.; Sultana, J.; Ientile, V.; Ingrasciotta, Y.; Fontana, A.; Copetti, M.; Mirabelli, E.; Trombetta, C.J.; Rapisarda, C.; Reibaldi, M.; et al. How Have Intravitreal Anti-VEGF and Dexamethasone Implant Been Used in Italy? A Multiregional, Population-Based Study in the Years 2010–2016. BioMed Res. Int. 2020, 2020, 7582763. [Google Scholar] [CrossRef] [PubMed]
- Brookhart, M.A.; Sturmer, T.; Glynn, R.J.; Rassen, J.; Schneeweiss, S. Confounding control in healthcare database research: Challenges and potential approaches. Med. Care 2010, 48, S114–S120. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, M.A. Is deidentification sufficient to protect health privacy in research? Am. J. Bioeth. 2010, 10, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Thabane, L.; Mbuagbaw, L.; Zhang, S.; Samaan, Z.; Marcucci, M.; Ye, C.; Thabane, M.; Giangregorio, L.; Dennis, B.; Kosa, D.; et al. A tutorial on sensitivity analyses in clinical trials: The what, why, when and how. BMC Med. Res. Methodol. 2013, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Scondotto, G.; Crisafulli, S.; Antonazzo, I.C.; Virgili, G.; Trifiro, G.; Sultana, J. Assessing intravitreal anti-VEGF drug safety using real-world data: Methodological challenges in observational research. Expert. Opin. Drug Saf. 2022, 21, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Fleurence, R.L.; Curtis, L.H.; Califf, R.M.; Platt, R.; Selby, J.V.; Brown, J.S. Launching PCORnet, a national patient-centered clinical research network. J. Am. Med. Inform. Assoc. 2014, 21, 578–582. [Google Scholar] [CrossRef] [PubMed]
- McNair, D.; Lumpkin, M.; Kern, S.; Hartman, D. Use of RWE to Inform Regulatory, Public Health Policy, and Intervention Priorities for the Developing World. Clin. Pharmacol. Ther. 2022, 111, 44–51. [Google Scholar] [CrossRef] [PubMed]
Country | Health Claims Databases | References |
---|---|---|
USA | Medicare | [16,17,18] |
Medicaid | [19] | |
CMS Chronic Conditions Data Warehouse (CCW) | [20] | |
Truven Health MarketScan® Databases | [21] | |
Optum’s Clinformatics® Data Mart | [22] | |
Komodo’s Healthcare MapTM | [23] | |
Japan | National Database of Health Insurance Claims (NDB) | [24,25] |
JMDC Claims Database | [26,27] | |
Diagnosis Procedure Combination (DPC) Database | [28,29] | |
Medical Data Vision (MDV) Database | [30,31] | |
Nihon-Chouzai Pharmacy Claim Database (less known) | ||
Taiwan | National Health Insurance Research Database (NHIRD) | [32,33] |
Australia | Medicare Benefits Schedule (MBS) | [34,35] |
Pharmaceutical Benefits Scheme (PBS) | [36] | |
Centre for Health Record Linkage (CHeReL) | [37,38] | |
HealthLinQ (less known) | ||
Victorian Data Linkages (VDL) (less known) | ||
SA-NT DataLink | [39] | |
South Korea | Health Insurance Review and Assessment Service (HIRA) Database | [40,41] |
National Health Insurance Service (NHIS) Database | [42] | |
Thailand | EHMIS (less known) | |
Malaysia | United Nations University-Casemix (UNU-Casemix) Database (less known) | |
France | Securite Sociale de l’Assurance Maladie (SNIIRAM) | [43] |
Echantillon Généraliste de Bénéficiaires (EGB) | [44,45] | |
Germany | German Pharmaco-epidemiological Research Database (GePaRD) | [46,47] |
Italy | Agencia Regionale di Sanita Tuscany database (ARS) | [48,49] |
Hospital Information System—Lazio (HIS) | [50] | |
Region Emilia Romagna Database (RER) | [51,52] | |
Caserta Database | [53] | |
Netherlands | VEKTIS database | [54] |
Poland | National Health Fund database | [55] |
Hungary | National Health Insurance database | [56] |
Category | Data | Uses |
---|---|---|
Patient Demographics | Age, gender, geographic location, enrollment periods | Understanding population characteristics, stratifying analyses by demographic factors |
Medical Claims | Diagnosis codes (ICD-9/ICD-10), procedure codes (CPT/HCPCS), service dates, provider information | Identifying healthcare encounters, treatments, and procedures |
Pharmacy Claims | National Drug Codes (NDCs), prescription dates, days supplied, quantities dispensed | Providing information on medication use and adherence patterns |
Enrollment Information | Plan type, coverage periods, payer information | Understanding insurance coverage and eligibility status of patients |
Provider Details | Specialty, facility type, geographic location | Analyzing practice patterns and healthcare delivery |
Cost Information | Paid amounts, deductibles, copays, coinsurance | Conducting economic analyses and understanding the financial burden of healthcare services |
Strengths | Limitations |
---|---|
Large sample sizes across diverse patient populations | Lack of detailed clinical information |
Longitudinal data capture over extended periods | Inaccuracy of data |
Insights into real-world treatment patterns and outcomes | Limited information into appropriateness of healthcare or its utilization |
Ability to study healthcare utilization and costs | Data fragmentation across providers and payers |
Recent growth and increasing availability | Absence of certain data types (labs, imaging, genetic data) |
Integration with other real-world data sources (EHR) | Lack of specific codes for some conditions |
Formation of multi-database research networks/consortia | Potential selection bias due to exclusion of uninsured patients and cash transactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.J. Real-World Research on Retinal Diseases Using Health Claims Database: A Narrative Review. Diagnostics 2024, 14, 1568. https://doi.org/10.3390/diagnostics14141568
Ahn SJ. Real-World Research on Retinal Diseases Using Health Claims Database: A Narrative Review. Diagnostics. 2024; 14(14):1568. https://doi.org/10.3390/diagnostics14141568
Chicago/Turabian StyleAhn, Seong Joon. 2024. "Real-World Research on Retinal Diseases Using Health Claims Database: A Narrative Review" Diagnostics 14, no. 14: 1568. https://doi.org/10.3390/diagnostics14141568
APA StyleAhn, S. J. (2024). Real-World Research on Retinal Diseases Using Health Claims Database: A Narrative Review. Diagnostics, 14(14), 1568. https://doi.org/10.3390/diagnostics14141568