Predictors of In-Hospital Mortality after Thrombectomy in Anterior Circulation Large Vessel Occlusion: A Retrospective, Machine Learning Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Analyzed Group and Data Processing
2.2. Two-Step Feature Selection Process
2.3. Data Sampling and Construction of Two Predictive Models
2.4. Interpretable Framework-Sharpley Additive Explanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME)
3. Results
3.1. Analyzed Group
3.2. The Results of a Two-Step Feature Selection Process
3.3. Predictive Models Evaluation
3.3.1. SHAP Analysis–Feature Level Interpretation
3.3.2. LIME Analysis–Individual Level Interpretation
4. Discussion
4.1. Baseline Features Prior to Thrombectomy
4.2. Features Pertinent to Mechanical Thrombectomy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Zhu, C.; Sui, Y.; Guo, Y.; Wu, N.; Dong, Q.; Xu, R.; Qian, J.; Li, J. Synergetic impact of lipoprotein(a) and fibrinogen on stroke in coronary artery disease patients. Eur. J. Clin. Investig. 2024, 54, e14179. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Healey, J.S. Cardioembolic Stroke. Circ. Res. 2017, 120, 514–526. [Google Scholar] [CrossRef]
- Feske, S.K. Ischemic Stroke. Am. J. Med. 2021, 134, 1457–1464. [Google Scholar] [CrossRef]
- Krishna, J.T.V.; Kumar, P. Risk Factor Assessment, Etiology, Clinico-Radiological Profile and Prognosis in Cva; NaN, 2023; pp. 37–39. Available online: https://www.citedrive.com/en/discovery/risk-factor-assessment-etiologyclinico-radiological-profile-and-prognosis-in-cva/ (accessed on 17 June 2024).
- Deng, G.; Chu, Y.-H.; Xiao, J.; Shang, K.; Zhou, L.-Q.; Qin, C.; Tian, D.-S. Risk Factors, Pathophysiologic Mechanisms, and Potential Treatment Strategies of Futile Recanalization after Endovascular Therapy in Acute Ischemic Stroke. Aging Dis. 2023, 14, 2096–2112. [Google Scholar] [CrossRef] [PubMed]
- Tsalta-Mladenov, M.E.; Andonova, S.P. Quality of life after ischaemic stroke-accent on patients with thrombolytic therapy. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 163. [Google Scholar] [CrossRef]
- Matsumoto, K.; Nohara, Y.; Soejima, H.; Yonehara, T.; Nakashima, N.; Kamouchi, M. Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes After Acute Ischemic Stroke. Stroke 2020, 51, 1477–1483. [Google Scholar] [CrossRef]
- Phipps, M.S.; Cronin, C.A. Management of acute ischemic stroke. BMJ 2020, 368, l6983. [Google Scholar] [CrossRef] [PubMed]
- Abdu, H.; Tadese, F.; Seyoum, G. Comparison of Ischemic and Hemorrhagic Stroke in the Medical Ward of Dessie Referral Hospital, Northeast Ethiopia: A Retrospective Study. Neurol. Res. Int. 2021, 2021, 9996958. [Google Scholar] [CrossRef] [PubMed]
- Berge, E.; Whiteley, W.; Audebert, H.; De Marchis, G.M.; Fonseca, A.C.; Padiglioni, C.; de la Ossa, N.P.; Strbian, D.; Tsivgoulis, G.; Turc, G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021, 6, I–LXII. [Google Scholar] [CrossRef]
- Turc, G.; Turc, G.; Bhogal, P.; Fischer, U.; Khatri, P.; Lobotesis, K.; Mazighi, M.; Schellinger, P.D.; Toni, D.; De Vries, J.; et al. European Stroke Organisation (ESO)-European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke. J. Neurointerv. Surg. 2023, 15, e8. [Google Scholar] [CrossRef]
- Powers William, J. Acute Ischemic Stroke. N. Engl. J. Med. 2020, 383, 252–260. [Google Scholar] [CrossRef]
- Wang, R.P.C.; Li, S.; Hao, L.; Wang, Z.B.; Ge, Z.B.; Yang, S. A meta-analysis of intravenous thrombolysis versus bridging therapy for ischemic stroke. Medicine 2022, 101, e30879. [Google Scholar] [CrossRef]
- Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; Berg, L.A.V.D.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; De Miquel, M.A.; Molina, C.A.; Rovira, A.; Román, L.S.; Serena, J.; Abilleira, S.; Ribo, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef]
- Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke|NEJM [Internet]. Available online: https://www.nejm.org/doi/full/10.1056/nejmoa1415061 (accessed on 14 February 2024).
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; Van Der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.C.; Mendis, S.; Mathers, C.D. Global variation in stroke burden and mortality: Estimates from monitoring, surveillance, and modelling. Lancet Neurol. 2009, 8, 345–354. [Google Scholar] [CrossRef]
- Sluis, W.M.; Hinsenveld, W.H.; Goldhoorn, R.-J.B.; Potters, L.H.; Bruggeman, A.A.; van der Hoorn, A.; Bot, J.C.; van Oostenbrugge, R.J.; Lingsma, H.F.; Hofmeijer, J.; et al. Timing and causes of death after endovascular thrombectomy in patients with acute ischemic stroke. Eur. Stroke J. 2023, 8, 215–223. [Google Scholar] [CrossRef]
- Bustamante, A.; García-Berrocoso, T.; Rodriguez, N.; Llombart, V.; Ribó, M.; Molina, C.; Montaner, J. Ischemic stroke outcome: A review of the influence of post-stroke complications within the different scenarios of stroke care. Eur. J. Intern. Med. 2016, 29, 9–21. [Google Scholar] [CrossRef]
- Broderick, J.P.; Adeoye, O.; Elm, J. Evolution of the Modified Rankin Scale and Its Use in Future Stroke Trials. Stroke 2017, 48, 2007–2012. [Google Scholar] [CrossRef]
- Benali, F.; Kappelhof, M.; Ospel, J.; Ganesh, A.; McDonough, R.V.; Postma, A.A.; Goldhoorn, R.-J.B.; Majoie, C.B.L.M.; Wijngaard, I.v.D.; Lingsma, H.F.; et al. Benefit of successful reperfusion achieved by endovascular thrombectomy for patients with ischemic stroke and moderate pre-stroke disability (mRS 3): Results from the MR CLEAN Registry. J. Neurointerv. Surg. 2023, 15, 433–438. [Google Scholar] [CrossRef]
- Yang, T.; Hu, Y.; Pan, X.; Lou, S.; Zou, J.; Deng, Q.; Zhang, Q.; Zhou, J.; Zhu, J. Interpretable Machine Learning Model Predicting Early Neurological Deterioration in Ischemic Stroke Patients Treated with Mechanical Thrombectomy: A Retrospective Study. Brain Sci. 2023, 13, 557. [Google Scholar] [CrossRef]
- De Bin, R.; Benner, A.; Ambrogi, F.; Lusa, L.; Boulesteix, A.-L.; Migliavacca, E.; Binder, H.; Michiels, S.; Sauerbrei, W.; McShane, L.; et al. Statistical analysis of high-dimensional biomedical data: A gentle introduction to analytical goals, common approaches and challenges. BMC Med. 2023, 21, 182. [Google Scholar] [CrossRef]
- Statistics for Machine Learning|Packt [Internet]. Available online: https://www.packtpub.com/product/statistics-for-machine-learning/9781788295758 (accessed on 21 May 2024).
- Hoffman, H.; Wood, J.; Cote, J.R.; Jalal, M.S.; Otite, F.O.; Masoud, H.E.; Gould, G.C. Development and Internal Validation of Machine Learning Models to Predict Mortality and Disability After Mechanical Thrombectomy for Acute Anterior Circulation Large Vessel Occlusion. World Neurosurg. 2023, 182, E137–E154. [Google Scholar] [CrossRef] [PubMed]
- Campagnini, S.; Arienti, C.; Patrini, M.; Liuzzi, P.; Mannini, A.; Carrozza, M.C. Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2022, 19, 54. [Google Scholar] [CrossRef]
- Hu, C.; Li, L.; Huang, W.; Wu, T.; Xu, Q.; Liu, J.; Hu, B. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study. Infect. Dis. Ther. 2022, 11, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Ting Sim, J.Z.; Fong, Q.W.; Huang, W.; Tan, C.H. Machine learning in medicine: What clinicians should know. Singap. Med. J. 2023, 64, 91–97. [Google Scholar]
- Bustamante, A.; Giralt, D.; García-Berrocoso, T.; Rubiera, M.; Álvarez-Sabín, J.; Molina, C.; Serena, J.; Montaner, J. The impact of post-stroke complications on in-hospital mortality depends on stroke severity. Eur. Stroke J. 2016, 2, 54–63. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Shakhovska, N.; Ilchyshyn, B.; Singh, K.K. A Two-Step Data Normalization Approach for Improving Classification Accuracy in the Medical Diagnosis Domain. Mathematics 2022, 10, 1942. [Google Scholar] [CrossRef]
- Mukhyber, S.J.; DhahirAbdulhadeAbdulah, A.D.M. Effect Z-score Normalization on Accuracy of classification of liver disease. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 658–662. [Google Scholar]
- Mihaela, G.; Ruxandra, P.S. The importance of normalization methods for mining medical data. Int. J. Comput. Technol. 2015, 14, 6014–6020. [Google Scholar] [CrossRef][Green Version]
- Jain, S.; Saha, A. Rank-based univariate feature selection methods on machine learning classifiers for code smell detection. Evol. Intell. 2021, 15, 609–638. [Google Scholar] [CrossRef]
- [PDF] A Two-Phase Feature Selection Method Using Both Filter and Wrapper|Semantic Scholar [Internet]. Available online: https://www.semanticscholar.org/paper/A-two-phase-feature-selection-method-using-both-and-Yuan-Tseng/1d46dc187f99524367948ae7b3683f27f333c36b (accessed on 21 May 2024).
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Martínez-Murcia, F.J.; Górriz, J.M.; Ramírez, J.; Puntonet, C.G.; Salas-González, D. Computer Aided Diagnosis tool for Alzheimer’s Disease based on Mann–Whitney–Wilcoxon U-Test. Expert Syst. Appl. 2012, 39, 9676–9685. [Google Scholar] [CrossRef]
- Sarkar, S.D.; Goswami, S.; Agarwal, A.; Aktar, J. A Novel Feature Selection Technique for Text Classification Using Naïve Bayes. Int. Sch. Res. Not. 2014, 2014, e717092. [Google Scholar] [CrossRef] [PubMed]
- (PDF) Improving the Classification Accuracy Using Recursive Feature Elimination with Cross-Validation [Internet]. Available online: https://www.researchgate.net/publication/344181117_Improving_the_Classification_Accuracy_using_Recursive_Feature_Elimination_with_Cross-Validation (accessed on 21 May 2024).
- Lu, X.; Yang, Y.B.; Wu, F.; Gao, M.B.; Xu, Y.; Zhang, Y.B.; Yao, Y.B.; Du, X.B.; Li, C.B.; Wu, L.B.; et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine 2016, 95, e3973. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Y.C. The Effect of Oversampling and Undersampling on Classifying Imbalanced Text Datasets. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cade435c88610820f073a0fb61b73dff8f006760 (accessed on 17 June 2024).
- Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; pp. 243–248. Available online: https://ieeexplore.ieee.org/abstract/document/9078901 (accessed on 22 May 2024).
- Chawla, N.V.; Japkowicz, N.; Kotcz, A. Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Batista, G.E.A.P.A.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Yap, B.W.; Rani, K.A.; Rahman, H.A.A.; Fong, S.; Khairudin, Z.; Abdullah, N.N. An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Kuala Lumpur, Malaysia, 16–18 December 2013; Herawan, T., Deris, M.M., Abawajy, J., Eds.; Springer: Singapore, 2014; pp. 13–22. [Google Scholar]
- Ling, C.X.; Huang, J.; Zhang, H. AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. In Advances in Artificial Intelligence; Xiang, Y., Chaib-Draa, B., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 329–341. [Google Scholar]
- Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature|Users’ Guide to the Medical Literature|JAMA|JAMA Network [Internet]. Available online: https://jamanetwork.com/journals/jama/fullarticle/2656816 (accessed on 22 May 2024).
- Jelovsek, J.E.; Hill, A.J.; Chagin, K.M.; Kattan, M.W.; Barber, M.D. Predicting Risk of Urinary Incontinence and Adverse Events after Midurethral Sling Surgery in Women. Obstet. Gynecol. 2016, 127, 330–340. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, R.; Bajorath, J. Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. J. Med. Chem. 2019, 63, 8761–8777. [Google Scholar] [CrossRef] [PubMed]
- Katuwal, G.J.; Chen, R. Machine Learning Model Interpretability for Precision Medicine [Internet]. arXiv 2016. Available online: http://arxiv.org/abs/1610.09045 (accessed on 22 May 2024).
- Perez-Vega, C.; Domingo, R.A.; Tripathi, S.; Ramos-Fresnedo, A.; Kashyap, S.; Quinones-Hinojosa, A.; Lin, M.P.; Fox, W.C.; Tawk, R.G. Influence of glucose levels on clinical outcome after mechanical thrombectomy for large-vessel occlusion: A systematic review and meta-analysis. J. Neurointerv. Surg. 2021, 14, 17–21. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.; Tian, X.; Wang, H.; Yang, D.; Hao, Y.; Shi, Z.; Lin, M.; Wang, Z.; Zheng, D.; et al. Impact of Relative Blood Glucose Changes on Mortality Risk of Patient with Acute Ischemic Stroke and Treated with Mechanical Thrombectomy. J. Stroke Cerebrovasc. Dis. 2019, 28, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Pikija, S.; Sztriha, L.K.; Killer-Oberpfalzer, M.; Weymayr, F.; Hecker, C.; Ramesmayer, C.; Hauer, L.; Sellner, J. Neutrophil to lymphocyte ratio predicts intracranial hemorrhage after endovascular thrombectomy in acute ischemic stroke. J. Neuroinflamm. 2018, 15, 319. [Google Scholar] [CrossRef]
- Sharma, D.; Spring, K.J.; Bhaskar, S.M.M. Role of Neutrophil-Lymphocyte Ratio in the Prognosis of Acute Ischaemic Stroke After Reperfusion Therapy: A Systematic Review and Meta-analysis. J. Central Nerv. Syst. Dis. 2022, 14, 11795735221092518. [Google Scholar] [CrossRef]
- Desilles, J.-P.; Syvannarath, V.; Ollivier, V.; Journé, C.; Delbosc, S.; Ducroux, C.; Boisseau, W.; Louedec, L.; Di Meglio, L.; Loyau, S.; et al. Exacerbation of Thromboinflammation by Hyperglycemia Precipitates Cerebral Infarct Growth and Hemorrhagic Transformation. Stroke 2017, 48, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Inflammation and Stroke: An Overview—PubMed [Internet]. Available online: https://pubmed.ncbi.nlm.nih.gov/27730544/ (accessed on 22 May 2024).
- Pandhi, A.; Tsivgoulis, G.; Ishfaq, M.F.; Katsanos, A.; Magoufis, G.; Malhotra, K.; Krishnan, R.; Arthur, A.; Hoit, D.; Elijovich, L.; et al. Mechanical thrombectomy outcomes in large vessel stroke with high international normalized ratio. J. Neurol. Sci. 2019, 396, 193–198. [Google Scholar] [CrossRef]
- Chen, H.; Ahmad, G.; Colasurdo, M.; Yarbrough, K.; Schrier, C.; Phipps, M.S.; Cronin, C.A.; Mehndiratta, P.; Cole, J.W.; Wozniak, M.; et al. Mildly elevated INR is associated with worse outcomes following mechanical thrombectomy for acute ischemic stroke. J. Neurointerv. Surg. 2022, 15, e117–e122. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Liebeskind, D.S.; Sung, G.; Duckwiler, G.; Smith, W.S. Predictors of good clinical outcomes, mortality, and successful revascularization in patients with acute ischemic stroke undergoing thrombectomy: Pooled analysis of the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) and Multi MERCI Trials. Stroke 2009, 40, 3777–3783. [Google Scholar] [CrossRef]
- Liebeskind, D.S.; Flint, A.C.; Budzik, R.F.; Xiang, B.; Smith, W.S.; Duckwiler, G.R.; Nogueira, R.G. Carotid I’s, L’s and T’s: Collaterals shape the outcome of intracranial carotid occlusion in acute ischemic stroke. J. Neurointerv. Surg. 2015, 7, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Mönch, S.; Boeckh-Behrens, T.; Maegerlein, C.; Berndt, M.; Wunderlich, S.; Zimmer, C.; Friedrich, B. Mechanical Thrombectomy of the Middle Cerebral Artery—Neither Segment nor Diameter Matter. J. Stroke Cerebrovasc. Dis. 2019, 29, 104542. [Google Scholar] [CrossRef] [PubMed]
- Pirson, F.A.; Hinsenveld, W.H.; Staals, J.; de Ridder, I.R.; van Zwam, W.H.; Schreuder, T.H.; Roos, Y.B.; Majoie, C.B.; van der Worp, H.B.; Uyttenboogaart, M.; et al. Peripheral Artery Disease in Acute Ischemic Stroke Patients Treated with Endovascular Thrombectomy; Results from the MR CLEAN Registry. Front. Neurol. 2020, 11, 560300. [Google Scholar] [CrossRef] [PubMed]
- Meves, S.H.; Diehm, C.; Berger, K.; Pittrow, D.; Trampisch, H.-J.; Burghaus, I.; Tepohl, G.; Allenberg, J.-R.; Endres, H.G.; Schwertfeger, M.; et al. Peripheral arterial disease as an independent predictor for excess stroke morbidity and mortality in primary-care patients: 5-year results of the getABI study. Cerebrovasc. Dis. 2010, 29, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Millán, M.; Ramos-Pachón, A.; Dorado, L.; Bustamante, A.; Hernández-Pérez, M.; Rodríguez-Esparragoza, L.; Gomis, M.; Remollo, S.; Castaño, C.; Werner, M.; et al. Predictors of Functional Outcome After Thrombectomy in Patients with Prestroke Disability in Clinical Practice. Stroke 2022, 53, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Seker, F.; Pfaff, J.; Schönenberger, S.; Herweh, C.; Nagel, S.; Ringleb, P.; Bendszus, M.; Möhlenbruch, M. Clinical Outcome after Thrombectomy in Patients with Stroke with Premorbid Modified Rankin Scale Scores of 3 and 4: A Cohort Study with 136 Patients. Am. J. Neuroradiol. 2018, 40, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Brugnara, G.; Neuberger, U.; Mahmutoglu, M.A.; Foltyn, M.; Herweh, C.; Nagel, S.; Schönenberger, S.; Heiland, S.; Ulfert, C.; Ringleb, P.A.; et al. Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning. Stroke 2020, 51, 3541–3551. [Google Scholar] [CrossRef] [PubMed]
- Asdaghi, N.; Wang, K.; Gardener, H.; Jameson, A.; Rose, D.Z.; Alkhachroum, A.; Gutierrez, C.M.; Ying, H.; Mueller-Kronast, N.; Sur, N.B.; et al. Impact of Time to Treatment on Endovascular Thrombectomy Outcomes in the Early Versus Late Treatment Time Windows. Stroke 2023, 54, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Ota, T.; Nishiyama, Y.; Koizumi, S.; Saito, T.; Ueda, M.; Saito, N. Impact of onset-to-groin puncture time within three hours on functional outcomes in mechanical thrombectomy for acute large-vessel occlusion. Interv. Neuroradiol. 2018, 24, 162–167. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; van der Lugt, A.; Menon, B.K.; Majoie, C.B.L.M.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A.; et al. Time to Treatment with Endovascular Thrombectomy and Outcomes from Ischemic Stroke: A Meta-analysis. JAMA 2016, 316, 1279–1289. [Google Scholar] [CrossRef]
- Farghaly, W.M.; Ahmed, M.A.; El-Bassiouny, A.; Hamed, A.A.; Shehata, G.A. Predictors of three months mortality after endovascular mechanical thrombectomy for acute ischemic stroke. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 96. [Google Scholar] [CrossRef]
- Spiotta, A.M.; Vargas, J.; Turner, R.; Chaudry, M.I.; Battenhouse, H.; Turk, A.S. The golden hour of stroke intervention: Effect of thrombectomy procedural time in acute ischemic stroke on outcome. J. Neurointerv. Surg. 2014, 6, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, A.; Pierce, A.K.; Vargas, J.; Turk, A.S.; Turner, R.D.; Chaudry, M.I.; Spiotta, A.M. The golden 35 min of stroke intervention with ADAPT: Effect of thrombectomy procedural time in acute ischemic stroke on outcome. J. Neurointerv. Surg. 2018, 10, 213–220. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients (N = 602) | Patients with the Miserable Outcome (N = 133) | Patients with the Favorable Outcome (N = 469) | p Value |
---|---|---|---|---|
Sociodemographic data | ||||
Age, median (IQR) | 76 (65–83) | 81 (74–87) | 74 (62–82) | <0.001 |
Sex, n (%) | 0.113 | |||
Female | 328/602 (54%) | 81/133 (61%) | 247/469 (53%) | |
Male | 274/602 (46%) | 52/133 (39%) | 222/469 (47%) | |
Days to In-hospital death (IQR) | 6 (2.5–14) | |||
Vascular risk factors and comorbidities | ||||
Previous stroke, n (%) | 92/602 (15%) | 32/133 (24%) | 60/469 (13%) | 0.002 |
Peripheral arterial disease (PAD), n (%) | 33/602 (5%) | 19/133 (14%) | 14/469 (3%) | <0.001 |
Tobacco smoking n (%) | 381 (63%) | 81 (61%) | 300 (64%) | 0.393 |
Atrial fibrillation, n (%) | 237/602 (39%) | 62/133 (47%) | 175/469 (37%) | 0.066 |
Diabetes mellitus, n (%) | 90/602 (15%) | 26/133 (20%) | 64/469 (14%) | 0.122 |
Arterial hypertension, n (%) | 433/602 (72%) | 103/133 (77%) | 330/469 (70%) | 0.135 |
Internal carotid artery (ICA) stenosis, n (%) | 86/602 (14%) | 24/133 (18%) | 62/469 (13%) | 0.206 |
Ischemic heart disease, n (%) | 110/602 (18%) | 31/133 (23%) | 79/469 (17%) | 0.115 |
Kidney failure, n (%) | 53/602 (9%) | 22/133 (17%) | 31/469 (6%) | 0.001 |
Heart failure, n (%) | 75/602 (12%) | 22/133 (17%) | 53/469 (11%) | 0.142 |
Statins usage, n (%) | 149/602 (25%) | 31/133 (23%) | 118/469 (25%) | 0.747 |
Antiplatelets drug usage, n (%) | 158/602 (26%) | 38/133 (29%) | 120/469 (26%) | 0.563 |
Anticoagulants usage, n (%) | 58/602 (10%) | 24/133 (18%) | 34/469 (7%) | <0.001 |
Direct oral anticoagulants usage, n (%) | 57/602 (9%) | 20/133 (15%) | 37/469 (8%) | 0.02 |
Baseline laboratory values | ||||
C-reactive protein (CRP) (mg/dL), median (IQR) | 0.39 (0.18–0.91) | 0.42 (0.19–1.48) | 0.39 (0.17–0.81) | 0.008 |
Glycemia (mg/dL), median (IQR) | 120 (107–143) | 124 (112–157) | 119 (106–141) | 0.004 |
HbA1c (%), median (IQR) | 5.7 (5.5–5.9) | 5.7 (5.5–5.9) | 5.7 (5.4–5.9) | 0.167 |
Creatinine (mg/dL), median (IQR) | 0.89 (0.77–1.08) | 0.93 (0.82–1.25) | 0.88 (0.76–1.05) | 0.001 |
Cholesterol (mg/dL), median (IQR) | 153 (134–177) | 153 (132–158) | 153 (134–181) | 0.025 |
Triglycerides (mg/dL), median (IQR) | 100 (79–129) | 100 (81–122) | 100 (78–133) | 0.405 |
High-density lipoprotein (HDL) (mg/dL), median (IQR) | 46 (39–53) | 46 (40–49) | 46 (39–54) | 0.708 |
Low-density lipoprotein (LDL) (mg/dL), median (IQR) | 95 (78–112) | 95 (73–98) | 95 (78–116) | 0.002 |
White Blood Cells (WBC) (×109/L), median (IQR) | 8.59 (7.00–10.8) | 8.59 (7.08–11.89) | 8.59 (6.99–10.76) | 0.107 |
Neutrophils (×109/L), median (IQR) | 6.27 (4.58–8.23) | 6.27 (4.98–8.88) | 6.02 (4.52–8.11) | 0.005 |
Lymphocytes (×109/L), median (IQR) | 1.55 (1.10–2.10) | 1.40 (0.91–1.97) | 1.63 (1.15–2.11) | 0.001 |
Red Blood Cells (RBC) (×1012/L), median (IQR) | 4.41 (4.07–4.74) | 4.41 (4.01–4.81) | 4.41 (4.09–4.72) | 0.447 |
Hematocrit (HCT) (%), median (IQR) | 39.2 (36.0–42.2) | 39.20 (35.3–42.4) | 39.20 (36.20–42.20) | 0.566 |
Platelets (PLT) (×109/L), median (IQR) | 224 (188–273) | 224 (187–284) | 224 (188–269) | 0.368 |
Fibrinogen (mg/dL), median (IQR) | 341 (286–399) | 359 (315–446) | 341 (277–394) | 0.002 |
International normalized ratio (INR), median (IQR) | 1.20 (1.20–1.20) | 1.20 (1.20–1.21) | 1.20 (1.20–1.20) | 0.009 |
Neutrophil-to-lymphocyte ratio (NLR), median (IQR) | 4.06 (2.41–6.50) | 3.95 (2.86–8.67) | 3.95 (2.29–5.86) | 0.001 |
Systemic inflammatory index (SII), median (IQR) | 908 (511–1522) | 919 (618–1951) | 918 (494–1395) | 0.006 |
Clinical data | ||||
pre-mRS ≥ 2, n (%) | 91/602 (15%) | 32/133 (24%) | 59/469 (13%) | 0.002 |
Baseline NIHSS, median (IQR) | 18 (12–22) | 20 (16–24) | 17 (11–21) | <0.001 |
Wake-up stroke, n (%) | 114/602 (19%) | 32/133 (24%) | 82/469 (17%) | 0.113 |
ASPECTS > 6, n (%) | 536/602 (89%) | 116/133 (87%) | 420/469 (90%) | 0.546 |
TOAST | ||||
Cardioembolic cause (CE), n (%) | 331/602 (55%) | 86/133 (65%) | 245/469 (52%) | 0.015 |
Large artery atherosclerosis (LAA), n (%) | 81/602 (13%) | 12/133 (9%) | 69/469 (15%) | 0.120 |
Other, or unknown cause, n (%) | 190/602 (32%) | 35/133 (26%) | 155/469 (33%) | 0.171 |
Thrombolysis, n (%) | 361/602 (60%) | 64/133 (48%) | 297/469 (63%) | 0.002 |
Occluded vessel and leptomeningeal collaterals | ||||
Vessel type, n (%) | ||||
Middle Cerebral Artery-M1 segment | 335/602 (56%) | 55/133 (41%) | 280/469 (60%) | <0.001 |
Middle Cerebral Artery-M2 segment | 47/602 (8%) | 11/133 (8%) | 36/469 (8%) | 0.966 |
Internal Carotid Artery-I type | 93/602 (15%) | 20/133 (15%) | 73/469 (16%) | 0.990 |
Internal Carotid Artery-L type | 33/602 (5%) | 12/133 (9%) | 21/469 (4%) | 0.069 |
Internal Carotid Artery-T type | 94/602 (16%) | 35/133 (26%) | 59/469 (13%) | <0.001 |
Vessel side, n (%) | 0.567 | |||
Right | 287/602 (48%) | 60/133 (45%) | 227/469 (48%) | |
Left | 315/602 (52%) | 73/133 (55%) | 242/469 (52%) | |
Leptomeningeal collaterals (LC), n (%) | 0.001 | |||
Good or Equal to the unaffected side | 454/602 (75%) | 85/133 (64%) | 369/469 (79%) | |
Absent | 148/602 (25%) | 48/133 (36%) | 100/469 (21%) | |
Endovascular procedure information | ||||
Onset-to-puncture time (OPT) | 192 (154–270) | 200 (152–329) | 195.0 (140–285) | 0.181 |
Puncture-to-end time (PET), median (IQR) | 52 (38–66) | 62 (54–90) | 55 (33–79) | 0.358 |
Onset to the procedure end time (OPET) | 264 (219–318) | 276 (237–389) | 269 (205–343) | 0.269 |
Number of steps, median (IQR) | 2 (1–3) | 3 (2–4) | 2 (1–4) | 0.011 |
Procedure type, n (%) | ||||
Failed/Abandoned thrombectomy, n (%) | 55/602 (9%) | 11/133 (8%) | 44/469 (9%) | 0.824 |
Aspiration only | 229/602 (38%) | 41/133 (31%) | 188/469 (40%) | 0.066 |
Stent-retriever only | 24/602 (4%) | 5/133 (4%) | 19/469 (4%) | 1.000 |
Aspiration and stent-retriever | 294/602 (49%) | 76/133 (57%) | 218/469 (46%) | 0.038 |
Procedure complications, n (%) | ||||
No complications | 586/602 (97%) | 129/133 (97%) | 457/469 (97%) | 1.000 |
Downstream complications | 11/602 (2%) | 3/133 (2%) | 8/469 (2%) | 0.959 |
Distal complications | 5/602 (1%) | 1/133 (1%) | 4/469 (1%) | 1.000 |
Vessel perforation | 45/602 (7%) | 8/133 (6%) | 37/469 (8%) | 0.590 |
Bleeding type, n (%) | ||||
No bleeding | 415/602 (69%) | 85/133 (64%) | 330/469 (70%) | 0.189 |
Symptomatic bleeding | 18/602 (3%) | 1/133 (1%) | 17/469 (4%) | 0.153 |
Any other bleeding | 169/602 (28%) | 47/133 (35%) | 122/469 (26%) | 0.045 |
Thrombolysis in Cerebral Infarction (TICI), n (%) | 0.040 | |||
Incomplete recanalization (TICI = 0-2a) | 152/602 (25%) | 24/133 (18%) | 128/469 (27%) | |
Complete recanalization (TICI = 2b-3) | 450/602 (75%) | 109/133 (82%) | 341/469 (73%) | |
Internal carotid artery stenting, n (%) | 34/602 (6%) | 11/133 (8%) | 23/469 (5%) | 0.203 |
Osteoclastic decompressive craniectomy, n (%) | 29/602 (5%) | 8/133 (6%) | 21/469 (4%) | 0.616 |
Predictor | Estimate | 95% Confidence Interval | SE | z | p Value | Odds Ratio | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | ||||||
Age | 0.053 | 0.034 | 0.074 | 0.010 | 5.289 | <0.001 | 1.061 | 1.034 | 1.076 |
Baseline NIHSS | 0.071 | 0.037 | 0.105 | 0.017 | 4.104 | <0.001 | 1.086 | 1.038 | 1.111 |
Glycemia | 0.005 | 0.000 | 0.009 | 0.002 | 2.317 | 0.020 | 1.007 | 1.001 | 1.009 |
NLR | 0.055 | 0.016 | 0.095 | 0.020 | 2.736 | 0.006 | 1.071 | 1.016 | 1.100 |
INR | 1.050 | 0.398 | 1.710 | 0.334 | 3.150 | <0.001 | 2.866 | 1.488 | 5.517 |
PAD | 1.505 | 0.751 | 2.259 | 0.384 | 3.910 | <0.001 | 4.504 | 2.120 | 9.569 |
pre-mRS | 0.590 | 0.074 | 1.105 | 0.263 | 2.240 | 0.025 | 1.803 | 1.077 | 3.019 |
OPT | 0.000 | 0.000 | 0.001 | 0.000 | 0.258 | 0.796 | 1.001 | 0.999 | 1.001 |
PET | 0.002 | 0.001 | 0.006 | 0.002 | 1.049 | 0.294 | 1.002 | 0.998 | 1.006 |
Classifier | Accuracy | Precision | Recall | F1-Score | AUC-ROC | Brier Score | |
---|---|---|---|---|---|---|---|
Pre-MT Model | LR | 0.7222 | 0.7083 | 0.6800 | 0.6939 | 0.7821 | 0.2205 |
RF | 0.7222 | 0.7273 | 0.6400 | 0.6809 | 0.7648 | 0.2058 | |
GB | 0.6667 | 0.6207 | 0.7200 | 0.6667 | 0.7917 | 0.2009 | |
XGB | 0.7037 | 0.6800 | 0.6800 | 0.6800 | 0.7503 | 0.2182 | |
Post-MT Model | LR | 0.7222 | 0.7273 | 0.6400 | 0.6809 | 0.7848 | 0.1328 |
RF | 0.7073 | 0.6800 | 0.6800 | 0.6800 | 0.8145 | 0.1192 | |
GB | 0.6852 | 0.6667 | 0.6400 | 0.6531 | 0.7931 | 0.1197 | |
XGB | 0.7407 | 0.7200 | 0.7200 | 0.7200 | 0.8372 | 0.1194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, I.; Broggi, S.; Killer-Oberpfalzer, M.; Pfaff, J.A.R.; Griessenauer, C.J.; Milosavljević, I.; Balenović, A.; Mutzenbach, J.S.; Pikija, S. Predictors of In-Hospital Mortality after Thrombectomy in Anterior Circulation Large Vessel Occlusion: A Retrospective, Machine Learning Study. Diagnostics 2024, 14, 1531. https://doi.org/10.3390/diagnostics14141531
Petrović I, Broggi S, Killer-Oberpfalzer M, Pfaff JAR, Griessenauer CJ, Milosavljević I, Balenović A, Mutzenbach JS, Pikija S. Predictors of In-Hospital Mortality after Thrombectomy in Anterior Circulation Large Vessel Occlusion: A Retrospective, Machine Learning Study. Diagnostics. 2024; 14(14):1531. https://doi.org/10.3390/diagnostics14141531
Chicago/Turabian StylePetrović, Ivan, Serena Broggi, Monika Killer-Oberpfalzer, Johannes A. R. Pfaff, Christoph J. Griessenauer, Isidora Milosavljević, Ana Balenović, Johannes S. Mutzenbach, and Slaven Pikija. 2024. "Predictors of In-Hospital Mortality after Thrombectomy in Anterior Circulation Large Vessel Occlusion: A Retrospective, Machine Learning Study" Diagnostics 14, no. 14: 1531. https://doi.org/10.3390/diagnostics14141531
APA StylePetrović, I., Broggi, S., Killer-Oberpfalzer, M., Pfaff, J. A. R., Griessenauer, C. J., Milosavljević, I., Balenović, A., Mutzenbach, J. S., & Pikija, S. (2024). Predictors of In-Hospital Mortality after Thrombectomy in Anterior Circulation Large Vessel Occlusion: A Retrospective, Machine Learning Study. Diagnostics, 14(14), 1531. https://doi.org/10.3390/diagnostics14141531