Improvement of Breast Cancer Detection Using Dual-Layer Spectral CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Image Acquisition
2.3. Multi-Reader Analysis
2.4. Quantitative Measurements
2.5. Statistics
3. Results
3.1. Multi-Reader Analysis
3.2. Subjective Diagnostic Certainty
3.3. Correlation Analysis
3.4. Quantitative Assessment
4. Discussion
4.1. Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACR | American College of Radiology |
ANOVA | Analysis of Variance |
CI | conventional CT image data |
CNR | Contrast-to-noise ratio |
CT | Computed tomography |
HU | CT value in Hounsfield units |
IM | iodine maps |
MonoE40 | monoenergetic image data at 40 keV display energy |
MRI | magnetic resonance imaging |
SNR | Signal-to-noise ratio |
RGB | red, green, and blue additive color model |
ROI | region of interest |
References
- Healey, T.T.; Agarwal, S.; Patel, R.; Ratanaprasatporn, L.; Ratanaprasatporn, L.; Lourenco, A.P. Cancer Yield of Incidental Breast Lesions Detected on Chest Computed Tomography. J. Comput. Assist. Tomogr. 2018, 42, 453–456. [Google Scholar] [CrossRef] [PubMed]
- McDonald, E.S.; Clark, A.S.; Tchou, J.; Zhang, P.; Freedman, G.M. Clinical Diagnosis and Management of Breast Cancer. J. Nucl. Med. 2016, 57 (Suppl. 1), 9–16. [Google Scholar] [CrossRef] [PubMed]
- Al-Mousa, D.S.; Alakhras, M.; Spuur, K.M.; Alewaidat, H.; Abdelrahman, M.; Rawashdeh, M.; Brennan, P.C. The implications of increased mammographic breast density for breast screening in Jordan. J. Med. Radiat. Sci. 2020, 67, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Weigel, S.; Heindel, W.; Dietz, C.; Meyer-Johann, U.; Graewingholt, A.; Hense, H.W. Stratification of Breast Cancer Risk in Terms of the Influence of Age and Mammographic density. Rofo 2020, 192, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Henzler, T.; Fink, C.; Schoenberg, S.O.; Schoepf, U.J. Dual-energy CT: Radiation dose aspects. Am. J. Roentgenol. 2012, 199 (Suppl. 5), 16–25. [Google Scholar] [CrossRef] [PubMed]
- Sauter, A.P.; Muenzel, D.; Dangelmaier, J.; Braren, R.; Pfeiffer, F.; Rummeny, E.J.; Noël, P.B.; Fingerle, A.A. Dual-layer spectral computed tomography: Virtual non-contrast in comparison to true non-contrast images. Eur. J. Radiol. 2018, 104, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Graser, A.; Becker, C.R.; Staehler, M.; Clevert, D.A.; Macari, M.; Arndt, N.; Nikolaou, K.; Sommer, W.; Stief, C.; Reiser, M.F.; et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Investig. Radiol. 2010, 45, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Simons, D.; Kachelriess, M.; Schlemmer, H.P. Recent developments of dual-energy CT in oncology. Eur. Radiol. 2014, 24, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Uhrig, M.; Simons, D.; Bonekamp, D.; Schlemmer, H.P. Improved detection of melanoma metastases by iodine maps from dual energy CT. Eur. J. Radiol. 2017, 90, 27–33. [Google Scholar] [CrossRef]
- Borggrefe, J.; Neuhaus, V.F.; Le Blanc, M.; Grosse Hokamp, N.; Maus, V.; Mpotsaris, A.; Lennartz, S.; Pinto Dos Santos, D.; Maintz, D.; Abdullayev, N. Accuracy of iodine density thresholds for the separation of vertebral bone metastases from healthy-appearing trabecular bone in spectral detector computed tomography. Eur. Radiol. 2018, 29, 3253–3261. [Google Scholar] [CrossRef]
- Robinson, E.; Babb, J.; Chandarana, H.; Macari, M. Dual source dual energy MDCT: Comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Investig. Radiol. 2010, 45, 413–418. [Google Scholar] [CrossRef]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and multi-energy CT: Principles, technical approaches, and clinical applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef]
- Foley, W.D.; Shuman, W.P.; Siegel, M.J.; Sahani, D.V.; Boll, D.T.; Bolus, D.N.; De Cecco, C.N.; Kaza, R.K.; Morgan, D.E.; Schoepf, U.J.; et al. White Paper of the Society of Computed Body Tomography Magnetic Resonance on dual-energy CT. Part 2. Radiation dose and iodine sensitivity. J. Comput. Assist. Tomogr. 2016, 40, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.R. Dual-energy CT: General principles. Am. J. Roentgenol. 2012, 199 (Suppl. 5), 3–8. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.R.; Krauss, B.; Sedlmair, M.; Grasruck, M.; Bruder, H.; Morhard, D.; Fink, C.; Weckbach, S.; Lenhard, M.; Schmidt, B.; et al. Material differentiation by dual energy CT: Initial experience. Eur. Radiol. 2007, 17, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Pelgrim, G.J.; van Hamersvelt, R.W.; Willemink, M.J.; Schmidt, B.T.; Flohr, T.; Schilham, A.; Milles, J.; Oudkerk, M.; Leiner, T.; Vliegenthart, R. Accuracy of iodine quantification using dual energy CT in latest generation dual source dual layer CT. Eur. Radiol. 2017, 27, 3904–3912. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, M.C.; Schellingerhout, D.; Wood, C.A.; Tamm, E.P.; Godoy, M.C.; Sun, J.; Cody, D.D. Intermanufacturer Comparison of Dual-Energy CT Iodine Quantification and Monochromatic Attenuation: A Phantom Study. Radiology 2018, 287, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Kuhl, C.K.; Moy, L. Contrast-enhanced MRI for breast cancer screening. J. Magn. Reson. Imaging 2019, 50, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Schnall, M.D.; Blume, J.; Bluemke, D.A.; DeAngelis, G.A.; DeBruhl, N.; Harms, S.; Heywang-Köbrunner, S.H.; Hylton, N.; Kuhl, C.K.; Pisano, E.D.; et al. Diagnostic architectural and dynamic features at breast MR imaging: Multicenter study. Radiology 2006, 238, 42–53. [Google Scholar] [CrossRef]
- D’Orsi, C.J.; Sickles, E.A.; Mendelson, E.B.; Morris, E.A.; American College of Radiology. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Weigel, S.; Heindel, W.; Heidrich, J.; Hense, H.-W.; Heidinger, O. Digital mammography screening: Sensitivity of the programme dependent on breast density. Eur. Radiol. 2017, 27, 2744–2751. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Zhao, J.; Li, Y.; Fu, Q.; Zhao, L.; Chen, H.; Qin, W.; Yang, G. Breast cancer and background parenchymal enhancement at breast magnetic resonance imaging: A meta-analysis. BMC Med. Imaging 2021, 21, 32. [Google Scholar] [CrossRef]
- Okada, K.; Matsuda, M.; Tsuda, T.; Kido, T.; Murata, A.; Nishiyama, H.; Nishiyama, K.; Yamasawa, H.; Kamei, Y.; Kurata, M.; et al. Dual-energy computed tomography for evaluation of breast cancer: Value of virtual monoenergetic images reconstructed with a noise-reduced monoenergetic reconstruction algorithm. Jpn. J. Radiol. 2020, 38, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Metin, Y.; Metin, N.O.; Özdemir, O.; Taşçı, F.; Kul, S. The role of low keV virtual monochromatic imaging in increasing the conspicuity of primary breast cancer in dual-energy spectral thoracic CT examination for staging purposes. Acta Radiol. 2020, 61, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Nakaura, T.; Iyama, A.; Kidoh, M.; Nagayama, Y.; Uetani, H.; Oda, S.; Utsunomiya, D.; Yamashita, Y. Usefulness of Virtual Monochromatic Dual-Layer Computed Tomographic Imaging for Breast Carcinoma. J. Comput. Assist. Tomogr. 2020, 44, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Volterrani, L.; Gentili, F.; Fausto, A.; Pelini, V.; Megha, T.; Sardanelli, F.; Mazzei, M.A. Dual-Energy CT for Locoregional Staging of Breast Cancer: Preliminary Results. Am. J. Roentgenol. 2020, 214, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Buus, T.W.; Rasmussen, F.; Nellemann, H.M.; Løgager, V.; Jensen, A.B.; Hauerslev, K.R.; Christiansen, P.; Pedersen, E.M. Comparison of contrast-enhanced CT, dual-layer detector spectral CT, and whole-body MRI in suspected metastatic breast cancer: A prospective diagnostic accuracy study. Eur. Radiol. 2021, 31, 8838–8849. [Google Scholar] [CrossRef]
- Carbonaro, L.A.; Tannaphai, P.; Trimboli, R.M.; Verardi, N.; Fedeli, M.P.; Sardanelli, F. Contrast enhanced breast MRI: Spatial displacement from prone to supine patient’s position. Prelim. Results. Eur. J. Radiol. 2012, 81, 771–774. [Google Scholar] [CrossRef]
- World Health Organization. Ranking (Breast), Estimated Number of New Cases in 2020, All Ages; World Health Organization: Geneva, Switzerland, 2020; Available online: https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=ranking&mode_population=continents&population=900&populations=900&key=total&sex=2&cancer=20&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=0&include_nmsc=1&include_nmsc_other=1&projection=natural-earth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&show_ranking=0&rotate=%255B10%252C0%255D (accessed on 7 April 2022).
General | |
Tube potential (kVp) | 120 |
Tube current-time product (mAs) | 74 |
Collimation (number of slices × slice thickness in mm) | 64 × 0.625 |
Gantry rotation time (s) | 0.5 |
Pitch | 0.798 |
CTDIvol (mGy) | 7.5 |
Post-threshold delay (s) | 60 |
Image reconstruction | |
Slice thickness/increment (mm) | 3.0/1.5 |
Window width (HU) | 400 |
Window center (HU) | 40 |
Field of View (mm) | 350 |
Matrix | 512 × 512 |
CI | MonoE40 | IM | ||||
---|---|---|---|---|---|---|
Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity | |
Overall | 0.90 | 0.92 | 0.96 | 0.94 | 0.97 | 0.95 |
Reader 1 | 0.92 | 0.85 | 0.98 | 0.82 | 0.98 | 1.00 |
Reader 2 | 0.94 | 0.90 | 0.94 | 0.97 | 1.00 | 0.85 |
Reader 3 | 0.84 | 0.95 | 0.96 | 0.98 | 1.00 | 0.96 |
Reader 4 | 0.88 | 0.98 | 0.94 | 0.98 | 0.88 | 1.00 |
CI | MonoE40 | IM | |
---|---|---|---|
Reader 1 | 4.2 ± 0.8 | 4.0 ± 0.8 | 4.4 ± 0.8 |
Reader 2 | 3.4 ± 1.4 | 4.1 ± 1.1 | 4.0 ± 1.0 |
Reader 3 | 3.6 ± 1.4 | 4.1 ± 1.2 | 4.8 ± 0.6 |
Reader 4 | 3.0 ± 1.3 | 4.2 ± 0.8 | 4.8 ± 0.6 |
CI | MonoE40 | IM | |
---|---|---|---|
CNR | 23.7 ± 19.6 | 36.8 ± 21.4 | 11.3 ± 6.5 |
SNR | 30.7 ± 16.4 | 41.2 ± 22.2 | 12.0 ± 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasse, F.C.; Giannakis, A.; Wehrse, E.; Stiller, W.; Wallwiener, M.; Kauczor, H.-U.; Weber, T.F.; Heil, J.; Mokry, T. Improvement of Breast Cancer Detection Using Dual-Layer Spectral CT. Diagnostics 2024, 14, 1560. https://doi.org/10.3390/diagnostics14141560
Hasse FC, Giannakis A, Wehrse E, Stiller W, Wallwiener M, Kauczor H-U, Weber TF, Heil J, Mokry T. Improvement of Breast Cancer Detection Using Dual-Layer Spectral CT. Diagnostics. 2024; 14(14):1560. https://doi.org/10.3390/diagnostics14141560
Chicago/Turabian StyleHasse, Felix Christian, Athanasios Giannakis, Eckhard Wehrse, Wolfram Stiller, Markus Wallwiener, Hans-Ulrich Kauczor, Tim F. Weber, Jörg Heil, and Theresa Mokry. 2024. "Improvement of Breast Cancer Detection Using Dual-Layer Spectral CT" Diagnostics 14, no. 14: 1560. https://doi.org/10.3390/diagnostics14141560
APA StyleHasse, F. C., Giannakis, A., Wehrse, E., Stiller, W., Wallwiener, M., Kauczor, H.-U., Weber, T. F., Heil, J., & Mokry, T. (2024). Improvement of Breast Cancer Detection Using Dual-Layer Spectral CT. Diagnostics, 14(14), 1560. https://doi.org/10.3390/diagnostics14141560